Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Ovarian cancer is one of the most familiar kinds of gynecological cancer seen in women. Though it is not as familiar as breast cancer, the survival rate for ovarian cancer is very low when compared with breast cancer. Even after being one among the familiar types, to date, there are no proper treatments available for ovarian cancer. All the treatments that are present currently show a high rate of recurrence after the treatment. Therefore, treating this silent killer from the roots is the need of the hour. PI3K/AKT/mTOR pathway is one of the pathways that get altered during ovarian cancer. Studies are already going on for the inhibition of PI3K and mTOR separately. Efforts have been made to inhibit either PI3K or mTOR separately earlier. However, due to its side effects and resistance to the treatments available, current studies are based on the inhibition of PI3K and mTOR together. Inhibition of PI3K and mTOR simultaneously reduces the chances of negative feedback, thus decreasing the toxicity. This review contains the evolution of PI3K and mTOR drugs that are approved by the FDA and are in the trials for different cancer types, including ovarian cancer. In this article, how a molecular targeted therapy can be made successful and free from toxicity for treating ovarian cancer is discussed. Therefore, this review paves the way for finding an effective scaffold rather than the clinical part. The scaffold thus selected can be further modified and synthesized in the future as dual PI3K/mTOR inhibitors specifically for OC.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293028240326051835
2024-04-04
2025-06-30
The full text of this item is not currently available.

References

  1. FordC.E. WernerB. HackerN.F. WartonK. The untapped potential of ascites in ovarian cancer research and treatment.British J. Cancer2020123916
    [Google Scholar]
  2. MathurP. SathishkumarK. ChaturvediM. DasP. SudarshanK.L. SanthappanS. NallasamyV. JohnA. NarasimhanS. RoselindF.S. Cancer statistics, 2020: Report from national cancer registry programme, India.JCO Glob. Oncol.2020661063107510.1200/GO.20.0012232673076
    [Google Scholar]
  3. ShabirS. GillP.K. Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology.Adesh Univ. J. Med. Sci. Res.20202172510.25259/AUJMSR_16_2019
    [Google Scholar]
  4. ShabirS. GillP.K. Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology.Adesh Uni. J. Med. Sci. Res.20202172510.25259/AUJMSR_16_2019
    [Google Scholar]
  5. HuangJ. ChanW.C. NgaiC.H. LokV. ZhangL. Lucero-PrisnoD.E.III XuW. ZhengZ.J. ElcarteE. WithersM. WongM.C.S. Worldwide burden, risk factors, and temporal trends of ovarian cancer: A global study.Cancers (Basel)2022149223010.3390/cancers1409223035565359
    [Google Scholar]
  6. MatulonisU.A. SoodA.K. FallowfieldL. HowittB.E. SehouliJ. KarlanB.Y. Ovarian cancer.Nat. Rev. Dis. Primers2016211606110.1038/nrdp.2016.6127558151
    [Google Scholar]
  7. Smith-BindmanR. PoderL. JohnsonE. MigliorettiD.L. Risk of malignant ovarian cancer based on ultrasonography findings in a large unselected population.JAMA Intern. Med.20191791717710.1001/jamainternmed.2018.511330419104
    [Google Scholar]
  8. ShenF. ChenS. GaoY. DaiX. ChenQ. The prevalence of malignant and borderline ovarian cancer in pre- and post-menopausal Chinese women.Oncotarget2017846805898059410.18632/oncotarget.2038429113327
    [Google Scholar]
  9. JasenP. From the “silent killer” to the “whispering disease”: Ovarian cancer and the uses of metaphor.Med. Hist.200953448951210.1017/S002572730000052119876511
    [Google Scholar]
  10. SehouliJ. GrabowskiJ.P. Surgery in recurrent ovarian cancer.Cancer2019125S24Suppl. 244598460110.1002/cncr.3251131967681
    [Google Scholar]
  11. MatsuoK. CripeJ.C. KurnitK.C. KanedaM. GarneauA.S. GlaserG.E. NizamA. SchillingerR.M. KuznickiM.L. YabunoA. YanaiS. GarofaloD.M. SuzukiJ. St LaurentJ.D. YenT.T. LiuA.Y. ShidaM. KakudaM. OishiT. NishioS. MarcusJ.Z. AdachiS. KurokawaT. RossM.S. HorowitzM.P. JohnsonM.S. KimM.K. MelamedA. MachadoK.K. YoshiharaK. YoshidaY. EnomotoT. UshijimaK. SatohS. UedaY. MikamiM. RimelB.J. StoneR.L. GrowdonW.B. OkamotoA. GuntupalliS.R. HasegawaK. ShahzadM.M.K. ImD.D. FrimerM. GostoutB.S. UelandF.R. NagaoS. SolimanP.T. ThakerP.H. WrightJ.D. RomanL.D. Recurrence, death, and secondary malignancy after ovarian conservation for young women with early-stage low-grade endometrial cancer.Gynecol. Oncol.20191551395010.1016/j.ygyno.2019.08.00731427143
