Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The quinoline scaffold is a widely recognized heterocycle with applications across various disease categories, ranging from malaria and viral infections to bacterial infections, high cholesterol, and even tumors. Consequently, quinoline plays a crucial role in the development of new drugs, and the field greatly benefits from advancements in computer-aided drug design. This review aims to provide insights into the evolution of quinoline and its derivatives, offering a comprehensive exploration of both marketed and developing drugs. Furthermore, the function and mechanism of quinoline compounds are introduced. Many studies rely on cell experiments to demonstrate drug cytotoxicity. In the concluding section of this review, the interaction between quinoline compounds and targets is simulated using computer-aided drug design methods. A thorough analysis is conducted on the potential influencing factors affecting the binding state between quinoline compounds and targets. Notably, the Pi-Alkyl interaction emerges as a significant contributor, while hydrogen bonding is identified as a pivotal bond in these interactions. This review serves as a valuable overview of the potential contributions of quinoline compounds to cancer treatment. It seamlessly combines the essential functions of marketed quinoline drugs with the promise held by emerging quinoline-based compounds. Additionally, the simulation of interactions between quinoline compounds and proteins through computer-aided design enhances our understanding of these compounds' efficacy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673258512231013060222
2023-10-24
2025-04-21
Loading full text...

Full text loading...

References

  1. NiaH.T. MunnL.L. JainR.K. Physical traits of cancer.Science20203706516eaaz086810.1126/science.aaz0868 33122355
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  3. BensonA.B.III D’AngelicaM.I. AbramsT.A. AreC. BloomstonP.M. ChangD.T. ClaryB.M. CoveyA.M. EnsmingerW.D. IyerR. KelleyR.K. LinehanD. MalafaM.P. MeranzeS.G. ParkJ.O. PawlikT. PoseyJ.A. ScaifeC. SchefterT. SigurdsonE.R. TianG.G. VautheyJ.N. VenookA.P. YenY. ZhuA.X. HoffmannK.G. McMillianN.R. SundarH. Hepatobiliary cancers, version 2.2014.J. Natl. Compr. Canc. Netw.20141281152118210.6004/jnccn.2014.0112 25099447
    [Google Scholar]
  4. RizviS. WangJ. El-KhoueiryA.B. Liver cancer immunity.Hepatology202173S1Suppl. 18610310.1002/hep.31416 32516437
    [Google Scholar]
  5. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta (BBA)-.Rev. Can.202018731188314
    [Google Scholar]
  6. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.961 31537986
    [Google Scholar]
  7. AbbasZ. RehmanS. An overview of cancer treatment modalities.Neoplasm20181139157
    [Google Scholar]
  8. CauchyF. FuksD. BelghitiJ. HCC: Current surgical treatment concepts.Langenbecks Arch. Surg.2012397568169510.1007/s00423‑012‑0911‑2 22290218
    [Google Scholar]
  9. KoulourisA. TsagkarisC. SpyrouV. PappaE. TroullinouA. NikolaouM. Hepatocellular carcinoma: An overview of the changing landscape of treatment options.J. Hepatocell. Carcinoma2021838740110.2147/JHC.S300182 34012929
    [Google Scholar]
  10. BejaranoL. JordāoM.J.C. JoyceJ.A. Therapeutic Targeting of the tumor microenvironment.Cancer Discov.202111493395910.1158/2159‑8290.CD‑20‑1808 33811125
    [Google Scholar]
  11. JiaQ. WangA. YuanY. ZhuB. LongH. Heterogeneity of the tumor immune microenvironment and its clinical relevance.Exp. Hematol. Oncol.20221112410.1186/s40164‑022‑00277‑y 35461288
    [Google Scholar]
  12. KurebayashiY. MatsudaK. UenoA. TsujikawaH. YamazakiK. MasugiY. KwaW.T. EffendiK. HasegawaY. YagiH. AbeY. KitagoM. OjimaH. SakamotoM. Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments.Hepatology20227551139115310.1002/hep.32201 34657298
