Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The increasing incidence of metabolic diseases, including obesity and diabetes, is a serious social public problem. Therefore, there is an urgent need to find effective prevention and treatment measures for these diseases. DsbA-L is a protein that is widely expressed in many tissues and is closely related to metabolism. Emerging evidence shows that DsbA-L plays an important role in antioxidative stress, promoting the synthesis and secretion of adiponectin and maintaining mitochondrial homeostasis, and the abnormalities of these functions are also closely related to the occurrence and development of metabolic diseases. Here, we reviewed the tissue expression patterns and regulatory factors of DsbA-L, summarized its biological functions and the current research progress of DsbA-L in metabolic diseases, and found that DsbA-L may be a promising target for metabolic diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673252630231018044159
2023-10-24
2025-07-15
Loading full text...

Full text loading...

References

  1. LiH.Y. ZhouD.D. GanR.Y. HuangS.Y. ZhaoC.N. ShangA. XuX.Y. LiH.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review.Nutrients2021139321110.3390/nu1309321134579087
    [Google Scholar]
  2. DayE.A. FordR.J. SteinbergG.R. AMPK as a therapeutic target for treating metabolic diseases.Trends Endocrinol. Metab.201728854556010.1016/j.tem.2017.05.00428647324
    [Google Scholar]
  3. XuX. YiH. WuJ. KuangT. ZhangJ. LiQ. DuH. XuT. JiangG. FanG. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence.Biomed. Pharmacother.202113311098410.1016/j.biopha.2020.11098433186794
    [Google Scholar]
  4. YangM. LuoS. YangJ. ChenW. HeL. LiuD. ZhaoL. WangX. Crosstalk between the liver and kidney in diabetic nephropathy.Eur. J. Pharmacol.202293117521910.1016/j.ejphar.2022.17521935987257
    [Google Scholar]
  5. KolliasA.N. UlbigM.W. Diabetic retinopathy: Early diagnosis and effective treatment.Dtsch. Arztebl. Int.20101075758320186318
    [Google Scholar]
  6. ChooiY.C. DingC. MagkosF. The epidemiology of obesity.Metabolism20199261010.1016/j.metabol.2018.09.00530253139
    [Google Scholar]
  7. PedersenB.K. SaltinB. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases.Scand. J. Med. Sci. Sports201525S317210.1111/sms.1258126606383
    [Google Scholar]
  8. MarroneG. GuerrieroC. PalazzettiD. LidoP. MarollaA. Di DanieleF. NoceA. Vegan diet health benefits in metabolic syndrome.Nutrients202113381710.3390/nu1303081733801269
    [Google Scholar]
  9. HeY. LuL. WeiX. JinD. QianT. YuA. SunJ. CuiJ. YangZ. The multimerization and secretion of adiponectin are regulated by TNF-alpha.Endocrine201651345646810.1007/s12020‑015‑0741‑426407855
    [Google Scholar]
  10. LiuM. LiuF. Up- and down-regulation of adiponectin expression and multimerization: Mechanisms and therapeutic implication.Biochimie201294102126213010.1016/j.biochi.2012.01.00822342903
    [Google Scholar]
  11. GaoP. YangM. ChenX. XiongS. LiuJ. SunL. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease.Clin. Sci. (Lond.)2020134767769410.1042/CS2020000532167139
    [Google Scholar]
  12. ZengF. LiC. HuangJ. XieS. ZhouL. MengL. LiL. WeiH. ZhangS. Glutathione S-transferase kappa 1 is positively related with sperm quality of porcine sperm.Mol. Reprod. Dev.202289210411210.1002/mrd.2355134888969
    [Google Scholar]
