Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Since hydroxyapatite (HAp) is an important constituent of bone and teeth, it has excellent biocompatibility and bioactivity, good osteoconductive effects and the ability to induce bone formation as a material for bone or tooth repair and replacement. At present, widely used HAp microspheres have some characteristics, such as large specific surface area, light mass, good injection properties, good fluidity, and low aggregation ability, but they are difficult to really meet the biological and clinical needs due to their own mechanical property defects, such as low strength, brittleness, and poor plasticity. Based on the current research status of HAp microspheres, we summarize the research progress of various types of composite microspheres, including inorganic materials, natural polymer materials and synthetic polymer materials, and further analyze the advantages of HAp composite microspheres loaded with drug molecules, proteins and bioactive factors, so as to explore the development prospect of HAp composite microspheres as scaffolds for constructing sustained release systems. It provides a theoretical basis and research direction to prepare HAp composite micro-spheres with superior comprehensive properties so that they can be better applied in bone tissue regeneration and tooth regeneration engineering.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673303632240320073606
2024-03-22
2025-08-18
Loading full text...

Full text loading...

References

  1. HongfeiC. YigaoS. ShuaiA. JunjieQ. Progress on synthesis and application of hydroxyapatite.J. Synth. Cryst.20174617401747
    [Google Scholar]
  2. SongboN. YanbaoL. XiumeiW. Preparation, application and functionalization of hydroxyapatite microspheres.Huaxue Jinzhan201123231245
    [Google Scholar]
  3. Gaffney-StombergE. The impact of trace minerals on bone metabolism.Biol. Trace Elem. Res.20191881263410.1007/s12011‑018‑1583‑830467628
    [Google Scholar]
  4. YuW. SunT.W. QiC. DingZ. ZhaoH. ZhaoS. ShiZ. ZhuY.J. ChenD. HeY. Evaluation of zinc- doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation.Int. J. Nanomedicine2017122293230610.2147/IJN.S12650528392688
    [Google Scholar]
  5. CuozzoR.C. SartorettoS.C. ResendeR.F.B. AlvesA.T.N.N. MavropoulosE. Prado da SilvaM.H. Calasans-MaiaM.D. Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration.J. Biomed. Mater. Res. B Appl. Biomater.202010862610262010.1002/jbm.b.3459332096353
    [Google Scholar]
  6. Henriques LourençoA. NevesN. Ribeiro-MachadoC. SousaS.R. LamghariM. BarriasC.C. Trigo CabralA. BarbosaM.A. RibeiroC.C. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model.Sci. Rep.201771509810.1038/s41598‑017‑04866‑428698571
    [Google Scholar]
  7. IannottiV. AdamianoA. AusanioG. LanotteL. AquilantiG. CoeyJ.M.D. LantieriM. SpinaG. FittipaldiM. MargarisG. TrohidouK. SprioS. MontesiM. PanseriS. SandriM. IafiscoM. TampieriA. Fe-doping-induced magnetism in nano-hydroxyapatites.Inorg. Chem.20175684446445810.1021/acs.inorgchem.6b0314328379709
    [Google Scholar]
  8. SantosL.J. ReisR.L. GomesM.E. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering.Trends Biotechnol.201533847147910.1016/j.tibtech.2015.06.00626123708
    [Google Scholar]
  9. YunH.M. AhnS.J. ParkK.R. KimM.J. KimJ.J. JinG.Z. KimH.W. KimE.C. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation.Biomaterials201685889810.1016/j.biomaterials.2016.01.03526854394
    [Google Scholar]