    [Google Scholar]
  13. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.001 32649885
    [Google Scholar]
  14. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑0 33082563
    [Google Scholar]
  15. CalderaroJ. ZiolM. ParadisV. Zucman-RossiJ. Molecular and histological correlations in liver cancer.J. Hepatol.201971361663010.1016/j.jhep.2019.06.001 31195064
    [Google Scholar]
  16. SanacoraG. YanZ. PopoliM. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders.Nat. Rev. Neurosci.20222328610310.1038/s41583‑021‑00540‑x 34893785
    [Google Scholar]
  17. DanA.K. MannaA. GhoshS. SikdarS. SahuR. ParhiP.K. ParidaS. Molecular mechanisms of the lipopeptides from Bacillus subtilis in the apoptosis of cancer cells - A review on its current status in different cancer cell lines.Adv. Cancer Biol. Metastasis20213100019
    [Google Scholar]
  18. VermaC. QuraishiM.A. EbensoE.E. Quinoline and its derivatives as corrosion inhibitors: A review.Surf. Interfaces20202110063410.1016/j.surfin.2020.100634
    [Google Scholar]
  19. DeS. AamnaB. SahuR. ParidaS. BeheraS.K. DanA.K. Seeking heterocyclic scaffolds as antivirals against dengue virus.Eur. J. Med. Chem.202224011457610.1016/j.ejmech.2022.114576 35816877
    [Google Scholar]
  20. GuoL.J. WeiC.X. JiaJ.H. ZhaoL.M. QuanZ.S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity.Eur. J. Med. Chem.200944395495810.1016/j.ejmech.2008.07.010 18752871
    [Google Scholar]
  21. BaroneP. ParashosS.A. PalmaV. MarinC. CampanellaG. ChaseT.N. Dopamine D1 receptor modulation of pilocarpine-induced convulsions.Neuroscience199034120921710.1016/0306‑4522(90)90314‑T 2139189
    [Google Scholar]
  22. SlaterA.F.G. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum.Pharmacol. Ther.1993572-320323510.1016/0163‑7258(93)90056‑J 8361993
    [Google Scholar]
  23. BanyalH.S. FitchC.D. Ferriprotoporphyrin IX binding substances and the mode of action of chloroquine against malaria.Life Sci.198231111141114410.1016/0024‑3205(82)90088‑1 6755119
    [Google Scholar]
  24. KimE.L. WüstenbergR. RübsamA. Schmitz-SalueC. WarneckeG. BückerE.M. PettkusN. SpeidelD. RohdeV. Schulz-SchaefferW. DeppertW. GieseA. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells.Neuro-oncol.201012438940010.1093/neuonc/nop046 20308316
    [Google Scholar]
  25. DziekanJ.M. YuH. ChenD. DaiL. WirjanataG. LarssonA. PrabhuN. SobotaR.M. BozdechZ. NordlundP. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay.Sci. Transl. Med.201911473eaau317410.1126/scitranslmed.aau3174 30602534
    [Google Scholar]
  26. GreenwoodD. The quinine connection.J. Antimicrob. Chemother.199230441742710.1093/jac/30.4.417 1490916
    [Google Scholar]
  27. AchanJ. TalisunaA.O. ErhartA. YekaA. TibenderanaJ.K. BaliraineF.N. RosenthalP.J. D’AlessandroU. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria.Malar. J.201110114410.1186/1475‑2875‑10‑144 21609473
    [Google Scholar]
  28. CrumplinG.C. KenwrightM. HirstT. Investigations into the mechanism of action of the antibacterial agent norfloxacin.J. Antimicrob. Chemother.198413Suppl. B92310.1093/jac/13.suppl_B.9 6203890
    [Google Scholar]
  29. GrangieJ-D. RoulotD. PelletierG. ParienteÉ.A. DenisJ. InkO. BlancP. RichardetJ.P. VinelJ.P. DelisleF. FischerD. FlahaultA. AmiotX. Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: A double-blind randomized trial.J. Hepatol.199829343043610.1016/S0168‑8278(98)80061‑5 9764990
    [Google Scholar]
  30. Alves Borges LealA.L. Teixeira da SilvaP. Nunes da RochaM. MarinhoE.M. MarinhoE.S. MarinhoM.M. BandeiraP.N. Sampaio NogueiraC.E. BarretoH.M. Rodrigues TeixeiraA.M. Silva dos SantosH. Potentiating activity of norfloxacin by synthetic chalcones against NorA overproducing Staphylococcus aureus.Microb. Pathog.202115510489410.1016/j.micpath.2021.104894 33894291
    [Google Scholar]
