Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Purpose

Circadian rhythm-related genes (CRRGs) play essential roles in cancer occurrence and development. However, the prognostic significance of CRRGs in breast cancer (BC) has not been fully elucidated. Our study aimed to develop a prognostic gene signature based on CRRGs that can accurately and stably predict the prognosis of BC.

Methods

The transcriptome data and clinical information for BC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A consensus unsupervised clustering analysis was carried out to investigate the roles of CRRGs in BC. A CRRGs-related prognostic risk model was established by using logistic least absolute shrinkage and selection operator (LASSO) Cox regression and univariate Cox regression analyses. Kaplan-Meier (KM) curves analysis, time-dependent receptor operation characteristics (ROC) curves analysis, and nomogram were plotted to evaluate the predictive efficacy of the model. The relevance of risk score to the immune cell infiltration, tumor burden mutation (TMB), and therapeutic response was assessed.

Results

A risk model comprising six CRRGs (, , , , and ) was constructed and validated, demonstrating an effective predictor for the prognosis of BC. The low-risk group displayed a higher expression of immune checkpoint genes and a lower burden of tumor mutation. Additionally, drug sensitivity analysis demonstrated that the prognostic signature may serve as a potential chemosensitivity predictor.

Conclusion

We established a CRRGs-related risk signature, which is of great value in predicting the prognosis of patients with BC and guiding the treatment for BC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673320179240803071001
2024-09-13
2025-01-17
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. PeartO. Breast intervention and breast cancer treatment options.Radiol. Technol.2015865535M558M25995413
    [Google Scholar]
  4. LowS.K. ZembutsuH. NakamuraY. Breast cancer: The translation of big genomic data to cancer precision medicine.Cancer Sci.2018109349750610.1111/cas.1346329215763
    [Google Scholar]
  5. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑827865536
    [Google Scholar]
  6. RosenkranzK.M. BallmanK. McCallL. KubickyC. CuttinoL. Le-PetrossH. HuntK.K. GiulianoA. Van ZeeK.J. HafftyB. BougheyJ.C. The feasibility of breast-conserving surgery for multiple ipsilateral breast cancer: An initial report from ACOSOG Z11102 (alliance) trial.Ann. Surg. Oncol.201825102858286610.1245/s10434‑018‑6583‑629987605
    [Google Scholar]
  7. DonkerM. van TienhovenG. StraverM.E. MeijnenP. van de VeldeC.J.H. ManselR.E. CataliottiL. WestenbergA.H. KlinkenbijlJ.H.G. OrzalesiL. BoumaW.H. van der MijleH.C.J. NieuwenhuijzenG.A.P. VeltkampS.C. SlaetsL. DuezN.J. de GraafP.W. van DalenT. MarinelliA. RijnaH. SnojM. BundredN.J. MerkusJ.W.S. BelkacemiY. PetignatP. SchinaglD.A.X. CoensC. MessinaC.G.M. BogaertsJ. RutgersE.J.T. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial.Lancet Oncol.201415121303131010.1016/S1470‑2045(14)70460‑725439688
    [Google Scholar]
  8. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials.Lancet2015386100011341135210.1016/S0140‑6736(15)61074‑126211827
    [Google Scholar]
  9. DumontetC. ReichertJ.M. SenterP.D. LambertJ.M. BeckA. Antibody–drug conjugates come of age in oncology.Nat. Rev. Drug Discov.202322864166110.1038/s41573‑023‑00709‑237308581
    [Google Scholar]