  10. Fernandes PatrícioT.M. PanseriS. MontesiM. IafiscoM. SandriM. TampieriA. SprioS. Superparamagnetic hybrid microspheres affecting osteoblasts behaviour.Mater. Sci. Eng. C20199623424710.1016/j.msec.2018.11.01430606529
    [Google Scholar]
  11. WangK. WangY. ZhaoX. LiY. YangT. ZhangX. WuX. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.Mater. Sci. Eng. C20177556557110.1016/j.msec.2017.02.06628415500
    [Google Scholar]
  12. Schneider Werner ViannaT. SartorettoS.C. Neves Novellino AlvesA.T. Figueiredo de Brito ResendeR. de Almeida Barros MourãoC.F. de Albuquerque Calasans- MaiaJ. Martinez-ZelayaV.R. Malta RossiA. GranjeiroJ.M. Calasans-MaiaM.D. Seabra LouroR. Nanostructured carbonated hydroxyapatite associated to rhBMP-2 improves bone repair in rat calvaria.J. Funct. Biomater.20201148710.3390/jfb1104008733291525
    [Google Scholar]
  13. XuetaoY. QingboT. LimingF. FengqingZ. YuwuS. KangningS. Preparation of structure controlled fluorapatite hydroxyapatite microsphere by dissolution crystallization.J. Synth. Cryst.201746451456
    [Google Scholar]
  14. MladenovićŽ. JohanssonA. WillmanB. ShahabiK. BjörnE. RansjöM. Soluble silica inhibits osteoclast formation and bone resorption in vitro.Acta Biomater.201410140641810.1016/j.actbio.2013.08.03924016843
    [Google Scholar]
  15. CasarrubiosL. MatesanzM.C. Sánchez-SalcedoS. ArcosD. Vallet-RegíM. PortolésM.T. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.J. Colloid Interface Sci.201648211212010.1016/j.jcis.2016.07.07527497232
    [Google Scholar]
  16. YanhuaW. HangH. JianxiongW. YuanY. NaQ. WencongH. Enhanced antitumor effect and drug delivery from Se doped hydroxyapatite microspheres.Wuji Huaxue Xuebao20183415171530
    [Google Scholar]
  17. DongqinX. DongweiW. JunchenR. Synthesis and characterization of copper-substituted hydroxyapatite micrspheres.J. Inorg. Mater.201729769775
    [Google Scholar]
  18. LeprêtreS. ChaiF. HornezJ.C. VermetG. NeutC. DescampsM. HildebrandH.F. MartelB. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers.Biomaterials200930306086609310.1016/j.biomaterials.2009.07.04519674778
    [Google Scholar]
  19. YongfengW AnminJ KunW XudongW ShanhuaT ShaoxiongM. Development of an anti-infection nano-hydroxypatite drug delivery microsphere and its drug-release in vitro.South. Med. J.2006754756
    [Google Scholar]
  20. YaoA.H. LiX.D. XiongL. ZengJ.H. XuJ. WangD.P. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects.J. Mater. Sci. Mater. Med.20152612510.1007/s10856‑014‑5336‑825578692
    [Google Scholar]
  21. CholasR. Kunjalukkal PadmanabhanS. GervasoF. UdayanG. MonacoG. SanninoA. LicciulliA. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.Mater. Sci. Eng. C20166349950510.1016/j.msec.2016.03.02227040244
    [Google Scholar]
  22. ChevallayB. HerbageD. Collagen-based biomaterials as 3D scaffold for cell cultures: Applications for tissue engineering and gene therapy.Med. Biol. Eng. Comput.200038221121810.1007/BF0234477910829416
    [Google Scholar]
  23. CaiY. TongS. ZhangR. ZhuT. WangX. In vitro evaluation of a bone morphogenetic protein-2 nanometer hydroxyapatite collagen scaffold for bone regeneration.Mol. Med. Rep.20181745830583610.3892/mmr.2018.857929436646
    [Google Scholar]
  24. MarzecM. Kucińska-LipkaJ. KalaszczyńskaI. JanikH. Development of polyurethanes for bone repair.Mater. Sci. Eng. C20178073674710.1016/j.msec.2017.07.04728866223
    [Google Scholar]
  25. XinL. YiH. YubaoL. MinH. XinR. LiZ. Preparation and self-assembly of oppositely charged polyurethane/hydroxypatite microspheres.Wuji Huaxue Xuebao20173314031410
    [Google Scholar]