  31. AndriesK. VerhasseltP. GuillemontJ. GöhlmannH.W.H. NeefsJ.M. WinklerH. Van GestelJ. TimmermanP. ZhuM. LeeE. WilliamsP. de ChaffoyD. HuitricE. HoffnerS. CambauE. Truffot-PernotC. LounisN. JarlierV. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.Science2005307570722322710.1126/science.1106753 15591164
    [Google Scholar]
  32. PalominoJ.C. MartinA. TMC207 becomes bedaquiline, a new anti-TB drug.Future Microbiol.2013891071108010.2217/fmb.13.85 24020736
    [Google Scholar]
  33. FiorilloM. LambR. TanowitzH.B. CappelloA.R. Martinez-OutschoornU.E. SotgiaF. LisantiM.P. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs).Aging (Albany NY)2016881593160710.18632/aging.100983 27344270
    [Google Scholar]
  34. MukhtarR.Y.A. ReidJ. RecklessJ.P.D. Pitavastatin.Int. J. Clin. Pract.200559223925210.1111/j.1742‑1241.2005.00461.x 15854203
    [Google Scholar]
  35. MaejimaT. YamazakiH. AokiT. TamakiT. SatoF. KitaharaM. SaitoY. Effect of pitavastatin on apolipoprotein A-I production in HepG2 cell.Biochem. Biophys. Res. Commun.2004324283583910.1016/j.bbrc.2004.09.122 15474503
    [Google Scholar]
  36. CraigJ.C. DuncanI.B. HockleyD. GriefC. RobertsN.A. MillsJ.S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase.Antiviral Res.199116429530510.1016/0166‑3542(91)90045‑S 1810306
    [Google Scholar]
  37. KimA.E. DintamanJ.M. WaddellD.S. SilvermanJ.A. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein.J. Pharmacol. Exp. Ther.1998286314391445 9732409
    [Google Scholar]
  38. DoniaM. ManganoK. FagoneP. De PasqualeR. DinottaF. CocoM. PadronJ. Al-AbedY. LombardoG.A.G. Maksimovic-IvanicD. MijatovicS. ZoccaM.B. PerciavalleV. Stosic-GrujicicS. NicolettiF. Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells.Oncol. Rep.201228268268810.3892/or.2012.1840 22665020
    [Google Scholar]
  39. KanoY. SakamotoS. KasaharaT. AkutsuM. InoueY. MiuraY. Effects of amsacrine in combination with other anticancer agents in human acute lymphoblastic leukemia cells in culture.Leuk. Res.199115111059106610.1016/0145‑2126(91)90112‑7 1961009
    [Google Scholar]
  40. CassilethP.A. GaleR.P. Amsacrine: A review.Leuk. Res.198610111257126510.1016/0145‑2126(86)90331‑0 3540460
    [Google Scholar]
  41. EsteyE.H. SilbermanL. BeranM. AnderssonB.S. ZwellingL.A. The interaction between nuclear topoisomerase II activity from human leukemia cells, exogenous DNA, and 4′-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA) or 4-(4,6-0-ethylidene-β-D-glucopyranoside) (VP-16) indicates the sensitivity of the cells to the drugs.Biochem. Biophys. Res. Commun.1987144278779310.1016/S0006‑291X(87)80033‑5
    [Google Scholar]
  42. AbdelazizA. VaishampayanU. Cabozantinib for the treatment of kidney cancer.Expert Rev. Anticancer Ther.201717757758410.1080/14737140.2017.1344553 28633552
    [Google Scholar]
  43. KurzrockR. ShermanS.I. BallD.W. ForastiereA.A. CohenR.B. MehraR. PfisterD.G. CohenE.E.W. JanischL. NaulingF. HongD.S. NgC.S. YeL. GagelR.F. FryeJ. MüllerT. RatainM.J. SalgiaR. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer.J. Clin. Oncol.201129192660266610.1200/JCO.2010.32.4145 21606412
    [Google Scholar]
  44. MarkowitzJ.N. FancherK.M. Cabozantinib: A multitargeted oral tyrosine kinase inhibitor.Pharmacotherapy201838335736910.1002/phar.2076 29283440
    [Google Scholar]
  45. ArmandJ.P. DucreuxM. MahjoubiM. AbigergesD. BugatR. ChabotG. HeraitP. de ForniM. RougierP. CPT-11 (Irinotecan) in the treatment of colorectal cancer.Eur. J. Cancer1995317-81283128710.1016/0959‑8049(95)00212‑2 7577037
    [Google Scholar]
  46. FuchsC. MitchellE.P. HoffP.M. Irinotecan in the treatment of colorectal cancer.Cancer Treat. Rev.200632749150310.1016/j.ctrv.2006.07.001 16959432
    [Google Scholar]
  47. XuhongJ-C. QiX-W. ZhangY. JiangJ. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer.Am. J. Cancer Res.201991021032119 31720077