    [Google Scholar]
  12. JaysonG.C. KohnE.C. KitchenerH.C. LedermannJ.A. Ovarian cancer.Lancet201438499511376138810.1016/S0140‑6736(13)62146‑724767708
    [Google Scholar]
  13. WeinsteinI.B. JoeA. Oncogene addiction.Cancer Res.20086893077308010.1158/0008‑5472.CAN‑07‑329318451130
    [Google Scholar]
  14. WeiW. DizonD. VathipadiekalV. BirrerM.J. Ovarian cancer: Genomic analysis.Ann. Oncol.201324Suppl. 10x7x1510.1093/annonc/mdt46224265410
    [Google Scholar]
  15. CuiW. CaiY. ZhouX. Advances in subunits of PI3K class I in cancer.Pathology201446316917610.1097/PAT.000000000000006624614719
    [Google Scholar]
  16. FoxM. MottH.R. OwenD. Class IA PI3K regulatory subunits: p110-independent roles and structures.Biochem. Soc. Trans.20204841397141710.1042/BST2019084532677674
    [Google Scholar]
  17. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  18. MonteroJ.C. ChenX. OcañaA. PandiellaA. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: Therapeutic implications.Mol. Cancer Ther.20121161342135210.1158/1535‑7163.MCT‑11‑072322496482
    [Google Scholar]
  19. HuangJ. ZhangL. GreshockJ. ColligonT.A. WangY. WardR. KatsarosD. LassusH. ButzowR. GodwinA.K. TestaJ.R. NathansonK.L. GimottyP.A. CoukosG. WeberB.L. DegenhardtY. Frequent genetic abnormalities of the PI3K/AKT pathway in primary ovarian cancer predict patient outcome.Genes Chromosomes Cancer201150860661810.1002/gcc.2088321563232
    [Google Scholar]
  20. SobinoffA.P. NixonB. RomanS.D. McLaughlinE.A. Staying alive: PI3K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity.Toxicol. Sci.2012128125827110.1093/toxsci/kfs13722505044
    [Google Scholar]
  21. RinneN. ChristieE.L. ArdashevaA. KwokC.H. DemchenkoN. LowC. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer.Cancer Drug Resist.20214357359510.20517/cdr.2021.05
    [Google Scholar]
  22. JankuF. YapT.A. Meric-BernstamF. Targeting the PI3K pathway in cancer: Are we making headway?Nat. Rev. Clin. Oncol.201815527329110.1038/nrclinonc.2018.2829508857
    [Google Scholar]
  23. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  24. PengY. WangY. ZhouC. MeiW. ZengC. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?Front. Oncol.20221281912810.3389/fonc.2022.81912835402264
    [Google Scholar]
  25. SheridanC. DownwardJ. Inhibiting the RAS-PI3K pathway in cancer therapy. EnzymesCambridge, MassachusettsAcademic Press2013107136
    [Google Scholar]
  26. VlahosC.J. MatterW.F. HuiK.Y. BrownR.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).J. Biol. Chem.199426975241524810.1016/S0021‑9258(17)37680‑98106507
    [Google Scholar]
  27. RodonJ. CuriglianoG. DelordJ.P. HarbW. AzaroA. HanY. WilkeC. DonnetV. SellamiD. BeckT. A Phase Ib, open-label, dose-finding study of alpelisib in combination with paclitaxel in patients with advanced solid tumors.Oncotarget2018960317093171810.18632/oncotarget.2585430167089
    [Google Scholar]
  28. KonstantinopoulosP.A. BarryW.T. BirrerM. WestinS.N. CadooK.A. ShapiroG.I. MayerE.L. O’CearbhaillR.E. ColemanR.L. KochupurakkalB. WhalenC. CurtisJ. FarooqS. LuoW. EismannJ. BussM.K. AghajanianC. MillsG.B. PalakurthiS. KirschmeierP. LiuJ. CantleyL.C. KaufmannS.H. SwisherE.M. D’AndreaA.D. WinerE. WulfG.M. MatulonisU.A. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: A dose-escalation and dose-expansion phase 1b trial.Lancet Oncol.201920457058010.1016/S1470‑2045(18)30905‑730880072
    [Google Scholar]
  29. SahakianN. CattieuwL. Ramillon-CuryC. CorrollerA.B.L. Silvestre-AillaudP. BéliardS. ValéroR. SGLT2 inhibitors as potentially helpful drugs in PI3K inhibitor-induced diabetes: A case report.Clin. Diabetes Endocrinol.2021711710.1186/s40842‑021‑00125‑834281618
    [Google Scholar]
  30. KourounakisA.P. XanthopoulosD. TzaraA. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules.Med. Res. Rev.202040270975210.1002/med.2163431512284
    [Google Scholar]