  10. ZhangY. ZhangZ. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.Cell. Mol. Immunol.202017880782110.1038/s41423‑020‑0488‑632612154
    [Google Scholar]
  11. GonzalezH. HagerlingC. WerbZ. Roles of the immune system in cancer: from tumor initiation to metastatic progression.Genes Dev.20183219-201267128410.1101/gad.314617.11830275043
    [Google Scholar]
  12. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑017933225800
    [Google Scholar]
  13. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  14. RizzoA. CusmaiA. AcquafreddaS. RinaldiL. PalmiottiG. Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential.Expert Opin. Investig. Drugs202231649549810.1080/13543784.2022.204225235171746
    [Google Scholar]
  15. SchmidP. AdamsS. RugoH.S. SchneeweissA. BarriosC.H. IwataH. DiérasV. HeggR. ImS.A. Shaw WrightG. HenschelV. MolineroL. ChuiS.Y. FunkeR. HusainA. WinerE.P. LoiS. EmensL.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.N. Engl. J. Med.2018379222108212110.1056/NEJMoa180961530345906
    [Google Scholar]
  16. MittendorfE.A. ZhangH. BarriosC.H. SajiS. JungK.H. HeggR. KoehlerA. SohnJ. IwataH. TelliM.L. FerrarioC. PunieK. Penault-LlorcaF. PatelS. DucA.N. Liste-HermosoM. MaiyaV. MolineroL. ChuiS.Y. HarbeckN. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial.Lancet2020396102571090110010.1016/S0140‑6736(20)31953‑X32966830
    [Google Scholar]
  17. MilesD. GligorovJ. AndréF. CameronD. SchneeweissA. BarriosC. XuB. WardleyA. KaenD. AndradeL. SemiglazovV. ReinischM. PatelS. PatreM. MoralesL. PatelS.L. KaulM. BarataT. O’ShaughnessyJ. ZhangQ. XuB. ShaoZ. WangX. GengC. YanX. TongZ. ShenK. YinY. SunT. YangJ. FengJ. YanM. WangY. LiuQ. ZhangS. De LaurentiisM. SantoroA. GuarneriV. ColleoniM. NatoliC. CortesiL. PlacidoS. GianniL. FerrauF. LiviL. ZambelliA. Del MastroL. ToniniG. MontemurroF. BianchiG. PedersiniR. PreteS. AllegriniG. NasoG. ViciP. LoiratD. MailliezA. PriouF. TredanO. DalencF. PerrinC. GligorovJ. Timar DavidM. DohollouN. TeixeiraL. BrocardF. ArnaudA. DelalogeS. SpanoJ-P. MansiL. AndradeL. DamianF. PedriniJ. AleixoS. HeggR. JuniorR. ReinischM. SchmidtM. WenzelC. GrischkeE-M. SchneeweissA. JustM. HarbeckN. SchumacherC. PetersU. FischerD. ForstbauerH. LierschR. WarnerE. BouganimN. DoyleC. Price HillerJ. VandenbergT. PavicM. RobinsonA. Roldan UrgoitiG. CalifarettiN. AlacaciogluA. GumusM. YalcinB. CicinI. KoseF. UygunK. KaplanM. CubukcuE. WardleyA. HarriesM. MilesD. DovalD. GuptaS. MohapatraP. ChatterjeeS. GhadyalpatilN. SinghalM. NagS. AgarwalA. WolfI. Gal YamE. YerushalmiR. PeretzT. FriedG. Ben BaruchN. KatzD. HamiltonE. KayaliF. BrufskyA. TelliM. WrightG. OyolaR. RakowskiT. GraffS. TjulandinS. SemiglazovV. AparicioA. Ruiz BorregoM. MerinoL. Guerra MartinezJ. LopezE. YamashitaT. OhtaniS. InoueK. ItoY. NiikuraN. NakayamaT. SagaraY. YanagitaY. KamadaY. KanekoK. KaenD. NervoA. EniuA. SchenkerM. PriesterP. MelicharB. ZimovjanovaM. SormovaP. SufliarskyJ. KakalejcikM. BelbarakaR. ErrihaniH. Le ThanD. PhamD. AravantinosG. PapadimitriouC. KoumakisG. PapandreouC. PodolskiP. TabaneK. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer.Ann. Oncol.2021328994100410.1016/j.annonc.2021.05.80134219000
    [Google Scholar]
  18. NandaR. ChowL.Q.M. DeesE.C. BergerR. GuptaS. GevaR. PusztaiL. PathirajaK. AktanG. ChengJ.D. KarantzaV. BuisseretL. Pembrolizumab in patients with advanced triple-negative breast cancer: phase ib KEYNOTE-012 study.J. Clin. Oncol.201634212460246710.1200/JCO.2015.64.893127138582
    [Google Scholar]
  19. EmensL.A. Breast cancer immunotherapy: facts and hopes.Clin. Cancer Res.201824351152010.1158/1078‑0432.CCR‑16‑300128801472