  13. MorelF. AninatC. The glutathione transferase kappa family.Drug Metab. Rev.201143228129110.3109/03602532.2011.55612221428694
    [Google Scholar]
  14. UnoY. MurayamaN. KunoriM. YamazakiH. Systematic identification and characterization of glutathione S-transferases in cynomolgus macaque.Biochem. Pharmacol.201386567969010.1016/j.bcp.2013.06.02223827461
    [Google Scholar]
  15. HarrisJ.M. MeyerD.J. ColesB. KettererB. A novel glutathione transferase (13–13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes.Biochem. J.1991278113714110.1042/bj27801371883325
    [Google Scholar]
  16. MorelF. RauchC. PetitE. PitonA. TheretN. ColesB. GuillouzoA. Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization.J. Biol. Chem.200427916162461625310.1074/jbc.M31335720014742434
    [Google Scholar]
  17. LiuM. ZhouL. XuA. LamK.S.L. WetzelM.D. XiangR. ZhangJ. XinX. DongL.Q. LiuF. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization.Proc. Natl. Acad. Sci. USA200810547183021830710.1073/pnas.080634110519011089
    [Google Scholar]
  18. ThomsonR.E. BigleyA.L. FosterJ.R. JowseyI.R. ElcombeC.R. OrtonT.C. HayesJ.D. Tissue-specific expression and subcellular distribution of murine glutathione S-transferase class kappa.J. Histochem. Cytochem.200452565366210.1177/00221554040520050915100242
    [Google Scholar]
  19. FangQ. YangW. LiH. HuW. ChenL. JiangS. DongK. SongQ. WangC. ChenS. LiuF. JiaW. Negative regulation of DsbA-L gene expression by the transcription factor Sp1.Diabetes201463124165417110.2337/db14‑018225024375
    [Google Scholar]
  20. ZhouX. LiJ. WeiL. HeM. JiaJ. ZhangJ. WangS. FengL. Silencing of DsbA-L gene impairs the PPARγ agonist function of improving insulin resistance in a high-glucose cell model.J. Zhejiang Univ. Sci. B2020211299099810.1631/jzus.B200043233843164
    [Google Scholar]
  21. JinD. SunJ. HuangJ. YuX. YuA. HeY. LiQ. YangZ. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression.Mol. Cell. Endocrinol.20154119710410.1016/j.mce.2015.04.01525917454
    [Google Scholar]
  22. AchariA. JainS. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction.Int. J. Mol. Sci.2017186132110.3390/ijms1806132128635626
    [Google Scholar]
  23. KimY. LimJ.H. KimM.Y. KimE.N. YoonH.E. ShinS.J. ChoiB.S. KimY.S. ChangY.S. ParkC.W. The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes.J. Am. Soc. Nephrol.20182941108112710.1681/ASN.201706062729330340
    [Google Scholar]
  24. KimY. ParkC.W. Mechanisms of adiponectin action: Implication of adiponectin receptor agonism in diabetic kidney disease.Int. J. Mol. Sci.2019207178210.3390/ijms2007178230974901
    [Google Scholar]
  25. IwabuM. YamauchiT. Okada-IwabuM. SatoK. NakagawaT. FunataM. YamaguchiM. NamikiS. NakayamaR. TabataM. OgataH. KubotaN. TakamotoI. HayashiY.K. YamauchiN. WakiH. FukayamaM. NishinoI. TokuyamaK. UekiK. OikeY. IshiiS. HiroseK. ShimizuT. TouharaK. KadowakiT. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1.Nature201046472931313131910.1038/nature0899120357764
    [Google Scholar]
  26. LeeI.K. KimG. KimD.H. KimB.B. PEG-BHD1028 peptide regulates insulin resistance and fatty acid beta-Oxidation, and mitochondrial biogenesis by binding to two heterogeneous binding sites of adiponectin receptors, AdipoR1 and AdipoR2.Int. J. Mol. Sci.202122288410.3390/ijms2202088433477324
    [Google Scholar]
  27. LinZ. TianH. LamK.S.L. LinS. HooR.C.L. KonishiM. ItohN. WangY. BornsteinS.R. XuA. LiX. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice.Cell Metab.201317577978910.1016/j.cmet.2013.04.00523663741