  31. XingJ. YangJ. GuY. YiJ. Research update on the anticancer effects of buparlisib.Oncol Lett.2021214266
    [Google Scholar]
  32. SauraC. BendellJ. JerusalemG. SuS. RuQ. De BuckS. MillsD. RuquetS. BoschA. UrruticoecheaA. BeckJ.T. Di TomasoE. SternbergD.W. MassacesiC. HirawatS. DirixL. BaselgaJ. Phase Ib study of Buparlisib plus Trastuzumab in patients with HER2-positive advanced or metastatic breast cancer that has progressed on Trastuzumab-based therapy.Clin. Cancer Res.20142071935194510.1158/1078‑0432.CCR‑13‑107024470511
    [Google Scholar]
  33. MüllerA. GillissenB. RichterA. RichterA. ChumduriC. DanielP.T. ScholzC.W. Pan-class I PI3-kinase inhibitor BKM120 induces MEK1/2-dependent mitotic catastrophe in non-Hodgkin lymphoma leading to apoptosis or polyploidy determined by Bax/Bak and p53.Cell Death Dis.20189338410.1038/s41419‑018‑0413‑429515122
    [Google Scholar]
  34. SunB. JensenN.R. ChungD. YangM. LarueA.C. WingH. American journal of cancer reserach.Am. J. Cancer Res.2024145P.19472665
    [Google Scholar]
  35. de GooijerM.C. ZhangP. BuilL.C.M. ÇitirikkayaC.H. ThotaN. BeijnenJ.H. van TellingenO. Buparlisib is a brain penetrable pan-PI3K inhibitor.Sci. Rep.2018811078410.1038/s41598‑018‑29062‑w30018387
    [Google Scholar]
  36. OwonikokoT.K. HarveyR.D. CarthonB. ChenZ. LewisC. CollinsH. ZhangC. LawsonD.H. AleseO.B. BilenM.A. SicaG.L. SteuerC.E. ShaibW.L. WuC. HarrisW.B. AkceM. KudchagkarR.R. El-RayesB.F. LonialS. RamalingamS.S. KhuriF.R. A phase I study of safety, pharmacokinetics, and pharmacodynamics of concurrent everolimus and buparlisib treatment in advanced solid tumors.Clin. Cancer Res.202026112497250510.1158/1078‑0432.CCR‑19‑269732005746
    [Google Scholar]
  37. SarkerD. AngJ.E. BairdR. KristeleitR. ShahK. MorenoV. ClarkeP.A. RaynaudF.I. LevyG. WareJ.A. MazinaK. LinR. WuJ. FredricksonJ. SpoerkeJ.M. LacknerM.R. YanY. FriedmanL.S. KayeS.B. DerynckM.K. WorkmanP. de BonoJ.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan- class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors.Clin. Cancer Res.2015211778610.1158/1078‑0432.CCR‑14‑094725370471
    [Google Scholar]
  38. RaynaudF.I. EcclesS.A. PatelS. AlixS. BoxG. ChuckowreeI. FolkesA. GowanS. De Haven BrandonA. Di StefanoF. HayesA. HenleyA.T. LensunL. Pergl-WilsonG. RobsonA. SaghirN. ZhyvoloupA. McDonaldE. SheldrakeP. ShuttleworthS. ValentiM. WanN.C. ClarkeP.A. WorkmanP. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: From PI-103 through PI-540, PI-620 to the oral agent GDC-0941.Mol. Cancer Ther.2009871725173810.1158/1535‑7163.MCT‑08‑120019584227
    [Google Scholar]
  39. BowlesD.W. MaW.W. SenzerN. BrahmerJ.R. AdjeiA.A. DaviesM. A multicenter phase 1 study of PX-866 in combination with docetaxel in patients with advanced solid tumours.Br. J. Cancer.2013109519859210.1038/bjc.2013.474
    [Google Scholar]
  40. KoulD. ShenR. KimY.W. KondoY. LuY. BanksonJ. RonenS.M. KirkpatrickD.L. PowisG. YungW.K.A. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma.Neuro-oncol.201012655956910.1093/neuonc/nop05820156803
    [Google Scholar]
  41. IhleN.T. Paine-MurrietaG. BerggrenM.I. BakerA. TateW.R. WipfP. AbrahamR.T. KirkpatrickD.L. PowisG. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non–small cell lung cancer xenografts.Mol. Cancer Ther.2005491349135710.1158/1535‑7163.MCT‑05‑014916170026
    [Google Scholar]
  42. HayakawaM. KaizawaH. MoritomoH. KoizumiT. OhishiT. OkadaM. OhtaM. TsukamotoS. ParkerP. WorkmanP. WaterfieldM. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110α inhibitors.Bioorg. Med. Chem.200614206847685810.1016/j.bmc.2006.06.04616837202
    [Google Scholar]
  43. WuP. SuY. LiuX. YanJ. YeY. ZhangL. XuJ. WengS. LiY. LiuT. DongX. SunM. YangB. HeQ. HuY. Discovery of novel morpholino–quinoxalines as PI3Kα inhibitors by pharmacophore-based screening.MedChemComm20123665910.1039/c2md00255h
    [Google Scholar]
  44. WuP. SuY. GuanX. LiuX. ZhangJ. DongX. HuangW. HuY. Identification of novel piperazinylquinoxaline derivatives as potent phosphoinositide 3-kinase (PI3K) inhibitors.PLoS One201278e4317110.1371/journal.pone.004317122905224
    [Google Scholar]
