Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The immune system is linked to the prognosis and response to treatment of patients with cancer. However, the clinical implication of peripheral blood immune cells in cholangiocarcinoma (CCA) remains vague. Thus, we aimed to assess whether peripheral circulating immune cells could be used as an indicator for prognosis and chemotherapeutic efficacy in CCA.

Methods

The distributions of immune subsets were analyzed in peripheral blood samples from 141 patients with CCA and 131 healthy volunteers by using flow cytometry. The variation in the subset distribution in the two groups and the relationship between clinicopathological features and the subpopulations were investigated. Meanwhile, we assessed the implications of lymphocyte subsets as predictors of chemotherapy outcomes and overall survival (OS).

Results

The proportion of total lymphocytes decreased, while the percentages of activated T cells as well as CD4+CD25+ regulatory T cells (Tregs) increased in CCA. Notably, lymphocyte proportion decreased in patients with regional lymph node (N) (=0.016) and distant metastasis (M) (= 0.001). Furthermore, our study showed that peripheral blood lymphocyte subsets were significantly correlated with chemotherapy efficacy, with increased proportions of CD3+ cells (=0.021) and CD4+ cells (=0.016) in the effective group. Finally, the Kaplan-Meier analysis indicated that patients with high natural killer (NK) cell proportion might have prolonged OS ( = 0.028).

Conclusion

The relationship between circulating immune cells with prognosis and chemotherapy response in patients with CCA highlights their potential application as an indicator of CCA prognosis and stratification of chemotherapy response.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296618240424095548
2024-05-02
2025-01-17
Loading full text...

Full text loading...

References

  1. ValleJ.W. KelleyR.K. NerviB. OhD.Y. ZhuA.X. Biliary tract cancer.Lancet20213971027242844410.1016/S0140‑6736(21)00153‑733516341
    [Google Scholar]
  2. BanalesJ.M. CardinaleV. CarpinoG. MarzioniM. AndersenJ.B. InvernizziP. LindG.E. FolseraasT. ForbesS.J. FouassierL. GeierA. CalvisiD.F. MertensJ.C. TraunerM. BenedettiA. MaroniL. VaqueroJ. MaciasR.I.R. RaggiC. PerugorriaM.J. GaudioE. BobergK.M. MarinJ.J.G. AlvaroD. Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA).Nat. Rev. Gastroenterol. Hepatol.201613526128010.1038/nrgastro.2016.5127095655
    [Google Scholar]
  3. BlechaczB. GoresG.J. Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment.Hepatology200848130832110.1002/hep.2231018536057
    [Google Scholar]
  4. MarshR.W. AlonzoM. BajajS. BakerM. EltonE. FarrellT.A. GoreR.M. HallC. NowakJ. RoyH. ShaikhA. TalamontiM.S. Comprehensive review of the diagnosis and treatment of biliary tract cancer 2012. PART I: Diagnosis-clinical staging and pathology.J. Surg. Oncol.2012106333233810.1002/jso.2302822488652
    [Google Scholar]