    [Google Scholar]
  20. EmensL.A. AdamsS. BarriosC.H. DiérasV. IwataH. LoiS. RugoH.S. SchneeweissA. WinerE.P. PatelS. HenschelV. SwatA. KaulM. MolineroL. PatelS. ChuiS.Y. SchmidP. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis.Ann. Oncol.202132898399310.1016/j.annonc.2021.05.35534272041
    [Google Scholar]
  21. NagayamaA. VidulaN. BardiaA. Novel therapies for metastatic triple-negative breast cancer: spotlight on immunotherapy and antibody-drug conjugates.Oncology202135350524925410.46883/ONC.2021.3505.024933983696
    [Google Scholar]
  22. FerraroE. DragoJ.Z. ModiS. Implementing antibody- drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions.Breast Cancer Res.20212318410.1186/s13058‑021‑01459‑y34380530
    [Google Scholar]
  23. NandiniD. JenniferA. PradipD. Therapeutic strategies for metastatic triple-negative breast cancers: from negative to positive.Pharmaceuticals (Basel)202114545510.3390/ph1405045534065837
    [Google Scholar]
  24. LoiblS. PoortmansP. MorrowM. DenkertC. CuriglianoG. Breast cancer.Lancet2021397102861750176910.1016/S0140‑6736(20)32381‑333812473
    [Google Scholar]
  25. WaksA.G. WinerE.P. Breast cancer treatment.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  26. CirielloG. GatzaM.L. BeckA.H. WilkersonM.D. RhieS.K. PastoreA. ZhangH. McLellanM. YauC. KandothC. BowlbyR. ShenH. HayatS. FieldhouseR. LesterS.C. TseG.M.K. FactorR.E. CollinsL.C. AllisonK.H. ChenY.Y. JensenK. JohnsonN.B. OesterreichS. MillsG.B. CherniackA.D. RobertsonG. BenzC. SanderC. LairdP.W. HoadleyK.A. KingT.A. PerouC.M. AkbaniR. AumanJ.T. BalasundaramM. BaluS. BarrT. BeckA. BenzC. BenzS. BerriosM. BeroukhimR. BodenheimerT. BoiceL. BootwallaM.S. BowenJ. BowlbyR. BrooksD. CherniackA.D. ChinL. ChoJ. ChudamaniS. CirielloG. DavidsenT. DemchokJ.A. DennisonJ.B. DingL. FelauI. FergusonM.L. FrazerS. GabrielS.B. GaoJ.J. Gastier-FosterJ.M. GatzaM.L. GehlenborgN. GerkenM. GetzG. GibsonW.J. HayesD.N. HeimanD.I. HoadleyK.A. HolbrookA. HoltR.A. HoyleA.P. HuH. HuangM. HutterC.M. HwangE.S. JefferysS.R. JonesS.J.M. JuZ. KimJ. LaiP.H. LairdP.W. LawrenceM.S. LeraasK.M. LichtenbergT.M. LinP. LingS. LiuJ. LiuW. LollaL. LuY. MaY. MaglinteD.T. MardisE. MarksJ. MarraM.A. McAllisterC. McLellanM. MengS. MeyersonM. MillsG.B. MooreR.A. MoseL.E. MungallA.J. MurrayB.A. NareshR. NobleM.S. OesterreichS. OlopadeO. ParkerJ.S. PerouC.M. PihlT. SaksenaG. SchumacherS.E. ShawK.R.M. RamirezN.C. RathmellW.K. RhieS.K. RoachJ. RobertsonA.G. SaksenaG. SanderC. ScheinJ.E. SchultzN. ShenH. ShethM. ShiY. ShihJ. ShelleyC.S. ShriverC. SimonsJ.V. SofiaH.J. SolowayM.G. SougnezC. SunC. TarnuzzerR. TiezziD.G. Van Den BergD.J. VoetD. WanY. WangZ. WeinsteinJ.N. WeisenbergerD.J. WilkersonM.D. WilsonR. WiseL. WiznerowiczM. WuJ. WuY. YangL. YauC. ZackT.I. ZenklusenJ.C. ZhangH. ZhangJ. ZmudaE. Comprehensive molecular portraits of invasive lobular breast cancer.Cell2015163250651910.1016/j.cell.2015.09.03326451490
    [Google Scholar]
  27. PashaN. TurnerN.C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment.Nat. Can.20212768069210.1038/s43018‑021‑00229‑135121946
    [Google Scholar]
  28. KoronowskiK.B. Sassone-CorsiP. Communicating clocks shape circadian homeostasis.Science20213716530eabd095110.1126/science.abd095133574181
    [Google Scholar]
  29. TakahashiJ.S. Transcriptional architecture of the mammalian circadian clock.Nat. Rev. Genet.201718316417910.1038/nrg.2016.15027990019
    [Google Scholar]