  45. LiM. SalaV. De SantisM.C. CiminoJ. CappelloP. PiancaN. Di BonaA. MargariaJ.P. MartiniM. LazzariniE. PirozziF. RossiL. FrancoI. BornbaumJ. HegerJ. RohrbachS. PerinoA. TocchettiC.G. LimaB.H.F. TeixeiraM.M. PorporatoP.E. SchulzR. AngeliniA. SandriM. AmeriP. SciarrettaS. Lima-JúniorR.C.P. MongilloM. ZagliaT. MorelloF. NovelliF. HirschE. GhigoA. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth.Circulation2018138769671110.1161/CIRCULATIONAHA.117.03035229348263
    [Google Scholar]
  46. DobbinZ. LandenC. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer.Int. J. Mol. Sci.20131448213822710.3390/ijms1404821323591839
    [Google Scholar]
  47. ChiaS. GandhiS. JoyA.A. EdwardsS. GorrM. HopkinsS. KondejewskiJ. AyoubJ.P. CalifarettiN. RaysonD. DentS.F. Novel agents and associated toxicities of inhibitors of the PI3K/Akt/mTOR pathway for the treatment of breast cancer.Curr. Oncol.2015221334810.3747/co.22.239325684987
    [Google Scholar]
  48. EspositoA. VialeG. CuriglianoG. Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer.JAMA Oncol.2019591347135410.1001/jamaoncol.2019.003430920609
    [Google Scholar]
  49. HeitmanJ MovvaNR HallMN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast.Sci.199125350229059
    [Google Scholar]
  50. SchmelzleT. HallM.N. TOR, a central controller of cell growth.Cell2000103225326210.1016/S0092‑8674(00)00117‑311057898
    [Google Scholar]
  51. SabatiniD.M. Erdjument-BromageH. LuiM. TempstP. SnyderS.H. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs.Cell1994781354310.1016/0092‑8674(94)90570‑37518356
    [Google Scholar]
  52. ChiuM.I. KatzH. BerlinV. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex.Proc. Natl. Acad. Sci. USA19949126125741257810.1073/pnas.91.26.125747809080
    [Google Scholar]
  53. SabersC.J. MartinM.M. BrunnG.J. WilliamsJ.M. DumontF.J. WiederrechtG. AbrahamR.T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.J. Biol. Chem.1995270281582210.1074/jbc.270.2.8157822316
    [Google Scholar]
  54. LaplanteM. SabatiniD.M. mTOR signaling in growth control and disease.Cell2012149227429310.1016/j.cell.2012.03.01722500797
    [Google Scholar]
  55. HaraK. MarukiY. LongX. YoshinoK. OshiroN. HidayatS. TokunagaC. AvruchJ. YonezawaK. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action.Cell2002110217718910.1016/S0092‑8674(02)00833‑412150926
    [Google Scholar]
  56. AliS.M. KimD-H. GuertinD.A. LatekR.R. Erdjument-BromageH. TempstP. SabatiniD.M. SabatiniD.M. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton.Curr. Biol.200414141296130210.1016/j.cub.2004.06.05415268862
    [Google Scholar]
  57. MukherjeeS. MukherjeeU. A comprehensive review of immunosuppression used for liver transplantation.J. Transplant.2009200912010.1155/2009/70146420130772
    [Google Scholar]
  58. BenjaminD. ColombiM. MoroniC. HallM.N. Rapamycin passes the torch: A new generation of mTOR inhibitors.Nat. Rev. Drug Discov.2011101186888010.1038/nrd353122037041
    [Google Scholar]
  59. MengL. ZhengX.F.S. Toward rapamycin analog (rapalog)-based precision cancer therapy.Acta Pharmacol. Sin.201536101163116910.1038/aps.2015.6826299952
    [Google Scholar]
  60. RaymondE. AlexandreJ. FaivreS. VeraK. MatermanE. BoniJ. LeisterC. Korth-BradleyJ. HanauskeA. ArmandJ.P. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer.J. Clin. Oncol.200422122336234710.1200/JCO.2004.08.11615136596
    [Google Scholar]
  61. García-MartínezJ.M. MoranJ. ClarkeR.G. GrayA. CosulichS.C. ChrestaC.M. AlessiD.R. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).Biochem. J.20094211294210.1042/BJ2009048919402821
    [Google Scholar]
  62. ChrestaC.M. DaviesB.R. HicksonI. HardingT. CosulichS. CritchlowS.E. VincentJ.P. EllstonR. JonesD. SiniP. JamesD. HowardZ. DudleyP. HughesG. SmithL. MaguireS. HummersoneM. MalaguK. MenearK. JenkinsR. JacobsenM. SmithG.C.M. GuichardS. PassM. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity.Cancer Res.201070128829810.1158/0008‑5472.CAN‑09‑175120028854
    [Google Scholar]
  63. BasuB. DeanE. PuglisiM. GreystokeA. OngM. BurkeW. CavallinM. BigleyG. WomackC. HarringtonE.A. GreenS. OelmannE. de BonoJ.S. RansonM. BanerjiU. First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014.Clin. Cancer Res.201521153412341910.1158/1078‑0432.CCR‑14‑242225805799
    [Google Scholar]