  5. PrimroseJ.N. FoxR.P. PalmerD.H. MalikH.Z. PrasadR. MirzaD. AnthonyA. CorrieP. FalkS. Finch-JonesM. WasanH. RossP. WallL. WadsleyJ. EvansJ.T.R. StockenD. PraseedomR. MaY.T. DavidsonB. NeoptolemosJ.P. IvesonT. RafteryJ. ZhuS. CunninghamD. GardenO.J. StubbsC. ValleJ.W. BridgewaterJ. PrimroseJ.N. FoxR.P. MorementH. ChanO. ReesC. MaY.T. HickishT. FalkS. Finch-JonesM. PopeI. CorrieP. CrosbyT. SothiS. SharklandK. AdamsonD. WallL. EvansJ. DentJ. HombaiahU. IwujiC. AnthoneyA. BridgewaterJ. CunninghamD. GillmoreR. RossP. SlaterS. WasanH. WatersJ. ValleJ.W. PalmerD. MalikH. NeoptolemosJ. FaluyiO. SumpterK. DerneddeU. MaduhusudanS. CogillG. ArcherC. IvesonT. WadsleyJ. DarbyS. PetersonM. MukhtarA.A. ThorpeJ.G. BatemanA. TsangD. CumminsS. NolanL. BeaumontE. PrasadR. MirzaD. StockenD. PraseedomR. DavidsonB. RafteryJ. ZhuS. GardenJ. StubbsC. CoxonF. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study.Lancet Oncol.201920566367310.1016/S1470‑2045(18)30915‑X30922733
    [Google Scholar]
  6. GentileD. DonadonM. LleoA. AghemoA. RoncalliM. di TommasoL. TorzilliG. Surgical treatment of hepatocholangiocarcinoma: A systematic review.Liver Cancer202091152710.1159/00050371932071906
    [Google Scholar]
  7. EckelF. BrunnerT. JelicS. GroupE.G.W. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201122Suppl. 6vi40vi4410.1093/annonc/mdr37521908502
    [Google Scholar]
  8. ThongprasertS. The role of chemotherapy in cholangiocarcinoma.Ann. Oncol.200516Suppl. 2ii93ii9610.1093/annonc/mdi71215958484
    [Google Scholar]
  9. RizzoA. FregaG. RicciA.D. PalloniA. AbbatiF. De LorenzoS. DesertiM. TavolariS. BrandiG. Anti-EGFR monoclonal antibodies in advanced biliary tract cancer: A systematic review and meta-analysis.In vivo202034247948810.21873/invivo.1179832111744
    [Google Scholar]
  10. RizzoA. RicciA.D. BrandiG. Recent advances of immunotherapy for biliary tract cancer.Expert Rev. Gastroenterol. Hepatol.202115552753610.1080/17474124.2021.185352733215952
    [Google Scholar]
  11. RizzoA. RicciA.D. BrandiG. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer.Cancers (Basel)202113355810.3390/cancers1303055833535621
    [Google Scholar]
  12. GalonJ. PagèsF. MarincolaF.M. ThurinM. TrinchieriG. FoxB.A. GajewskiT.F. AsciertoP.A. The immune score as a new possible approach for the classification of cancer.J. Transl. Med.20121011410.1186/1479‑5876‑10‑122214470
    [Google Scholar]
  13. TranE. TurcotteS. GrosA. RobbinsP.F. LuY.C. DudleyM.E. WunderlichJ.R. SomervilleR.P. HoganK. HinrichsC.S. ParkhurstM.R. YangJ.C. RosenbergS.A. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science2014344618464164510.1126/science.125110224812403
    [Google Scholar]
  14. YeY. ZhouL. XieX. JiangG. XieH. ZhengS. Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion.J. Surg. Oncol.2009100650050410.1002/jso.2137619697355
    [Google Scholar]
  15. GoeppertB. FrauenschuhL. ZucknickM. StenzingerA. AndrulisM. KlauschenF. JoehrensK. WarthA. RennerM. MehrabiA. HafeziM. ThelenA. SchirmacherP. WeichertW. Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer.Br. J. Cancer2013109102665267410.1038/bjc.2013.61024136146
    [Google Scholar]
  16. OshikiriT. MiyamotoM. ShichinoheT. SuzuokiM. HiraokaK. NakakuboY. ShinoharaT. ItohT. KondoS. KatohH. Prognostic value of intratumoral CD8 + T lymphocyte in extrahepatic bile duct carcinoma as essential immune response.J. Surg. Oncol.200384422422810.1002/jso.1032114756433
    [Google Scholar]
  17. MiuraT. YoshizawaT. HiraiH. SeinoH. MorohashiS. WuY. WakiyaT. KimuraN. KudoD. IshidoK. ToyokiY. KijimaH. HakamadaK. Prognostic impact of CD163+ macrophages in tumor stroma and CD8+ T- cells in cancer cell nests in invasive extrahepatic bile duct cancer.Anticancer Res.201737118319010.21873/anticanres.1130428011489
