Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

This study aimed to improve personalized treatment strategies and predict survival outcomes for patients with uveal melanoma (UM).

Background

Copy number aberrations (CNAs) have been considered as a main feature of metastatic UM.

Objective

This study was designed to explore the feasibility of using copy number variation (CNV) in UM classification, prognosis stratification and treatment response.

Methods

The CNV data in the TCGA-UVM cohort were used to classify the samples. The differentially expressed genes (DEGs) between subtypes were screened by the “Limma” package. The module and hub genes related to aneuploidy score were identified by performing weighted gene co-expression network analysis (WGCNA) on the DEGs. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to train the hub genes for developing a prognosis model for UM. Finally, the expression levels of the screened prognostic key genes were verified in UM cells, and the cell migration and invasion abilities were detected using real-time quantitative PCR (qRT-PCR) and transwell assay.

Results

The UM samples were divided into 3 CNV subtypes, which differed significantly in overall survival (OS) and disease-specific survival (DSS). C1 had the shortest OS and DSS and the highest level of immune infiltration. A total of 2036 DEGs were obtained from the three subtypes. Eighty hub genes with the closest correlation with aneuploidy scores were selected by WGCNA. Univariate Cox and LASSO regression-based analyses finally determined eight genes as the key prognostic genes, including HES6, RNASEH2C, NQO1, NUDT14, TTYH3, GJC1, FKBP10, and MRPL24. A prognostic model was developed using the eight genes, demonstrating a strong prediction power. Differences in the response to immunotherapy among patients in different risk groups were significant. We found that high-risk patients were more sensitive to two drugs (Palbociclib_1054 and Ribociclib_1632), while low-risk patients were more sensitive to AZD1208_1449, ERK_2440_1713, Mirin_1048, and Selumetinib_1736.

Conclusion

UM in this study was divided into three CNV subtypes, and a model based on eight aneuploidy score-related genes was established to evaluate the prognosis and drug treatment efficacy of UM patients. The current results may have the potential to help the clinical decision-making process for UM management.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286788240123044411
2024-03-19
2025-01-17
Loading full text...

Full text loading...