  64. PowlesT. WheaterM. DinO. GeldartT. BoletiE. StockdaleA. SundarS. RobinsonA. AhmedI. WimalasinghamA. BurkeW. SarkerS.J. HussainS. RalphC. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer.Eur. Urol.201669345045610.1016/j.eururo.2015.08.03526364551
    [Google Scholar]
  65. KimS.T. KimS.Y. KlempnerS.J. YoonJ. KimN. AhnS. BangH. KimK.M. ParkW. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. LeeS.H. ParkK. KangW.K. LeeJ. Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition.Ann. Oncol.201728354755410.1093/annonc/mdw66928028034
    [Google Scholar]
  66. YuK. Toral-BarzaL. ShiC. ZhangW.G. LucasJ. ShorB. KimJ. VerheijenJ. CurranK. MalwitzD.J. ColeD.C. EllingboeJ. Ayral-KaloustianS. MansourT.S. GibbonsJ.J. AbrahamR.T. NowakP. ZaskA. Biochemical, cellular, and in vivo activity of novel ATP- competitive and selective inhibitors of the mammalian target of rapamycin.Cancer Res.200969156232624010.1158/0008‑5472.CAN‑09‑029919584280
    [Google Scholar]
  67. RichardD.J. VerheijenJ.C. CurranK. KaplanJ. Toral-BarzaL. HollanderI. LucasJ. YuK. ZaskA. Incorporation of water-solubilizing groups in pyrazolopyrimidine mTOR inhibitors: Discovery of highly potent and selective analogs with improved human microsomal stability.Bioorg. Med. Chem. Lett.200919246830683510.1016/j.bmcl.2009.10.09619896845
    [Google Scholar]
  68. YuK. ShiC. Toral-BarzaL. LucasJ. ShorB. KimJ.E. ZhangW.G. MahoneyR. GaydosC. TardioL. KimS.K. ConantR. CurranK. KaplanJ. VerheijenJ. Ayral-KaloustianS. MansourT.S. AbrahamR.T. ZaskA. GibbonsJ.J. Beyond rapalog therapy: Preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2.Cancer Res.201070262163110.1158/0008‑5472.CAN‑09‑234020068177
    [Google Scholar]
  69. ApselB. BlairJ.A. GonzalezB. NazifT.M. FeldmanM.E. AizensteinB. HoffmanR. WilliamsR.L. ShokatK.M. KnightZ.A. Targeted polypharmacology: Discovery of dual inhibitors of tyrosine and phosphoinositide kinases.Nat. Chem. Biol.200841169169910.1038/nchembio.11718849971
    [Google Scholar]
  70. FolkesA.J. AhmadiK. AldertonW.K. AlixS. BakerS.J. BoxG. ChuckowreeI.S. ClarkeP.A. DepledgeP. EcclesS.A. FriedmanL.S. HayesA. HancoxT.C. KugendradasA. LensunL. MooreP. OliveroA.G. PangJ. PatelS. Pergl-WilsonG.H. RaynaudF.I. RobsonA. SaghirN. SalphatiL. SohalS. UltschM.H. ValentiM. WallweberH.J.A. WanN.C. WiesmannC. WorkmanP. ZhyvoloupA. ZvelebilM.J. ShuttleworthS.J. The identification of 2-(1H-indazol-4- yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer.J. Med. Chem.200851185522553210.1021/jm800295d18754654
    [Google Scholar]
  71. SutherlinD.P. BaoL. BerryM. CastanedoG. ChuckowreeI. DotsonJ. FolksA. FriedmanL. GoldsmithR. GunznerJ. HeffronT. LesnickJ. LewisC. MathieuS. MurrayJ. NonomiyaJ. PangJ. PeggN. PriorW.W. RougeL. SalphatiL. SampathD. TianQ. TsuiV. WanN.C. WangS. WeiB. WiesmannC. WuP. ZhuB.Y. OliveroA. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer.J. Med. Chem.201154217579758710.1021/jm200932721981714
    [Google Scholar]
  72. WallinJ.J. EdgarK.A. GuanJ. BerryM. PriorW.W. LeeL. LesnickJ.D. LewisC. NonomiyaJ. PangJ. SalphatiL. OliveroA.G. SutherlinD.P. O’BrienC. SpoerkeJ.M. PatelS. LensunL. KasseesR. RossL. LacknerM.R. SampathD. BelvinM. FriedmanL.S. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway.Mol. Cancer Ther.201110122426243610.1158/1535‑7163.MCT‑11‑044621998291
    [Google Scholar]
  73. DollyS.O. WagnerA.J. BendellJ.C. KindlerH.L. KrugL.M. SeiwertT.Y. ZaudererM.G. LolkemaM.P. AptD. YehR.F. FredricksonJ.O. SpoerkeJ.M. KoeppenH. WareJ.A. LauchleJ.O. BurrisH.A.III de BonoJ.S. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors.Clin. Cancer Res.201622122874288410.1158/1078‑0432.CCR‑15‑222526787751
    [Google Scholar]
  74. VerheijenJ.C. YuK. Toral-BarzaL. HollanderI. ZaskA. Discovery of 2-arylthieno[3,2-d]pyrimidines containing 8-oxa-3-azabi-cyclo[3.2.1]octane in the 4-position as potent inhibitors of mTOR with selectivity over PI3K.Bioorg. Med. Chem. Lett.201020137537910.1016/j.bmcl.2009.10.07519897362
    [Google Scholar]
  75. SutherlinD.P. SampathD. BerryM. CastanedoG. ChangZ. ChuckowreeI. DotsonJ. FolkesA. FriedmanL. GoldsmithR. HeffronT. LeeL. LesnickJ. LewisC. MathieuS. NonomiyaJ. OliveroA. PangJ. PriorW.W. SalphatiL. SiderisS. TianQ. TsuiV. WanN.C. WangS. WiesmannC. WongS. ZhuB.Y. Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual pan-PI3-kinase/mTOR inhibitors for the treatment of cancer.J. Med. Chem.20105331086109710.1021/jm901284w20050669