    [Google Scholar]
  18. LimY.J. KohJ. KimK. ChieE.K. KimB. LeeK.B. JangJ.Y. KimS.W. OhD.Y. BangY.J. HaS.W. High ratio of programmed cell death protein 1 (PD-1)+/CD8+ tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy.Radiother. Oncol.2015117116517010.1016/j.radonc.2015.07.00326235847
    [Google Scholar]
  19. TakagiS. MiyagawaS. IchikawaE. SoedaJ. MiwaS. MiyagawaY. IijimaS. NoikeT. KobayashiA. KawasakiS. Dendritic cells, T-cell infiltration, and grp94 expression in cholangiocellular carcinoma.Hum. Pathol.200435788188610.1016/j.humpath.2004.03.01615257553
    [Google Scholar]
  20. MaK. SunZ. LiX. GuoJ. WangQ. TengM. Forkhead box M1 recruits FoxP3 + Treg cells to induce immune escape in hilar cholangiocarcinoma.Immun. Inflamm. Dis.20221011e72710.1002/iid3.72736301031
    [Google Scholar]
  21. KitanoY. OkabeH. YamashitaY. NakagawaS. SaitoY. UmezakiN. TsukamotoM. YamaoT. YamamuraK. ArimaK. KaidaT. MiyataT. MimaK. ImaiK. HashimotoD. KomoharaY. ChikamotoA. IshikoT. BabaH. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma.Br. J. Cancer2018118217118010.1038/bjc.2017.40129123259
    [Google Scholar]
  22. WargoJ.A. ReddyS.M. ReubenA. SharmaP. Monitoring immune responses in the tumor microenvironment.Curr. Opin. Immunol.201641233110.1016/j.coi.2016.05.00627240055
    [Google Scholar]
  23. GriffithsJ.I. WalletP. PfliegerL.T. StenehjemD. LiuX. CosgroveP.A. LeggettN.A. McQuerryJ.A. ShresthaG. RossettiM. SungaG. MoosP.J. AdlerF.R. ChangJ.T. SharmaS. BildA.H. Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy.Proc. Natl. Acad. Sci. USA202011727160721608210.1073/pnas.191893711732571915
    [Google Scholar]
  24. AudiaS. NicolasA. CathelinD. LarmonierN. FerrandC. FoucherP. FantonA. BergoinE. MaynadieM. ArnouldL. BatemanA. LorcerieB. SolaryE. ChauffertB. BonnotteB. Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: A Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes.Clin. Exp. Immunol.2007150352353010.1111/j.1365‑2249.2007.03521.x17956583
    [Google Scholar]
  25. HolmJ.S. FuntS.A. BorchA. MunkK.K. BjerregaardA.M. ReadingJ.L. MaherC. RegazziA. WongP. Al-AhmadieH. IyerG. TamhaneT. BentzenA.K. HerschendN.O. De WolfS. SnyderA. MerghoubT. WolchokJ.D. NielsenM. RosenbergJ.E. BajorinD.F. HadrupS.R. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma.Nat. Commun.2022131193510.1038/s41467‑022‑29342‑035410325
    [Google Scholar]
  26. TadaN. KawaiK. TsunoN.H. IshiharaS. YamaguchiH. SunamiE. KitayamaJ. ObaK. WatanabeT. Prediction of the preoperative chemoradiotherapy response for rectal cancer by peripheral blood lymphocyte subsets.World J. Surg. Oncol.20151313010.1186/s12957‑014‑0418‑025890185
    [Google Scholar]
  27. WuY. YeS. GoswamiS. PeiX. XiangL. ZhangX. YangH. Clinical significance of peripheral blood and tumor tissue lymphocyte subsets in cervical cancer patients.BMC Cancer202020117310.1186/s12885‑020‑6633‑x32131750
    [Google Scholar]
  28. OttonelloS. GenovaC. CossuI. FontanaV. RijavecE. RossiG. BielloF. Dal BelloM.G. TagliamentoM. AlamaA. CocoS. BoccardoS. VanniI. FerlazzoG. MorettaL. GrossiF. MingariM.C. CarregaP. PietraG. Association between response to nivolumab treatment and peripheral blood lymphocyte subsets in patients with non-small cell lung cancer.Front. Immunol.20201112510.3389/fimmu.2020.0012532117275
    [Google Scholar]