References

  1. HoutzagersL.E. WierengaA.P.A. RuysA.A.M. LuytenG.P.M. JagerM.J. Iris colour and the risk of developing uveal melanoma.Int. J. Mol. Sci.20202119717210.3390/ijms2119717232998469
    [Google Scholar]
  2. OrtegaM. Fraile-MartínezO. García-HonduvillaN. CocaS. Álvarez-MonM. BujánJ. TeusM. Update on uveal melanoma: Translational research from biology to clinical practice (Review).Int. J. Oncol.20205761262127910.3892/ijo.2020.514033173970
    [Google Scholar]
  3. Piperno-NeumannS. MarianiP. ServoisV. PierronG. Lumbroso-RouicL. MatetA. RodriguesM. CassouxN. Uveal melanoma management for medical oncologists in 2020<br/>Prise en charge du mélanome uvéal en oncologie médicale en 2020.Oncologie202022420321210.32604/oncologie.2020.014102
    [Google Scholar]
  4. BaiH. BoschJ.J. HeindlL.M. Current management of uveal melanoma: A review.Clin. Exp. Ophthalmol.202351548449410.1111/ceo.1421437076276
    [Google Scholar]
  5. LiauS. WangJ.Z. ZagarellaE. PaulusP. DangN.H.Q.H. RawlingT. MurrayM. ZhouF. An update on inflammation in uveal melanoma.Biochimie202321211412210.1016/j.biochi.2023.04.01337105300
    [Google Scholar]
  6. MontazeriK. PattanayakV. SullivanR.J. Tebentafusp in the treatment of metastatic uveal melanoma: Patient selection and special considerations.Drug Des. Devel. Ther.20231733333910.2147/DDDT.S36895436785760
    [Google Scholar]
  7. CarvajalR.D. SaccoJ.J. JagerM.J. EschelmanD.J. Olofsson BaggeR. HarbourJ.W. ChiengN.D. PatelS.P. JoshuaA.M. Piperno-NeumannS. Advances in the clinical management of uveal melanoma.Nat. Rev. Clin. Oncol.20232029911510.1038/s41571‑022‑00714‑136600005
    [Google Scholar]
  8. BarbagalloC. StellaM. BroggiG. RussoA. CaltabianoR. RagusaM. Genetics and RNA regulation of uveal melanoma.Cancers202315377510.3390/cancers1503077536765733
    [Google Scholar]
  9. AnbunathanH. VerstratenR. SinghA.D. HarbourJ.W. BowcockA.M. Integrative copy number analysis of uveal melanoma reveals novel candidate genes involved in tumorigenesis including a tumor suppressor role for PHF10/BAF45a.Clin. Cancer Res.201925165156516610.1158/1078‑0432.CCR‑18‑305231227497
    [Google Scholar]
  10. EwensK.G. KanetskyP.A. Richards-YutzJ. Al-DahmashS. De LucaM.C. BianciottoC.G. ShieldsC.L. GangulyA. Genomic profile of 320 uveal melanoma cases: Chromosome 8p-loss and metastatic outcome.Invest. Ophthalmol. Vis. Sci.20135485721572910.1167/iovs.13‑1219523821189
    [Google Scholar]
  11. Silva-RodríguezP. BandeM. Fernández-DíazD. Lago-BaameiroN. PardoM. José Blanco-TeijeiroM. DomínguezF. LoidiL. PiñeiroA. Role of somatic mutations and chromosomal aberrations in the prognosis of uveal melanoma in a Spanish patient cohort.Acta Ophthalmol.2021997e1077e108910.1111/aos.1476033421325
    [Google Scholar]
  12. DamatoB. DopieralaJ.A. CouplandS.E. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification.Clin. Cancer Res.201016246083609210.1158/1078‑0432.CCR‑10‑207620975103
    [Google Scholar]
  13. DamatoB. DopieralaJ. KlaasenA. van DijkM. SibbringJ. CouplandS.E. Multiplex ligation-dependent probe amplification of uveal melanoma: correlation with metastatic death.Invest. Ophthalmol. Vis. Sci.20095073048305510.1167/iovs.08‑316519182252
    [Google Scholar]
  14. EleuteriA. TaktakA.F.G. CouplandS.E. HeimannH. KaliraiH. DamatoB. Prognostication of metastatic death in uveal melanoma patients: A Markov multi-state model.Comput. Biol. Med.201810215115610.1016/j.compbiomed.2018.09.02430278339
    [Google Scholar]
  15. Vaquero-GarciaJ. LalondeE. EwensK.G. EbrahimzadehJ. Richard-YutzJ. ShieldsC.L. BarreraA. GreenC.J. BarashY. GangulyA. PRiMeUM: A model for predicting risk of metastasis in uveal melanoma.Invest. Ophthalmol. Vis. Sci.201758104096410510.1167/iovs.17‑2225528828481
    [Google Scholar]
  16. AranD. HuZ. ButteA.J. xCell: digitally portraying the tissue cellular heterogeneity landscape.Genome Biol.201718122010.1186/s13059‑017‑1349‑129141660