    [Google Scholar]
  48. ZhangX. MunsterP.N. New protein kinase inhibitors in breast cancer: Afatinib and neratinib.Expert Opin. Pharmacother.20141591277128810.1517/14656566.2014.913570 24787047
    [Google Scholar]
  49. GouirandV. GicquelT. LienE.C. Jaune-PonsE. Da CostaQ. FinettiP. MetayE. DulucC. MayersJ.R. AudebertS. CamoinL. BorgeL. RubisM. LecaJ. NigriJ. BertucciF. DusettiN. IovannaJ.L. TomasiniR. BidautG. GuillaumondF. Vander HeidenM.G. VasseurS. Ketogenic HMG‐CoA lyase and its product β‐hydroxybutyrate promote pancreatic cancer progression.EMBO J.2022419e11046610.15252/embj.2021110466 35307861
    [Google Scholar]
  50. SchumacherM.M. DeBose-BoydR.A. Posttranslational regulation of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol.Annu. Rev. Biochem.202190165967910.1146/annurev‑biochem‑081820‑101010 34153214
    [Google Scholar]
  51. El-MeseryM. SeherA. El-ShafeyM. El-DosokyM. BadriaF.A. Repurposing of quinoline alkaloids identifies their ability to enhance doxorubicin‐induced sub‐G0/G1 phase cell cycle arrest and apoptosis in cervical and hepatocellular carcinoma cells.Biotechnol. Appl. Biochem.202168483284010.1002/bab.1999 32757395
    [Google Scholar]
  52. PriscillaJ. Arul DhasD. Hubert JoeI. BalachandranS. Experimental and theoretical spectroscopic analysis, hydrogen bonding, reduced density gradient and antibacterial activity study on 2-Phenyl quinoline alkaloid.Chem. Phys.202053611082710.1016/j.chemphys.2020.110827
    [Google Scholar]
  53. HorákR. KořistekK. ŠamšulováV. SlaninováL. GreplM. KvapilL. FunkP. HradilP. SouralM. Structural analogues of quinoline alkaloids: Straightforward route to [1,3]dioxolo[4,5‐ c]quinolines with antibacterial properties.J. Heterocycl. Chem.20205741605161510.1002/jhet.3886
    [Google Scholar]
  54. RoutP.K. KumarP. RaoY.R. KumarA. BawankuleD.U. SinghR. SinghK.B. ChanotiyaC.S. NaikS.N. A quinoline alkaloid rich Quisqualis indica floral extract enhances the bioactivity.Nat. Prod. Res.202135101632163810.1080/14786419.2019.1634709 31264476
    [Google Scholar]
  55. Álvarez-CaballeroJ.M. Cuca-SuárezL.E. Coy-BarreraE. Bio-guided fractionation of ethanol extract of leaves of esenbeckia alata kunt (Rutaceae) led to the isolation of two cytotoxic quinoline alkaloids: Evidence of selectivity against leukemia cells.Biomolecules201991058510.3390/biom9100585 31597257
    [Google Scholar]
  56. OthmanD.I.A. SelimK.B. El-SayedM.A.A. TantawyA.S. AmenY. ShimizuK. OkauchiT. KitamuraM. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives.Bioorg. Med. Chem.2019271911502610.1016/j.bmc.2019.07.042 31416740
    [Google Scholar]
  57. ShaldamM. NocentiniA. ElsayedZ.M. IbrahimT.M. SalemR. El-DomanyR.A. CapassoC. SupuranC.T. EldehnaW.M. Development of novel quinoline-based sulfonamides as selective cancer-associated carbonic anhydrase isoform IX inhibitors.Int. J. Mol. Sci.202122201111910.3390/ijms222011119 34681794
    [Google Scholar]
  58. MontagutA.M. ArmengolM. de PabloG. Estrada-TejedorR. BorrellJ.I. RouéG. Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer.Semin. Cell Dev. Biol.2022132213229
    [Google Scholar]
  59. IkedaF. Ubiquitin conjugating enzymes in the regulation of the autophagy-dependent degradation pathway.Matrix Biol.2021100-101232910.1016/j.matbio.2020.11.004 33276077
    [Google Scholar]
  60. BeckerH.M. Carbonic anhydrase IX and acid transport in cancer.Br. J. Cancer2020122215716710.1038/s41416‑019‑0642‑z 31819195
    [Google Scholar]
  61. LauriaA. La MonicaG. BonoA. MartoranaA. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets.Eur. J. Med. Chem.202122011355510.1016/j.ejmech.2021.113555 34052677
    [Google Scholar]
  62. HamdyR. ElseginyS. ZiedanN. JonesA. WestwellA. New quinoline-based heterocycles as anticancer agents targeting bcl-2.Molecules2019247127410.3390/molecules24071274 30986908