  30. FuL. KettnerN.M. The circadian clock in cancer development and therapy.Prog. Mol. Biol. Transl. Sci.201311922128210.1016/B978‑0‑12‑396971‑2.00009‑923899600
    [Google Scholar]
  31. Emisoglu-KulahliH. GulS. MorgilH. OzcanO. AygenliF. SelviS. KavakliI.H. OzturkN. Transcriptome analysis of the circadian clock gene BMAL1 deletion with opposite carcinogenic effects.Funct. Integr. Genomics202121111610.1007/s10142‑020‑00757‑633111200
    [Google Scholar]
  32. WilliamsS.R. ZiesD. MullegamaS.V. GrotewielM.S. ElseaS.H. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity.Am. J. Hum. Genet.201290694194910.1016/j.ajhg.2012.04.01322578325
    [Google Scholar]
  33. DaiH. ZhangL. CaoM. SongF. ZhengH. ZhuX. WeiQ. ZhangW. ChenK. The role of polymorphisms in circadian pathway genes in breast tumorigenesis.Breast Cancer Res. Treat.2011127253154010.1007/s10549‑010‑1231‑220978934
    [Google Scholar]
  34. ManouchehriE. TaghipourA. GhavamiV. EbadiA. HomaeiF. Latifnejad RoudsariR. Night-shift work duration and breast cancer risk: an updated systematic review and meta-analysis.BMC Womens Health20212118910.1186/s12905‑021‑01233‑433653334
    [Google Scholar]
  35. XiaoQ. JamesP. BrehenyP. JiaP. ParkY. ZhangD. FisherJ.A. WardM.H. JonesR.R. Outdoor light at night and postmenopausal breast cancer risk in the NIH-AARP diet and health study.Int. J. Cancer202014792363237210.1002/ijc.3301632488897
    [Google Scholar]
  36. LaiK.Y. SarkarC. NiM.Y. CheungL.W.T. GallacherJ. WebsterC. Exposure to light at night (LAN) and risk of breast cancer: A systematic review and meta-analysis.Sci. Total Environ.202176214315910.1016/j.scitotenv.2020.14315933131852
    [Google Scholar]
  37. WardE.M. GermolecD. KogevinasM. McCormickD. VermeulenR. AnisimovV.N. AronsonK.J. BhattiP. CoccoP. CostaG. DormanD.C. FuL. GardeA.H. GuénelP. HansenJ. HärmäM.I. KawaiK. KhizkhinE.A. KnutssonA. LéviF. MorenoC.R.C. PukkalaE. SchernhammerE. TravisR. WatersM. YakubovskayaM. ZeebH. ZhuY. ZienolddinyS. GrosseY. HallA.L. Benbrahim-TallaaL. GirschikJ. BouvardV. El GhissassiF. TurnerM.C. DiverW.R. HercegZ. OlsonN. RowanE.G. RumgayH. GuytonK.Z. Schubauer-BeriganM.K. Carcinogenicity of night shift work.Lancet Oncol.20192081058105910.1016/S1470‑2045(19)30455‑331281097
    [Google Scholar]
  38. HuaX. LongZ.Q. ZhangY.L. WenW. GuoL. XiaW. ZhangW.W. LinH.X. Prognostic value of preoperative systemic immune-inflammation index in breast cancer: A propensity score-matching study.Front. Oncol.20201058010.3389/fonc.2020.0058032373539
    [Google Scholar]
  39. KettnerN.M. VoicuH. FinegoldM.J. CoarfaC. SreekumarA. PutluriN. KatchyC.A. LeeC. MooreD.D. FuL. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis.Cancer Cell201630690992410.1016/j.ccell.2016.10.00727889186
    [Google Scholar]
  40. ChunS.K. FortinB.M. FellowsR.C. HabowskiA.N. VerlandeA. SongW.A. MahieuA.L. LefebvreA.E.Y.T. SterrenbergJ.N. VelezL.M. DigmanM.A. EdwardsR.A. PannunzioN.R. SeldinM.M. WatermanM.L. MasriS. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer.Sci. Adv.2022832eabo238910.1126/sciadv.abo238935947664
    [Google Scholar]
  41. PapagiannakopoulosT. BauerM.R. DavidsonS.M. HeimannM. SubbarajL. BhutkarA. BartlebaughJ. Vander HeidenM.G. JacksT. Circadian rhythm disruption promotes lung tumorigenesis.Cell Metab.201624232433110.1016/j.cmet.2016.07.00127476975
    [Google Scholar]
  42. ChuL.W. TillC. YangB. TangenC.M. GoodmanP.J. YuK. ZhuY. HanS. HoqueA.M. AmbrosoneC. ThompsonI. LeachR. HsingA.W. Circadian genes and risk of prostate cancer in the prostate cancer prevention trial.Mol. Carcinog.201857346246610.1002/mc.2277029318656