    [Google Scholar]
  76. HeffronT.P. BerryM. CastanedoG. ChangC. ChuckowreeI. DotsonJ. FolkesA. GunznerJ. LesnickJ.D. LewisC. MathieuS. NonomiyaJ. OliveroA. PangJ. PetersonD. SalphatiL. SampathD. SiderisS. SutherlinD.P. TsuiV. WanN.C. WangS. WongS. ZhuB. Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor.Bioorg. Med. Chem. Lett.20102082408241110.1016/j.bmcl.2010.03.04620346656
    [Google Scholar]
  77. LiuQ. ChangJ.W. WangJ. KangS.A. ThoreenC.C. MarkhardA. HurW. ZhangJ. SimT. SabatiniD.M. GrayN.S. Discovery of 1-(4-(4-Propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer.J. Med. Chem.201053197146715510.1021/jm101144f20860370
    [Google Scholar]
  78. ChoiS. KimK. ChaM. KimM. LeeB.H. mTOR signaling intervention by Torin1 and XL388 in the insular cortex alleviates neuropathic pain.Neurosci. Lett.202071813474210.1016/j.neulet.2020.13474231917234
    [Google Scholar]
  79. LiuQ. WangJ. KangS.A. ThoreenC.C. HurW. AhmedT. SabatiniD.M. GrayN.S. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer.J. Med. Chem.20115451473148010.1021/jm101520v21322566
    [Google Scholar]
  80. LiuQ. XuC. KirubakaranS. ZhangX. HurW. LiuY. KwiatkowskiN.P. WangJ. WestoverK.D. GaoP. ErcanD. NiepelM. ThoreenC.C. KangS.A. PatricelliM.P. WangY. TupperT. AltabefA. KawamuraH. HeldK.D. ChouD.M. ElledgeS.J. JanneP.A. WongK.K. SabatiniD.M. GrayN.S. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR.Cancer Res.20137382574258610.1158/0008‑5472.CAN‑12‑170223436801
    [Google Scholar]
  81. XieJ. ProudC.G. Signaling crosstalk between the mTOR complexes.Translation201421e2817410.4161/trla.2817426779402
    [Google Scholar]
  82. LiJ. KimS.G. BlenisJ. Rapamycin: One drug, many effects.Cell Metab.201419337337910.1016/j.cmet.2014.01.00124508508
    [Google Scholar]
  83. EdiriweeraM.K. TennekoonK.H. SamarakoonS.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance.Semin. Cancer Biol.20195914716010.1016/j.semcancer.2019.05.01231128298
    [Google Scholar]
  84. GaziM. MoharramS.A. MarhällA. KaziJ.U. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL).Cancer Lett.201739291610.1016/j.canlet.2017.01.03528159681
    [Google Scholar]
  85. HayakawaM. KaizawaH. MoritomoH. KoizumiT. OhishiT. YamanoM. OkadaM. OhtaM. TsukamotoS. RaynaudF.I. WorkmanP. WaterfieldM.D. ParkerP. Synthesis and biological evaluation of pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110α inhibitors.Bioorg. Med. Chem. Lett.20071792438244210.1016/j.bmcl.2007.02.03217339109
    [Google Scholar]
  86. FanQ.W. ChengC.K. NicolaidesT.P. HackettC.S. KnightZ.A. ShokatK.M. WeissW.A. A dual phosphoinositide-3-kinase α/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma.Cancer Res.200767177960796510.1158/0008‑5472.CAN‑07‑215417804702
    [Google Scholar]
  87. SerraV. MarkmanB. ScaltritiM. EichhornP.J.A. ValeroV. GuzmanM. BoteroM.L. LlonchE. AtzoriF. Di CosimoS. MairaM. Garcia-EcheverriaC. ParraJ.L. ArribasJ. BaselgaJ. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations.Cancer Res.200868198022803010.1158/0008‑5472.CAN‑08‑138518829560
    [Google Scholar]
  88. BrachmannS.M. HofmannI. SchnellC. FritschC. WeeS. LaneH. WangS. Garcia-EcheverriaC. MairaS.M. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells.Proc. Natl. Acad. Sci. USA200910652222992230410.1073/pnas.090515210620007781
    [Google Scholar]
  89. CarloM.I. MolinaA.M. LakhmanY. PatilS. WooK. DeLucaJ. LeeC.H. HsiehJ.J. FeldmanD.R. MotzerR.J. VossM.H. A phase Ib study of BEZ235, a dual inhibitor of phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR), in patients with advanced renal cell carcinoma.Oncologist2016217787788d10.1634/theoncologist.2016‑014527286790
    [Google Scholar]
  90. SalazarR. Garcia-CarboneroR. LibuttiS.K. HendifarA.E. CustodioA. GuimbaudR. Lombard-BohasC. RicciS. KlümpenH.J. CapdevilaJ. ReedN. WalenkampA. GrandeE. SafinaS. MeyerT. KongO. SalomonH. TavorathR. YaoJ.C. Phase II study of BEZ235 versus Everolimus in patients with mammalian target of rapamycin inhibitor-naïve advanced pancreatic neuroendocrine tumors.Oncologist2018237766e9010.1634/theoncologist.2017‑014429242283