    [Google Scholar]
  28. YadavA. KatariaM.A. SainiV. YadavA. Role of leptin and adiponectin in insulin resistance.Clin. Chim. Acta2013417808410.1016/j.cca.2012.12.00723266767
    [Google Scholar]
  29. WakiH. YamauchiT. KamonJ. ItoY. UchidaS. KitaS. HaraK. HadaY. VasseurF. FroguelP. KimuraS. NagaiR. KadowakiT. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin.J. Biol. Chem.200327841403524036310.1074/jbc.M30036520012878598
    [Google Scholar]
  30. PajvaniU.B. HawkinsM. CombsT.P. RajalaM.W. DoebberT. BergerJ.P. WagnerJ.A. WuM. KnoppsA. XiangA.H. UtzschneiderK.M. KahnS.E. OlefskyJ.M. BuchananT.A. SchererP.E. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity.J. Biol. Chem.200427913121521216210.1074/jbc.M31111320014699128
    [Google Scholar]
  31. PajvaniU.B. DuX. CombsT.P. BergA.H. RajalaM.W. SchulthessT. EngelJ. BrownleeM. SchererP.E. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity.J. Biol. Chem.2003278119073908510.1074/jbc.M20719820012496257
    [Google Scholar]
  32. CombsT.P. WagnerJ.A. BergerJ. DoebberT. WangW.J. ZhangB.B. TanenM. BergA.H. O’RahillyS. SavageD.B. ChatterjeeK. WeissS. LarsonP.J. GottesdienerK.M. GertzB.J. CharronM.J. SchererP.E. MollerD.E. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization.Endocrinology20021433998100710.1210/endo.143.3.866211861525
    [Google Scholar]
  33. ZhouL. LiuM. ZhangJ. ChenH. DongL.Q. LiuF. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation.Diabetes201059112809281610.2337/db10‑041220699416
    [Google Scholar]
  34. LiuM. ChenH. WeiL. HuD. DongK. JiaW. DongL.Q. LiuF. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes.J. Biol. Chem.201529016101431014810.1074/jbc.M115.64541625739441
    [Google Scholar]
  35. BurkeP.J. Mitochondria, bioenergetics and apoptosis in cancer.Trends Cancer201731285787010.1016/j.trecan.2017.10.00629198441
    [Google Scholar]
  36. MaldonadoE.N. LemastersJ.J. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect.Mitochondrion201419 Pt A7884
    [Google Scholar]
  37. LuoS. YangM. ZhaoH. HanY. LiuY. XiongX. ChenW. LiC. SunL. Mitochondrial DNA-dependent inflammation in kidney diseases.Int. Immunopharmacol.202210710863710.1016/j.intimp.2022.10863735279513
    [Google Scholar]
  38. ChenL. LiuB. QinY. LiA. GaoM. LiuH. GongG. Mitochondrial fusion protein mfn2 and its role in heart failure.Front. Mol. Biosci.2021868123710.3389/fmolb.2021.68123734026850
    [Google Scholar]
  39. JinJ. WeiX. ZhiX. WangX. MengD. Drp1-dependent mitochondrial fission in cardiovascular disease.Acta Pharmacol. Sin.202142565566410.1038/s41401‑020‑00518‑y32913266
    [Google Scholar]
  40. ChenH. BaiJ. DongF. FangH. ZhangY. MengW. LiuB. LuoY. LiuM. BaiY. Abdul-GhaniM.A. LiR. WuJ. ZengR. ZhouZ. DongL.Q. LiuF. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance.FASEB J.20173162314232610.1096/fj.201600985R28232481
    [Google Scholar]
  41. QuanY. XinY. TianG. ZhouJ. LiuX. Mitochondrial ROS-Modulated mtDNA: A potential target for cardiac aging.Oxid. Med. Cell. Longev.2020202011110.1155/2020/942359332308810
    [Google Scholar]
  42. YanC. DuanmuX. ZengL. LiuB. SongZ. Mitochondrial DNA: Distribution, mutations, and elimination.Cells20198437910.3390/cells804037931027297
    [Google Scholar]