  26. SantoroM. ShahS.R. WalkerJ.L. MikosA.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering.Adv. Drug Deliv. Rev.201610720621210.1016/j.addr.2016.04.01927125190
    [Google Scholar]
  27. XiaoG. YinH. XuW. LuY. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds.J. Biomater. Sci. Polym. Ed.201627141462147510.1080/09205063.2016.121100027398630
    [Google Scholar]
  28. DiasA.M. da SilvaF.G. MonteiroA.P.F. Pinzón-GarcíaA.D. SinisterraR.D. CortésM.E. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease.Mater. Sci. Eng. C201910310979810.1016/j.msec.2019.10979831349501
    [Google Scholar]
  29. DuY. LiuH. ShuangJ. WangJ. MaJ. ZhangS. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.Colloids Surf. B Biointerfaces2015135818910.1016/j.colsurfb.2015.06.07426241919
    [Google Scholar]
  30. WenG. XuJ. WuT. ZhangS. ChaiY. KangQ. LiG. Functionalized polycaprolactone/hydroxyapatite composite microspheres for promoting bone consolidation in a rat distraction osteogenesis model.J. Orthop. Res.202038596197110.1002/jor.2454231777101
    [Google Scholar]
  31. MirM. AhmedN. RehmanA. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf. B Biointerfaces201715921723110.1016/j.colsurfb.2017.07.03828797972
    [Google Scholar]
  32. LinY. LiY. OoiC.P. 5-Fluorouracil encapsulated HA/PLGA composite microspheres for cancer therapy.J. Mater. Sci. Mater. Med.201223102453246010.1007/s10856‑012‑4723‑222843166
    [Google Scholar]
  33. WenzhiS. DezhouW. MinG. ChunyuH. LanlanZ. PeibiaoZ. Assessment of nano-hydroxyapatite and poly (lactide-co-glycolide) nanocomposite microspheres fabricated by novel airflow shearing technique for in vivo bone repair.Mater. Sci. Eng. C202112811229910.1016/j.msec.2021.11229934474850
    [Google Scholar]
  34. ChenL. TianM. YangJ. WuZ. Berberine-encapsulated poly(lactic-co-glycolic acid)-hydroxyapatite (PLGA/HA) microspheres synergistically promote bone regeneration with DOPA-IGF-1 via the IGF-1R/PI3K/AKT/mTOR pathway.Int. J. Mol. Sci.202324201540310.3390/ijms24201540337895083
    [Google Scholar]
  35. BiY. LinZ. DengS. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering.Mater. Sci. Eng. C201910057658310.1016/j.msec.2019.03.04030948094
    [Google Scholar]
  36. ZhuW. GuoD. PengL. ChenY.F. CuiJ. XiongJ. LuW. DuanL. ChenK. ZengY. WangD. Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material.Artif. Cells Nanomed. Biotechnol.201745111511910.3109/21691401.2016.113848226836765
    [Google Scholar]
  37. LiG. LiY. ZhangX. GaoP. XiaX. XiaoS. WenJ. GuoT. YangW. LiJ. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε- caprolactone) scaffolds promote vascularized bone regeneration.J. Mater. Chem. B Mater. Biol. Med.20231151115113010.1039/D2TB02309A36636931
    [Google Scholar]
  38. WuJ. WangC. ZhangS. ZhangL. HaoJ. JiaZ. ZhengX. LvY. FuS. ZhangG. Preparation and properties of GO/ZnO/nHAp composite microsphere bone regeneration material.Micromachines202415112210.3390/mi1501012238258241
    [Google Scholar]
  39. ChengD. DingR. JinX. LuY. BaoW. ZhaoY. ChenS. ShenC. YangQ. WangY. Strontium ion- functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration.ACS Appl. Mater. Interfaces20231516199511996510.1021/acsami.3c0065537043370
    [Google Scholar]
  40. HeJ. HuX. CaoJ. ZhangY. XiaoJ. Peng ChenD. XiongC. ZhangL. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration.Carbohydr. Polym.202125311719810.1016/j.carbpol.2020.11719833278972
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673303632240320073606
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test