    [Google Scholar]
  43. DavisS. MirickD.K. Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle.Cancer Causes Control200617453954510.1007/s10552‑005‑9010‑916596308
    [Google Scholar]
  44. HansenJ. Night shift work and risk of breast cancer.Curr. Environ. Health Rep.20174332533910.1007/s40572‑017‑0155‑y28770538
    [Google Scholar]
  45. SamuelssonL.B. BovbjergD.H. RoeckleinK.A. HallM.H. Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review.Neurosci. Biobehav. Rev.201884354810.1016/j.neubiorev.2017.10.01129032088
    [Google Scholar]
  46. Cordina-DuvergerE. MenegauxF. PopaA. RabsteinS. HarthV. PeschB. BrüningT. FritschiL. GlassD.C. HeyworthJ.S. ErrenT.C. Castaño-VinyalsG. PapantoniouK. EspinosaA. KogevinasM. GrundyA. SpinelliJ.J. AronsonK.J. GuénelP. Night shift work and breast cancer: a pooled analysis of population-based case–control studies with complete work history.Eur. J. Epidemiol.201833436937910.1007/s10654‑018‑0368‑x29464445
    [Google Scholar]
  47. ReszkaE. PrzybekM. MuurlinkO. PepłonskaB. Circadian gene variants and breast cancer.Cancer Lett.201739013714510.1016/j.canlet.2017.01.01228109907
    [Google Scholar]
  48. MocellinS. TropeaS. BennaC. RossiC.R. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.BMC Med.20181612010.1186/s12916‑018‑1010‑129455641
    [Google Scholar]
  49. CadenasC. van de SandtL. EdlundK. LohrM. HellwigB. MarchanR. SchmidtM. RahnenführerJ. OsterH. HengstlerJ.G. Loss of circadian clock gene expression is associated with tumor progression in breast cancer.Cell Cycle201413203282329110.4161/15384101.2014.95445425485508
    [Google Scholar]
  50. DaiW. LiuH. ChenK. XuX. QianD. LuoS. AmosC.I. LeeJ.E. LiX. NanH. LiC. WeiQ. Genetic variants in PDSS1 and SLC16A6 of the ketone body metabolic pathway predict cutaneous melanoma-specific survival.Mol. Carcinog.202059664065010.1002/mc.2319132232919
    [Google Scholar]
  51. McHughD. EisenbergerM. HeathE.I. BruceJ. DanilaD.C. RathkopfD.E. FeldmanJ. SlovinS.F. AnandB. ChuR. LackeyJ. ReynoL. AntonarakisE.S. MorrisM.J. A phase I study of the antibody drug conjugate ASG-5ME, an SLC44A4-targeting antibody carrying auristatin E, in metastatic castration-resistant prostate cancer.Invest. New Drugs20193751052106010.1007/s10637‑019‑00731‑530725389
    [Google Scholar]
  52. MattieM. RaitanoA. MorrisonK. MorrisonK. AnZ. CapoL. VerlinskyA. LeavittM. OuJ. NadellR. AviñaH. GuevaraC. MalikF. MoserR. DunihoS. ColemanJ. LiY. PereiraD.S. DoñateF. JosephI.B.J. Challita-EidP. BenjaminD. StoverD.R. The discovery and preclinical development of ASG-5ME, an antibody–drug conjugate targeting SLC44A4-positive epithelial tumors including pancreatic and prostate cancer.Mol. Cancer Ther.201615112679268710.1158/1535‑7163.MCT‑16‑022527550944
    [Google Scholar]
  53. KangW. ZhangM. WangQ. GuD. HuangZ. WangH. XiangY. XiaQ. CuiZ. JinX. The SLC family are candidate diagnostic and prognostic biomarkers in clear cell renal cell carcinoma.BioMed Res. Int.20202020193294832461965
    [Google Scholar]
  54. QianL. LiL. LiY. LiS. ZhangB. ZhuY. YangB. LncRNA HOTAIR as a ceRNA is related to breast cancer risk and prognosis.Breast Cancer Res. Treat.2023200337539010.1007/s10549‑023‑06982‑437294527
    [Google Scholar]
  55. Savci-HeijinkC.D. HalfwerkH. KosterJ. HorlingsH.M. van de VijverM.J. A specific gene expression signature for visceral organ metastasis in breast cancer.BMC Cancer201919133310.1186/s12885‑019‑5554‑z30961553
    [Google Scholar]