    [Google Scholar]
  17. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  18. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  19. LangfelderP. HorvathS. WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  20. ShihJ. SarmashghiS. Zhakula-KostadinovaN. ZhangS. GeorgisY. HoytS.H. CuocoM.S. GaoG.F. SpurrL.F. BergerA.C. HaG. RendoV. ShenH. MeyersonM. CherniackA.D. TaylorA.M. BeroukhimR. Cancer aneuploidies are shaped primarily by effects on tumour fitness.Nature2023619797179380010.1038/s41586‑023‑06266‑337380777
    [Google Scholar]
  21. FriedmanJ. HastieT. TibshiraniR. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.201033112210.18637/jss.v033.i0120808728
    [Google Scholar]
  22. AtkinsonE.J. TherneauT.M. An Introduction to Recursive Partitioning Using the RPART RoutinesRochester Mayo Foundation2000
    [Google Scholar]
  23. Archilla-OrtegaA. DomuroC. Martin-LiberalJ. MuñozP. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity.J. Exp. Clin. Cancer Res.20224116210.1186/s13046‑022‑02264‑x35164813
    [Google Scholar]
  24. RobertsonA.G. ShihJ. YauC. GibbE.A. ObaJ. MungallK.L. HessJ.M. UzunangelovV. WalterV. DanilovaL. LichtenbergT.M. KucherlapatiM. KimesP.K. TangM. PensonA. BaburO. AkbaniR. BristowC.A. HoadleyK.A. IypeL. ChangM.T. CherniackA.D. BenzC. MillsG.B. VerhaakR.G.W. GriewankK.G. FelauI. ZenklusenJ.C. GershenwaldJ.E. SchoenfieldL. LazarA.J. Abdel-RahmanM.H. Roman-RomanS. SternM.H. CebullaC.M. WilliamsM.D. JagerM.J. CouplandS.E. EsmaeliB. KandothC. WoodmanS.E. Abdel-RahmanM.H. AkbaniR. AllyA. AumanJ.T. BaburO. BalasundaramM. BaluS. BenzC. BeroukhimR. BirolI. BodenheimerT. BowenJ. BowlbyR. BristowC.A. BrooksD. CarlsenR. CebullaC.M. ChangM.T. CherniackA.D. ChinL. ChoJ. ChuahE. ChudamaniS. CibulskisC. CibulskisK. CopeL. CouplandS.E. DanilovaL. DefreitasT. DemchokJ.A. DesjardinsL. DhallaN. EsmaeliB. FelauI. FergusonM.L. FrazerS. GabrielS.B. Gastier-FosterJ.M. GehlenborgN. GerkenM. GershenwaldJ.E. GetzG. GibbE.A. GriewankK.G. GrimmE.A. HayesD.N. HegdeA.M. HeimanD.I. HelselC. HessJ.M. HoadleyK.A. HobensackS. HoltR.A. HoyleA.P. HuX. HutterC.M. JagerM.J. JefferysS.R. JonesC.D. JonesS.J.M. KandothC. KasaianK. KimJ. KimesP.K. KucherlapatiM. KucherlapatiR. LanderE. LawrenceM.S. LazarA.J. LeeS. LeraasK.M. LichtenbergT.M. LinP. LiuJ. LiuW. LollaL. LuY. IypeL. MaY. MahadeshwarH.S. MarianiO. MarraM.A. MayoM. MeierS. MengS. MeyersonM. MieczkowskiP.A. MillsG.B. MooreR.A. MoseL.E. MungallA.J. MungallK.L. MurrayB.A. NareshR. NobleM.S. ObaJ. PantaziA. ParfenovM. ParkP.J. ParkerJ.S. PensonA. PerouC.M. PihlT. PilarskiR. ProtopopovA. RadenbaughA. RaiK. RamirezN.C. RenX. ReynoldsS.M. RoachJ. RobertsonA.G. Roman-RomanS. RoszikJ. SadeghiS. SaksenaG. SastreX. SchadendorfD. ScheinJ.E. SchoenfieldL. SchumacherS.E. SeidmanJ. SethS. SethiG. ShethM. ShiY. ShieldsC. ShihJ. ShmulevichI. SimonsJ.V. SinghA.D. SipahimalaniP. SkellyT. SofiaH. SolowayM.G. SongX. SternM-H. StuartJ. SunQ. SunH. TamA. TanD. TangM. TangJ. TarnuzzerR. TaylorB.S. ThiessenN. ThorssonV. TseK. UzunangelovV. VeluvoluU. VerhaakR.G.W. VoetD. WalterV. WanY. WangZ. WeinsteinJ.N. WilkersonM.D. WilliamsM.D. WiseL. WoodmanS.E. WongT. WuY. YangL. YangL. YauC. ZenklusenJ.C. ZhangJ. ZhangH. ZmudaE. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma.Cancer Cell2017322204220.e1510.1016/j.ccell.2017.07.00328810145
    [Google Scholar]
  25. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.02520303878
    [Google Scholar]
  26. LiuJ. GuM. XueY. WangQ. RenY. HuangW. Clinical significance of PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in patients with cavitary lung adenocarcinoma.Oncologie202123343945210.32604/oncologie.2021.017220
    [Google Scholar]
  27. AmaroA. GangemiR. PiaggioF. AngeliniG. BarisioneG. FerriniS. PfefferU. The biology of uveal melanoma.Cancer Metastasis Rev.201736110914010.1007/s10555‑017‑9663‑328229253