  29. MaoF. YangC. LuoW. WangY. XieJ. WangH. Peripheral blood lymphocyte subsets are associated with the clinical outcomes of prostate cancer patients.Int Immunopharmacol.202211310928710.1016/j.intimp.2022.109287
    [Google Scholar]
  30. XuY. LiZ. ShiH. ZhuM. Clinicopathological and prognostic significance of circulating immune cells in the patients with pancreatic cancer.Int. Immunopharmacol.202211110915710.1016/j.intimp.2022.10915735988520
    [Google Scholar]
  31. EisenhauerE.A. TherasseP. BogaertsJ. SchwartzL.H. SargentD. FordR. DanceyJ. ArbuckS. GwytherS. MooneyM. RubinsteinL. ShankarL. DoddL. KaplanR. LacombeD. VerweijJ. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).Eur. J. Cancer200945222824710.1016/j.ejca.2008.10.02619097774
    [Google Scholar]
  32. BrindleyP.J. BachiniM. IlyasS.I. KhanS.A. LoukasA. SiricaA.E. TehB.T. WongkhamS. GoresG.J. Cholangiocarcinoma.Nat. Rev. Dis. Primers2021716510.1038/s41572‑021‑00300‑234504109
    [Google Scholar]
  33. SalgadoR. DenkertC. DemariaS. SirtaineN. KlauschenF. PruneriG. WienertS. Van den EyndenG. BaehnerF.L. Penault-LlorcaF. PerezE.A. ThompsonE.A. SymmansW.F. RichardsonA.L. BrockJ. CriscitielloC. BaileyH. IgnatiadisM. FlorisG. SparanoJ. KosZ. NielsenT. RimmD.L. AllisonK.H. Reis-FilhoJ.S. LoiblS. SotiriouC. VialeG. BadveS. AdamsS. Willard-GalloK. LoiS. InternationalT.W.G. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014.Ann. Oncol.201526225927110.1093/annonc/mdu45025214542
    [Google Scholar]
  34. HwangM. CanzonieroJ.V. RosnerS. ZhangG. WhiteJ.R. BelcaidZ. CherryC. BalanA. PereiraG. CurryA. NiknafsN. ZhangJ. SmithK.N. SivapalanL. ChaftJ.E. ReussJ.E. MarroneK. MurrayJ.C. LiQ.K. LamV. LevyB.P. HannC. VelculescuV.E. BrahmerJ.R. FordeP.M. SeiwertT. AnagnostouV. Peripheral blood immune cell dynamics reflect antitumor immune responses and predict clinical response to immunotherapy.J. Immunother. Cancer2022106e00468810.1136/jitc‑2022‑00468835688557
    [Google Scholar]
  35. StankovicB. BjørhovdeH.A.K. SkarshaugR. AamodtH. FrafjordA. MüllerE. HammarströmC. BerakiK. BækkevoldE.S. WoldbækP.R. HellandÅ. BrustugunO.T. ØynebråtenI. CorthayA. Immune cell composition in human non-small cell lung cancer.Front. Immunol.20199310110.3389/fimmu.2018.0310130774636
    [Google Scholar]
  36. DunneM.R. MichielsenA.J. O’SullivanK.E. CathcartM.C. FeigheryR. DoyleB. WatsonJ.A. O’FarrellN.J. RaviN. KayE. ReynoldsJ.V. RyanE.J. O’SullivanJ. HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients.Cancer Immunol. Immunother.201766784185010.1007/s00262‑017‑1983‑128315927
    [Google Scholar]
  37. ChenD.S. MellmanI. Oncology meets immunology: The cancer-immunity cycle.Immunity201339111010.1016/j.immuni.2013.07.01223890059
    [Google Scholar]
  38. KimJ.H. LeeK.J. LeeS.W. Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7.BMB Rep.2021541213010.5483/BMBRep.2021.54.1.25733407991
    [Google Scholar]
  39. ViallardJ.F. BlancoP. AndréM. EtienneG. LifermanF. NeauD. VidalE. MoreauJ.F. PellegrinJ.L. CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation.Clin. Immunol.20061191515810.1016/j.clim.2005.11.01116413828
    [Google Scholar]
  40. Baecher-AllanC. WolfE. HaflerD.A. MHC class II expression identifies functionally distinct human regulatory T cells.J. Immunol.200617684622463110.4049/jimmunol.176.8.462216585553
    [Google Scholar]