  43. MekersV.E. KhoV.M. AnsemsM. AdemaG.J. cGAS/cGAMP/STING signal propagation in the tumor microenvironment: Key role for myeloid cells in antitumor immunity.Radiother. Oncol.202217415816710.1016/j.radonc.2022.07.01435870728
    [Google Scholar]
  44. BaiJ. CervantesC. LiuJ. HeS. ZhouH. ZhangB. CaiH. YinD. HuD. LiZ. ChenH. GaoX. WangF. O’ConnorJ.C. XuY. LiuM. DongL.Q. LiuF. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.Proc. Natl. Acad. Sci. USA201711446121961220110.1073/pnas.170874411429087318
    [Google Scholar]
  45. BaiJ. CervantesC. HeS. HeJ. PlaskoG.R. WenJ. LiZ. YinD. ZhangC. LiuM. DongL.Q. LiuF. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice.Commun. Biol.20203125710.1038/s42003‑020‑0986‑132444826
    [Google Scholar]
  46. McArthurK. WhiteheadL.W. HeddlestonJ.M. LiL. PadmanB.S. OorschotV. GeogheganN.D. ChappazS. DavidsonS. San ChinH. LaneR.M. DramicaninM. SaundersT.L. SugianaC. LesseneR. OsellameL.D. ChewT.L. DewsonG. LazarouM. RammG. LesseneG. RyanM.T. RogersK.L. van DelftM.F. KileB.T. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis.Science20183596378eaao604710.1126/science.aao604729472455
    [Google Scholar]
  47. KimJ. GuptaR. BlancoL.P. YangS. Shteinfer-KuzmineA. WangK. ZhuJ. YoonH.E. WangX. KerkhofsM. KangH. BrownA.L. ParkS.J. XuX. Zandee van RillandE. KimM.K. CohenJ.I. KaplanM.J. Shoshan-BarmatzV. ChungJ.H. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease.Science201936664721531153610.1126/science.aav401131857488
    [Google Scholar]
  48. LiX. PanJ. LiH. LiG. LiuB. TangX. LiuX. HeZ. PengZ. ZhangH. WangL. LiY. XiangX. ChaiX. YuanY. ZhengP. ZhangD. DsbA-L interacts with VDAC1 in mitochondrion-mediated tubular cell apoptosis and contributes to the progression of acute kidney disease.E. Bio. Medicine20227610385910.1016/j.ebiom.2022.10385935124430
    [Google Scholar]
  49. WuW. LiW. ChenH. JiangL. ZhuR. FengD. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy.Autophagy20161291675167610.1080/15548627.2016.119365627314574
    [Google Scholar]
  50. AgrawalR.R. MontesinosJ. LarreaD. Area-GomezE. PeraM. The silence of the fats: A MAM’s story about Alzheimer.Neurobiol. Dis.202014510506210.1016/j.nbd.2020.10506232866617
    [Google Scholar]
  51. VanceJ.E. MAM (mitochondria-associated membranes) in mammalian cells: Lipids and beyond.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20141841459560910.1016/j.bbalip.2013.11.01424316057
    [Google Scholar]
  52. RaturiA. SimmenT. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM).Biochim. Biophys. Acta Mol. Cell Res.20131833121322410.1016/j.bbamcr.2012.04.01322575682
    [Google Scholar]
  53. LiC. LiL. YangM. ZengL. SunL. PACS-2: A key regulator of mitochondria-associated membranes (MAMs).Pharmacol. Res.202016010508010.1016/j.phrs.2020.10508032673704
    [Google Scholar]
  54. YuanM. GongM. HeJ. XieB. ZhangZ. MengL. TseG. ZhaoY. BaoQ. ZhangY. YuanM. LiuX. LuoC. WangF. LiG. LiuT. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling.Redox Biol.20225210228910.1016/j.redox.2022.10228935344886
    [Google Scholar]
  55. LiC. LiL. YangM. YangJ. ZhaoC. HanY. ZhaoH. JiangN. WeiL. XiaoY. LiuY. XiongX. XiY. LuoS. DengF. ChenW. YuanS. ZhuX. XiaoL. SunL. PACS-2 ameliorates tubular injury by facilitating endoplasmic Reticulum-mitochondria contact and mitophagy in diabetic nephropathy.Diabetes20227151034105010.2337/db21‑098335133431
    [Google Scholar]