    [Google Scholar]
  28. BronkhorstI.H.G. VuT.H.K. JordanovaE.S. LuytenG.P.M. BurgS.H. JagerM.J. Different subsets of tumor-infiltrating lymphocytes correlate with macrophage influx and monosomy 3 in uveal melanoma.Invest. Ophthalmol. Vis. Sci.20125395370537810.1167/iovs.11‑928022743317
    [Google Scholar]
  29. HertzbergL. BettsD.R. RaimondiS.C. SchäferB.W. NottermanD.A. DomanyE. IzraeliS. Prediction of chromosomal aneuploidy from gene expression data.Genes Chromosomes Cancer2007461758610.1002/gcc.2039117044051
    [Google Scholar]
  30. KrossaI. StrubT. MartelA. Nahon-EsteveS. LassalleS. HofmanP. BaillifS. BallottiR. BertolottoC. Recent advances in understanding the role of HES6 in cancers.Theranostics20221294374438510.7150/thno.7296635673577
    [Google Scholar]
  31. PandianiC. StrubT. NottetN. CheliY. GambiG. BilleK. HusserC. DalmassoM. BérangerG. LassalleS. MagnoneV. PédeutourF. IrondelleM. MaschiC. Nahon-EstèveS. MartelA. CaujolleJ.P. HofmanP. LeBrigandK. DavidsonI. BaillifS. BarbryP. BallottiR. BertolottoC. Single-cell RNA sequencing reveals intratumoral heterogeneity in primary uveal melanomas and identifies HES6 as a driver of the metastatic disease.Cell Death Differ.20212861990200010.1038/s41418‑020‑00730‑733462406
    [Google Scholar]
  32. DeasyS.K. UeharaR. VodnalaS.K. YangH.H. DassR.A. HuY. LeeM.P. CrouchR.J. HunterK.W. Aicardi-Goutières syndrome gene Rnaseh2c is a metastasis susceptibility gene in breast cancer.PLoS Genet.2019155e100802010.1371/journal.pgen.100802031125342
    [Google Scholar]
  33. YangC.A. HuangH.Y. ChangY.S. LinC.L. LaiI.L. ChangJ.G. DNA-sensing and nuclease gene expressions as markers for colorectal cancer progression.Oncology201792211512410.1159/00045228127988520
    [Google Scholar]
  34. TossettaG. FantoneS. GoteriG. GiannubiloS.R. CiavattiniA. MarzioniD. The role of NQO1 in ovarian cancer.Int. J. Mol. Sci.2023249783910.3390/ijms2409783937175546
    [Google Scholar]
  35. ZhangK. ChenD. MaK. WuX. HaoH. JiangS. NAD(P)H:Quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer.J. Med. Chem.201861166983700310.1021/acs.jmedchem.8b0012429712428
    [Google Scholar]
  36. ChoiS. JangJ.H. KimK.R. Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization.Clin. Exp. Med.201111421922610.1007/s10238‑010‑0130‑521331762
    [Google Scholar]
  37. WangY. XieY. DongB. XueW. ChenS. MitsuoS. ZouH. FengY. MaK. DongQ. CaoJ. ZhuC. The TTYH3/MK5 positive feedback loop regulates tumor progression via GSK3-β/β-catenin signaling in HCC.Int. J. Biol. Sci.202218104053407010.7150/ijbs.7300935844789
    [Google Scholar]
  38. ChenY. LiuR. ChuZ. LeB. ZengH. ZhangX. WuQ. ZhuG. ChenY. LiuY. SunF. LuZ. QiaoY. WangJ. High glucose stimulates proliferative capacity of liver cancer cells possibly via O-GlcNAcylation-dependent transcriptional regulation of GJC1.J. Cell. Physiol.2019234160661810.1002/jcp.2680330078215
    [Google Scholar]
  39. RamadoriG. IorisR.M. VillanyiZ. FirnkesR. PanasenkoO.O. AllenG. KonstantinidouG. ArasE. BrenachotX. BiscottiT. CharollaisA. LuchettiM. BezrukovF. SantinelliA. SamadM. BaldiP. CollartM.A. CoppariR. FKBP10 regulates protein translation to sustain lung cancer growth.Cell Rep.2020301138513863.e610.1016/j.celrep.2020.02.08232187554
    [Google Scholar]
  40. GaoL. LiG.S. LiJ.D. HeJ. ZhangY. ZhouH.F. KongJ.L. ChenG. Identification of the susceptibility genes for COVID-19 in lung adenocarcinoma with global data and biological computation methods.Comput. Struct. Biotechnol. J.2021196229623910.1016/j.csbj.2021.11.02634840672
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286788240123044411
Loading
/content/journals/cmc/10.2174/0109298673286788240123044411
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ciliary body; Copy number variation; drug therapy; prognosis; risk model; uveal melanoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test