  41. ZhangG. XuM. SongY. SuZ. ZhangH. ZhangC. TNF-α produced by SEC2 mutant (SAM-3)-activated human T cells induces apoptosis of HepG2 cells.Appl. Microbiol. Biotechnol.201610062677268410.1007/s00253‑015‑7104‑126536876
    [Google Scholar]
  42. TogashiY. NishikawaH. RegulatoryT. Regulatory T Cells: Molecular and cellular basis for immunoregulation.Curr. Top. Microbiol. Immunol.201741032710.1007/82_2017_5828879523
    [Google Scholar]
  43. SakaguchiS. YamaguchiT. NomuraT. OnoM. Regulatory T cells and immune tolerance.Cell2008133577578710.1016/j.cell.2008.05.00918510923
    [Google Scholar]
  44. SasadaT. KimuraM. YoshidaY. KanaiM. TakabayashiA. CD4+ CD25+ regulatory T cells in patients with gastrointestinal malignancies.Cancer20039851089109910.1002/cncr.1161812942579
    [Google Scholar]
  45. WolfA.M. WolfD. SteurerM. GastlG. GunsiliusE. Grubeck-LoebensteinB. Increase of regulatory T cells in the peripheral blood of cancer patients.Clin. Cancer Res.20039260661212576425
    [Google Scholar]
  46. TanakaH. TanakaJ. KjaergaardJ. ShuS. Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes.J. Immunother.200225320721710.1097/00002371‑200205000‑0000312000862
    [Google Scholar]
  47. AlvisiG. TermaniniA. SoldaniC. PortaleF. CarrieroR. PilipowK. CostaG. PolidoroM. FranceschiniB. MalenicaI. PuccioS. LiseV. GallettiG. ZanonV. ColomboF.S. De SimoneG. TufanoM. AghemoA. Di TommasoL. PeanoC. CibellaJ. IannaconeM. RoychoudhuriR. ManzoT. DonadonM. TorzilliG. KunderfrancoP. Di MitriD. LugliE. LleoA. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target.J. Hepatol.20227751359137210.1016/j.jhep.2022.05.04335738508
    [Google Scholar]
  48. FogarP. SpertiC. BassoD. SanzariM.C. GrecoE. DavoliC. NavagliaF. ZambonC.F. PasqualiC. VenzaE. PedrazzoliS. PlebaniM. Decreased total lymphocyte counts in pancreatic cancer: An index of adverse outcome.Pancreas2006321222810.1097/01.mpa.0000188305.90290.5016340740
    [Google Scholar]
  49. AquilaniR. BrugnatelliS. MaestriR. BoschiF. FilippiB. PerroneL. BarbieriA. BuonocoreD. DossenaM. VerriM. Peripheral blood lymphocyte percentage may predict chemotolerance and survival in patients with advanced pancreatic cancer. association between adaptive immunity and nutritional state.Curr. Oncol.20212853280329610.3390/curroncol2805028534449579
    [Google Scholar]
  50. IsekiY. ShibutaniM. MaedaK. NagaharaH. TamuraT. OhiraG. YamazoeS. KimuraK. ToyokawaT. AmanoR. TanakaH. MugurumaK. HirakawaK. OhiraM. The impact of the preoperative peripheral lymphocyte count and lymphocyte percentage in patients with colorectal cancer.Surg. Today201747674375410.1007/s00595‑016‑1433‑227783149
    [Google Scholar]
  51. GodetY. FabreE. DossetM. LamuragliaM. LevionnoisE. RavelP. BenhamoudaN. CazesA. Le Pimpec-BarthesF. GauglerB. Langlade-DemoyenP. PivotX. SaasP. MaillèreB. TartourE. BorgC. AdotéviO. Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: Potential synergistic effect with chemotherapy response.Clin. Cancer Res.201218102943295310.1158/1078‑0432.CCR‑11‑318522407833
    [Google Scholar]
  52. DewyerN.A. WolfG.T. LightE. WordenF. UrbaS. EisbruchA. BradfordC.R. ChepehaD.B. PrinceM.E. MoyerJ. TaylorJ. Circulating CD4-positive lymphocyte levels as predictor of response to induction chemotherapy in patients with advanced laryngeal cancer.Head Neck201436191410.1002/hed.2326323765859
    [Google Scholar]