  56. YangM. LiC. YangS. XiaoY. XiongX. ChenW. ZhaoH. ZhangQ. HanY. SunL. Mitochondria-AssociatedE.R. Mitochondria-associated ER membranes – the origin site of autophagy.Front. Cell Dev. Biol.2020859510.3389/fcell.2020.0059532766245
    [Google Scholar]
  57. LiJ. QiF. SuH. ZhangC. ZhangQ. ChenY. ChenP. SuL. ChenY. YangY. ChenZ. ZhangS. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients.Int. J. Biol. Sci.20221872914293110.7150/ijbs.7157135541901
    [Google Scholar]
  58. XueM. FangT. SunH. ChengY. LiT. XuC. TangC. LiuX. SunB. ChenL. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation.Cell Death Dis.20211212110710.1038/s41419‑021‑04408‑x34836936
    [Google Scholar]
  59. WangX. CaoH. FangY. BaiH. ChenJ. XingC. ZhuangY. GuoX. HuG. YangF. Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells.Ecotoxicol. Environ. Saf.202223511343810.1016/j.ecoenv.2022.11343835339877
    [Google Scholar]
  60. BassotA. ChauvinM.A. BendridiN. Ji-CaoJ. VialG. MonnierL. BartoschB. AlvesA. Cottet-RousselleC. GouriouY. RieussetJ. MorioB. Regulation of Mitochondria-associated membranes (MAMs) by NO/sGC/PKG participates in the control of hepatic insulin response.Cells2019811131910.3390/cells811131931731523
    [Google Scholar]
  61. Sala-VilaA. Navarro-LéridaI. Sánchez-AlvarezM. BoschM. CalvoC. LópezJ.A. CalvoE. FergusonC. GiacomelloM. SerafiniA. ScorranoL. EnriquezJ.A. BalsindeJ. PartonR.G. VázquezJ. PolA. Del PozoM.A. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice.Sci. Rep.2016612735110.1038/srep2735127272971
    [Google Scholar]
  62. YangM. ZhaoL. GaoP. ZhuX. HanY. ChenX. LiL. XiaoY. WeiL. LiC. XiaoL. YuanS. LiuF. DongL.Q. KanwarY.S. SunL. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity.E. Bio. Medicine20194360761910.1016/j.ebiom.2019.04.04431060900
    [Google Scholar]
  63. YangM. HanY. LuoS. XiongX. ZhuX. ZhaoH. JiangN. XiaoY. WeiL. LiC. YangJ. SunL. MAMs protect against ectopic fat deposition and Lipid-Related kidney damage in DN patients.Front. Endocrinol. (Lausanne)20211260958010.3389/fendo.2021.60958033679616
    [Google Scholar]
  64. ThoudamT. HaC.M. LeemJ. ChandaD. ParkJ.S. KimH.J. JeonJ.H. ChoiY.K. LiangpunsakulS. HuhY.H. KwonT.H. ParkK.G. HarrisR.A. ParkK.S. RheeH.W. LeeI.K. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity.Diabetes201968357158610.2337/db18‑036330523025
    [Google Scholar]
  65. ChenX. HanY. GaoP. YangM. XiaoL. XiongX. ZhaoH. TangC. ChenG. ZhuX. YuanS. LiuF. DongL.Q. LiuF. KanwarY.S. SunL. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy.Kidney Int.201995488089510.1016/j.kint.2018.10.03830791996
    [Google Scholar]
  66. YangM. LuoS. JiangN. WangX. HanY. ZhaoH. XiongX. LiuY. ZhaoC. ZhuX. SunL. DsbA-L ameliorates renal injury through the AMPK/NLRP3 inflammasome signaling pathway in diabetic nephropathy.Front. Physiol.20211265975110.3389/fphys.2021.65975133995126
    [Google Scholar]
  67. PurdyJ.C. ShatzelJ.J. The hematologic consequences of obesity.Eur. J. Haematol.2021106330631910.1111/ejh.1356033270290
    [Google Scholar]
  68. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council Obesity and cardiovascular disease: A scientific statement from the american heart association.Circulation202114321e984e101010.1161/CIR.000000000000097333882682
    [Google Scholar]
  69. KoliakiC. LiatisS. KokkinosA. Obesity and cardiovascular disease: revisiting an old relationship.Metabolism2019929810710.1016/j.metabol.2018.10.01130399375
    [Google Scholar]