    [Google Scholar]
  91. SerontE. RotteyS. FilleulB. GlorieuxP. GoeminneJ.C. VerschaeveV. VandenbulckeJ.M. SautoisB. BoegnerP. GillainA. van MaanenA. MachielsJ.P. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ 235 in patients with locally advanced or metastatic transitional cell carcinoma.BJU Int.2016118340841510.1111/bju.1341526779597
    [Google Scholar]
  92. SimioniC. CaniA. MartelliA.M. ZauliG. AlameenA.A.M. UltimoS. TabelliniG. McCubreyJ.A. CapitaniS. NeriL.M. The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells.Oncotarget2015619171471716010.18632/oncotarget.394026003166
    [Google Scholar]
  93. ZouY. GeM. WangX. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.Biochem. Biophys. Res. Commun.2017490238539210.1016/j.bbrc.2017.06.05228623128
    [Google Scholar]
  94. ZaidiA.H. KosovecJ.E. MatsuiD. OmsteadA.N. RajM. RaoR.R. BiedermanR.W.W. FinleyG.G. LandreneauR.J. KellyR.J. JobeB.A. PI3K/mTOR dual inhibitor, LY3023414, demonstrates potent antitumor efficacy against esophageal adenocarcinoma in a rat model.Ann. Surg.20172661919810.1097/SLA.000000000000190827471841
    [Google Scholar]
  95. BendellJ.C. VargheseA.M. HymanD.M. BauerT.M. PantS. CalliesS. LinJ. MartinezR. WickremsinheE. FinkA. WacheckV. MooreK.N. A fFirst-in-human phase 1 study of LY3023414, an oral PI3K/mTOR dual inhibitor, in patients with advanced cancer.Clin. Cancer Res.201824143253326210.1158/1078‑0432.CCR‑17‑342129636360
    [Google Scholar]
  96. RubinsteinM.M. HymanD.M. CairdI. WonH. SoldanK. SeierK. IasonosA. TewW.P. O’CearbhaillR.E. GrishamR.N. HensleyM.L. Troso-SandovalT. SabbatiniP. GuillenJ. SelcukluS.D. ZimelC. TorrisiJ. AghajanianC. MakkerV. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway.Cancer202012661274128210.1002/cncr.3267731880826
    [Google Scholar]
  97. KnightS.D. AdamsN.D. BurgessJ.L. ChaudhariA.M. DarcyM.G. DonatelliC.A. LuengoJ.I. NewlanderK.A. ParrishC.A. RidgersL.H. SarpongM.A. SchmidtS.J. Van AllerG.S. CarsonJ.D. DiamondM.A. ElkinsP.A. GardinerC.M. GarverE. GilbertS.A. GontarekR.R. JacksonJ.R. KershnerK.L. LuoL. RahaK. SherkC.S. SungC.M. SuttonD. TumminoP.J. WegrzynR.J. AugerK.R. DhanakD. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin.ACS Med. Chem. Lett.201011394310.1021/ml900028r24900173
    [Google Scholar]
  98. LiuT. SunQ. LiQ. YangH. ZhangY. WangR. LinX. XiaoD. YuanY. ChenL. WangW. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.Mol. Cancer Ther.201514242943910.1158/1535‑7163.MCT‑14‑054825504751
    [Google Scholar]
  99. LukeyP.T. HarrisonS.A. YangS. ManY. HolmanB.F. RashidnasabA. AzzopardiG. GrayerM. SimpsonJ.K. BareilleP. PaulL. WoodcockH.V. ToshnerR. SaundersP. MolyneauxP.L. ThielemansK. WilsonF.J. MercerP.F. ChambersR.C. GrovesA.M. FahyW.A. MarshallR.P. MaherT.M. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis.Eur. Respir. J.2019533180199210.1183/13993003.01992‑201830765508
    [Google Scholar]
  100. KimM.Y. KrugerA.J. JeongJ.Y. KimJ. ShinP. KimS.Y. ChoJ.Y. HahmK.B. HongS.P. Combination therapy with a PI3K/mTOR dual inhibitor and chloroquine enhances synergistic apoptotic cell death in epstein–barr virus-infected gastric cancer cells.Mol. Cells201942644845910.14348/molcells.2019.239531085812
    [Google Scholar]
  101. ChoiH.J. HeoJ.H. ParkJ.Y. JeongJ.Y. ChoH.J. ParkK.S. KimS.H. MoonY.W. KimJ.S. AnH.J. A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer.Gynecol. Oncol.2019153113514810.1016/j.ygyno.2019.01.01230686552
    [Google Scholar]
  102. KimM.N. LeeS.M. KimJ.S. HwangS.G. Preclinical efficacy of a novel dual PI3K/mTOR inhibitor, CMG002, alone and in combination with sorafenib in hepatocellular carcinoma.Cancer Chemother. Pharmacol.201984480981710.1007/s00280‑019‑03918‑y31385002
    [Google Scholar]
  103. MaroneR. CmiljanovicV. GieseB. WymannM.P. Targeting phosphoinositide 3-kinase-Moving towards therapy.Biochim. Biophys. Acta. Proteins Proteomics20081784115918510.1016/j.bbapap.2007.10.003
    [Google Scholar]
  104. GravinaG.L. ManciniA. ScarsellaL. ColapietroA. JitariucA. VitaleF. MaramponF. RicevutoE. FestucciaC. Dual PI3K/mTOR inhibitor, XL765 (SAR245409), shows superior effects to sole PI3K [XL147(SAR245408)] or mTOR [rapamycin] inhibition in prostate cancer cell models.Tumour Biol.201637134135110.1007/s13277‑015‑3725‑326219891