  53. WangW. ErbeA.K. HankJ.A. MorrisZ.S. SondelP.M. Cell-Mediated Antibody-Dependent Cellular Cytotoxicity, N.K. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy.Front. Immunol.20156p. 15500010.3389/fimmu.2015.0036826284063
    [Google Scholar]
  54. MelaiuO. LucariniV. CifaldiL. FruciD. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors.Front. Immunol.202010303810.3389/fimmu.2019.0303832038612
    [Google Scholar]
  55. PurdyA.K. CampbellK.S. Natural killer cells and cancer: Regulation by the killer cell Ig-like receptors (KIR).Cancer Biol. Ther.20098232209221810.4161/cbt.8.23.1045519923897
    [Google Scholar]
  56. CoudertJ.D. HeldW. The role of the NKG2D receptor for tumor immunity.Semin. Cancer Biol.200616533334310.1016/j.semcancer.2006.07.00816914326
    [Google Scholar]
  57. DiefenbachA. JensenE.R. JamiesonA.M. RauletD.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity.Nature2001413685216517110.1038/3509310911557981
    [Google Scholar]
  58. TangY. XieM. LiK. LiJ. CaiZ. HuB. Prognostic value of peripheral blood natural killer cells in colorectal cancer.BMC Gastroenterol.20202011810.1186/s12876‑020‑1177‑832028908
    [Google Scholar]
  59. NersesianS. SchwartzS.L. GranthamS.R. MacLeanL.K. LeeS.N. Pugh-TooleM. BoudreauJ.E. NK cell infiltration is associated with improved overall survival in solid cancers: A systematic review and meta-analysis.Transl. Oncol.202114110093010.1016/j.tranon.2020.10093033186888
    [Google Scholar]
  60. PorrataL.F. Natural killer cells are key host immune effector cells affecting survival in autologous peripheral blood hematopoietic stem cell transplantation.Cells20221121346910.3390/cells1121346936359863
    [Google Scholar]
  61. ShaferD. SmithM.R. BorghaeiH. MillensonM.M. LiT. LitwinS. AnadR. Al-SaleemT. Low NK cell counts in peripheral blood are associated with inferior overall survival in patients with follicular lymphoma.Leuk. Res.201337101213121510.1016/j.leukres.2013.07.03823968916
    [Google Scholar]
  62. HeL. ZhuH-Y. QinS-C. LiY. MiaoY. LiangJ-H. XiaY. WangY. WuY-J. WangL. FanL. LiJ-Y. XuW. Low natural killer (NK) cell counts in peripheral blood adversely affect clinical outcome of patients with follicular lymphoma.Blood Cancer J.201668e45710.1038/bcj.2016.6727518240
    [Google Scholar]
  63. WangW.T. ZhuH.Y. WuY.J. XiaY. WuJ.Z. WuW. LiangJ.H. WangL. FanL. LiJ.Y. XuW. Elevated absolute NK cell counts in peripheral blood predict good prognosis in chronic lymphocytic leukemia.J. Cancer Res. Clin. Oncol.2018144344945710.1007/s00432‑017‑2568‑229299750
    [Google Scholar]
  64. PlonquetA. HaiounC. JaisJ.P. DebardA.L. SallesG. BeneM.C. FeugierP. RabianC. CasasnovasO. LabaletteM. KuhleinE. FarcetJ.P. EmileJ.F. GisselbrechtC. Delfau-LarueM.H. Peripheral blood natural killer cell count is associated with clinical outcome in patients with aaIPI 2–3 diffuse large B-cell lymphoma.Ann. Oncol.20071871209121510.1093/annonc/mdm11017496307
    [Google Scholar]
  65. JungI.H. KimD.H. YooD.K. BaekS.Y. JeongS.H. JungD. ParkS.W. ChungY.Y. In vivo study of Natural Killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model.In vivo201832477178110.21873/invivo.1130729936458
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296618240424095548
Loading
/content/journals/cmc/10.2174/0109298673296618240424095548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test