  70. MaggioC.A. Pi-SunyerF.X. Obesity and type 2 diabetes.Endocrinol. Metab. Clin. North Am.200332480582210.1016/S0889‑8529(03)00071‑914711063
    [Google Scholar]
  71. AvgerinosK.I. SpyrouN. MantzorosC.S. DalamagaM. Obesity and cancer risk: Emerging biological mechanisms and perspectives.Metabolism20199212113510.1016/j.metabol.2018.11.00130445141
    [Google Scholar]
  72. KawaiT. AutieriM.V. ScaliaR. Adipose tissue inflammation and metabolic dysfunction in obesity.Am. J. Physiol. Cell Physiol.20213203C375C39110.1152/ajpcell.00379.202033356944
    [Google Scholar]
  73. ZhouH. PengX. HuJ. WangL. LuoH. ZhangJ. ZhangY. LiG. JiY. ZhangJ. BaiJ. LiuM. ZhouZ. LiuF. DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production.Nat. Commun.202112132610.1038/s41467‑020‑20665‑433436607
    [Google Scholar]
  74. LiuM. XiangR. WilkS.A. ZhangN. SloaneL.B. AzarnoushK. ZhouL. ChenH. XiangG. WalterC.A. AustadS.N. MusiN. DeFronzoR.A. AsmisR. SchererP.E. DongL.Q. LiuF. Fat-specific DsbA-L overexpression promotes adiponectin multimerization and protects mice from diet-induced obesity and insulin resistance.Diabetes201261112776278610.2337/db12‑016922807031
    [Google Scholar]
  75. GaoF. FangQ. ZhangR. LuJ. LuH. WangC. MaX. XuJ. JiaW. XiangK. Polymorphism of DsbA-L gene associates with insulin secretion and body fat distribution in Chinese population.Endocr. J.200956348749410.1507/endocrj.K08E‑32219225211
    [Google Scholar]
  76. LiuM. LiuF. Regulation of adiponectin multimerization, signaling and function.Best Pract. Res. Clin. Endocrinol. Metab.2014281253110.1016/j.beem.2013.06.00324417943
    [Google Scholar]
  77. HanY. XiongS. ZhaoH. YangS. YangM. ZhuX. JiangN. XiongX. GaoP. WeiL. XiaoY. SunL. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy.Cell Death Dis.20211211103110.1038/s41419‑021‑04326‑y34718329
    [Google Scholar]
  78. DeweyS. LaiX. WitzmannF.A. SohalM. GomesA.V. Proteomic analysis of hearts from Akita mice suggests that increases in soluble epoxide hydrolase and antioxidative programming are key changes in early stages of diabetic cardiomyopathy.J. Proteome Res.20131293920393310.1021/pr400473923848590
    [Google Scholar]
  79. OnikiK. KamihashiR. TomitaT. IshiokaM. YoshimoriY. OsakiN. TsuchimineS. SugawaraN. KajiwaraA. MoritaK. MiyataK. OtakeK. NakagawaK. OgataY. SaruwatariJ. Yasui-FurukoriN. Glutathione S-transferase K1 genotype and overweight status in schizophrenia patients: A pilot study.Psychiatry Res.201623919019510.1016/j.psychres.2016.03.02527010189
    [Google Scholar]
  80. LiX. PanJ. LiH. LiG. LiuX. LiuB. HeZ. PengZ. ZhangH. LiY. XiangX. ChaiX. YuanY. ZhengP. LiuF. ZhangD. DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice.Nat. Commun.2020111446710.1038/s41467‑020‑18304‑z32948751
    [Google Scholar]
  81. CristoboI. BreaD. BlancoM. VázquezF. Rodríguez-YáñezM. VivancosJ. SilvaY. de la OssaN.P. PumarJ.M. FortezaJ. CastilloJ. Usefulness of material recovered from distal embolic protection devices after carotid angioplasty for proteomic studies.J. Vasc. Interv. Radiol.201223681882410.1016/j.jvir.2012.02.00422626270
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673252630231018044159
Loading
/content/journals/cmc/10.2174/0109298673252630231018044159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidative stress; diabetes; DsbA-L; kidney; metabolic diseases; obesity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test