    [Google Scholar]
  63. AbnerE. StoszkoM. ZengL. ChenH.C. Izquierdo-BouldstridgeA. KonumaT. ZoritaE. FanunzaE. ZhangQ. MahmoudiT. ZhouM.M. FilionG.J. JordanA. A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “shock” drugs.J. Virol.20189210e02056e1710.1128/JVI.02056‑17 29343578
    [Google Scholar]
  64. ManaraM.C. ValenteS. CristalliC. NicolettiG. LanduzziL. ZwergelC. MazzoneR. StaziG. ArimondoP.B. PaselloM. GuerzoniC. PicciP. NanniP. LolliniP.L. MaiA. ScotlandiK. A Quinoline-Based DNA Methyltransferase Inhibitor as a Possible Adjuvant in Osteosarcoma Therapy.Mol. Cancer Ther.20181791881189210.1158/1535‑7163.MCT‑17‑0818 29959201
    [Google Scholar]
  65. DowningK.H. NogalesE. Tubulin and microtubule structure.Curr. Opin. Cell Biol.1998101162210.1016/S0955‑0674(98)80082‑3 9484591
    [Google Scholar]
  66. MankaS.W. MooresC.A. Microtubule structure by cryo-EM: Snapshots of dynamic instability.Essays Biochem.201862673775110.1042/EBC20180031 30315096
    [Google Scholar]
  67. LopesD. MaiatoH. The tubulin code in mitosis and cancer.Cells2020911235610.3390/cells9112356 33114575
    [Google Scholar]
  68. LiW. ShuaiW. SunH. XuF. BiY. XuJ. MaC. YaoH. ZhuZ. XuS. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site.Eur. J. Med. Chem.201916342844210.1016/j.ejmech.2018.11.070 30530194
    [Google Scholar]
  69. BellS.P. DuttaA. DNA replication in eukaryotic cells.Annu. Rev. Biochem.200271133337410.1146/annurev.biochem.71.110601.135425 12045100
    [Google Scholar]
  70. UbhiT. BrownG.W. Exploiting DNA replication stress for cancer treatment.Cancer Res.20197981730173910.1158/0008‑5472.CAN‑18‑3631 30967400
    [Google Scholar]
  71. LiangX. WuQ. LuanS. YinZ. HeC. YinL. ZouY. YuanZ. LiL. SongX. HeM. LvC. ZhangW. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade.Eur. J. Med. Chem.201917112916810.1016/j.ejmech.2019.03.034 30917303
    [Google Scholar]
  72. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.103811 32278207
    [Google Scholar]
  73. LuoY. YangY. PengP. ZhanJ. WangZ. ZhuZ. ZhangZ. LiuL. FangW. ZhangL. Cholesterol synthesis disruption combined with a molecule-targeted drug is a promising metabolic therapy for EGFR mutant non-small cell lung cancer.Transl. Lung Cancer Res.202110112814210.21037/tlcr‑20‑812 33569299
    [Google Scholar]
  74. BolakattiG. PalkarM. KatagiM. HampannavarG. KarpoormathR.V. NinganagoudaS. BadigerA. Novel series of benzo[d]thiazolyl substituted-2-quinolone hybrids: Design, synthesis, biological evaluation and in-silico insights.J. Mol. Struct.2021122712941310.1016/j.molstruc.2020.129413
    [Google Scholar]
  75. AamnaB. Kumar DanA. SahuR. BeheraS.K. ParidaS. Deciphering the signaling mechanisms of β‐arrestin1 and β‐arrestin2 in regulation of cancer cell cycle and metastasis.J. Cell. Physiol.2022237103717373310.1002/jcp.30847 35908197
    [Google Scholar]
  76. WangG. BaiY. CuiJ. ZongZ. GaoY. ZhengZ. Computer-aided drug design boosts RAS inhibitor discovery.Molecules20222717571010.3390/molecules27175710 36080477
    [Google Scholar]
  77. ZhongS. HouY. ZhangZ. GuoZ. YangW. DouG. LvX. WangX. GeJ. WuB. PanX. WangH. YangQ. MouY. Identification of novel natural inhibitors targeting AKT serine/threonine kinase 1 (AKT1) by computational study.Bioengineered2022135120031202010.1080/21655979.2021.2011631 35603567
    [Google Scholar]
  78. PatrícioR.P.S. VideiraP.A. PereiraF. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy.Bioorg. Med. Chem.20225311653010.1016/j.bmc.2021.116530 34861473
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673258512231013060222
Loading
/content/journals/cmc/10.2174/0109298673258512231013060222
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer agents; CADD; cancer; HCC; Quinoline; target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test