    [Google Scholar]
  105. DehnhardtC.M. VenkatesanA.M. Delos SantosE. ChenZ. SantosO. Ayral-KaloustianS. BrooijmansN. MallonR. HollanderI. FeldbergL. LucasJ. ChaudharyI. YuK. GibbonsJ. AbrahamR. MansourT.S. Lead optimization of N-3-substituted 7-morpholinotriazolopyrimidines as dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors: Discovery of PKI-402.J. Med. Chem.201053279881010.1021/jm901498219968288
    [Google Scholar]
  106. VenkatesanA.M. DehnhardtC.M. Delos SantosE. ChenZ. Dos SantosO. Ayral-KaloustianS. KhafizovaG. BrooijmansN. MallonR. HollanderI. FeldbergL. LucasJ. YuK. GibbonsJ. AbrahamR.T. ChaudharyI. MansourT.S. Bis(morpholino-1,3,5-triazine) derivatives: Potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: Discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor.J. Med. Chem.20105362636264510.1021/jm901830p20166697
    [Google Scholar]
  107. FreitagH. ChristenF. LewensF. GrassI. BriestF. IwaszkiewiczS. SiegmundB. GrabowskiP. Inhibition of mTOR’s catalytic site by PKI-587 is a promising therapeutic option for gastroenteropancreatic neuroendocrine tumor disease.Neuroendocrinology201710519010410.1159/00044884327513674
    [Google Scholar]
  108. del CampoJ.M. BirrerM. DavisC. FujiwaraK. GollerkeriA. GoreM. HoukB. LauS. PovedaA. González-MartínA. MullerC. MuroK. PierceK. SuzukiM. VermetteJ. OzaA. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer.Gynecol. Oncol.20161421626910.1016/j.ygyno.2016.04.01927103175
    [Google Scholar]
  109. ChenZ. VenkatesanA.M. Dos SantosO. Delos SantosE. DehnhardtC.M. Ayral-KaloustianS. AshcroftJ. McDonaldL.A. MansourT.S. Stereoselective synthesis of an active metabolite of the potent PI3 kinase inhibitor PKI-179.J. Org. Chem.20107551643165110.1021/jo902626920112997
    [Google Scholar]
  110. VenkatesanA.M. ChenZ. SantosO.D. DehnhardtC. SantosE.D. Ayral-KaloustianS. MallonR. HollanderI. FeldbergL. LucasJ. YuK. ChaudharyI. MansourT.S. PKI-179: An orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor.Bioorg. Med. Chem. Lett.201020195869587310.1016/j.bmcl.2010.07.10420797855
    [Google Scholar]
  111. BeaufilsF. CmiljanovicN. CmiljanovicV. BohnackerT. MeloneA. MaroneR. JacksonE. ZhangX. SeleA. BorsariC. MestanJ. HebeisenP. HillmannP. GieseB. ZvelebilM. FabbroD. WilliamsR.L. RageotD. WymannM.P. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as clinical candidate in oncology.J. Med. Chem.201760177524753810.1021/acs.jmedchem.7b0093028829592
    [Google Scholar]
  112. BorsariC. RageotD. BeaufilsF. BohnackerT. KelesE. BuslovI. MeloneA. SeleA.M. HebeisenP. FabbroD. HillmannP. WymannM.P. Preclinical development of PQR514, a highly potent PI3K inhibitor bearing a difluoromethyl–pyrimidine moiety.ACS Med. Chem. Lett.201910101473147910.1021/acsmedchemlett.9b0033331620236
    [Google Scholar]
  113. Rodrik-OutmezguineV.S. OkaniwaM. YaoZ. NovotnyC.J. McWhirterC. BanajiA. WonH. WongW. BergerM. de StanchinaE. BarrattD.G. CosulichS. KlinowskaT. RosenN. ShokatK.M. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor.Nature2016534760627227610.1038/nature1796327279227
    [Google Scholar]
  114. FanQ. AksoyO. WongR.A. IlkhanizadehS. NovotnyC.J. GustafsonW.C. TruongA.Y.Q. CayananG. SimondsE.F. Haas-KoganD. PhillipsJ.J. NicolaidesT. OkaniwaM. ShokatK.M. WeissW.A. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma.Cancer Cell201731342443510.1016/j.ccell.2017.01.01428292440
    [Google Scholar]
  115. IezziA. CaiolaE. BrogginiM. Activity of pan-class I isoform PI3K/mTOR inhibitor PF-05212384 in combination with crizotinib in ovarian cancer xenografts and PDX.Transl. Oncol.20169545846510.1016/j.tranon.2016.08.01127751351
    [Google Scholar]
  116. XiaoY. YuY. JiangP. LiY. WangC. ZhangR. The PI3K/mTOR dual inhibitor GSK458 potently impedes ovarian cancer tumorigenesis and metastasis.Cell Oncol. (Dordr.)202043466968010.1007/s13402‑020‑00514‑832382996
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293028240326051835
Loading
/content/journals/cmc/10.2174/0109298673293028240326051835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test