  56. XieQ. XiaoY. JiaS. ZhengJ. DuZ. ChenY. ChenM. LiangY. LinH. ZengD. FABP7 is a potential biomarker to predict response to neoadjuvant chemotherapy for breast cancer.Cancer Cell Int.202020156210.1186/s12935‑020‑01656‑333292226
    [Google Scholar]
  57. BattistaN. BariM. BisognoT. N-acyl amino acids: metabolism, molecular targets, and role in biological processes.Biomolecules201991282210.3390/biom912082231817019
    [Google Scholar]
  58. WalukD.P. SchultzN. HuntM.C. Identification of glycine N -acyltransferase-like 2 (GLYATL2) as a transferase that produces N -acyl glycines in humans.FASEB J.20102482795280310.1096/fj.09‑14855120305126
    [Google Scholar]
  59. WangC. ZhouL. LiS. WeiJ. WangW. ZhouT. LiaoS. WengD. DengD. WengY. WangS. MaD. C4orf7 contributes to ovarian cancer metastasis by promoting cancer cell migration and invasion.Oncol. Rep.201024493393920811673
    [Google Scholar]
  60. AielloI. FedeleM.L.M. RománF. MarpeganL. CaldartC. ChiesaJ.J. GolombekD.A. FinkielsteinC.V. PaladinoN. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation.Sci. Adv.2020642eaaz453010.1126/sciadv.aaz453033055171
    [Google Scholar]
  61. XuanW. KhanF. JamesC.D. HeimbergerA.B. LesniakM.S. ChenP. Circadian regulation of cancer cell and tumor microenvironment crosstalk.Trends Cell Biol.2021311194095010.1016/j.tcb.2021.06.00834272133
    [Google Scholar]
  62. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  63. MarciscanoA.E. AnandasabapathyN. The role of dendritic cells in cancer and anti-tumor immunity.Semin. Immunol.20215210148110.1016/j.smim.2021.10148134023170
    [Google Scholar]
  64. LeeY.S. RadfordK.J. The role of dendritic cells in cancer.Int. Rev. Cell Mol. Biol.201934812317810.1016/bs.ircmb.2019.07.00631810552
    [Google Scholar]
  65. GiorelloM.B. MatasA. MarencoP. DaviesK.M. BorzoneF.R. CalcagnoM.L. García-RivelloH. WernickeA. MartinezL.M. LabovskyV. ChasseingN.A. CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients.Breast Cancer20212861328133910.1007/s12282‑021‑01270‑934240315
    [Google Scholar]
  66. IwamotoM. ShinoharaH. MiyamotoA. OkuzawaM. MabuchiH. NoharaT. GonG. ToyodaM. TanigawaN. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas.Int. J. Cancer20031041929710.1002/ijc.1091512532424
    [Google Scholar]
  67. WangK. ShenT. SiegalG.P. WeiS. The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer.Hum. Pathol.20176911011710.1016/j.humpath.2017.09.01228993275
    [Google Scholar]
  68. MatsumotoH. ThikeA.A. LiH. YeongJ. KooS. DentR.A. TanP.H. IqbalJ. Increased CD4 and CD8- positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer.Breast Cancer Res. Treat.2016156223724710.1007/s10549‑016‑3743‑x26960711
    [Google Scholar]
  69. Downs-CannerS.M. MeierJ. VincentB.G. SerodyJ.S. B cell function in the tumor microenvironment.Annu. Rev. Immunol.202240116919310.1146/annurev‑immunol‑101220‑01560335044794
    [Google Scholar]
  70. HanahanD. CoussensL.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment.Cancer Cell201221330932210.1016/j.ccr.2012.02.02222439926
    [Google Scholar]
  71. LiZ. QiuY. LuW. JiangY. WangJ. Immunotherapeutic interventions of triple negative breast cancer.J. Transl. Med.201816114710.1186/s12967‑018‑1514‑729848327
    [Google Scholar]
  72. PfailJ.L. KatimsA.B. AlerasoolP. SfakianosJ.P. Immunotherapy in non-muscle-invasive bladder cancer: current status and future directions.World J. Urol.20213951319132910.1007/s00345‑020‑03474‑833057888
    [Google Scholar]
  73. KeenanT.E. TolaneyS.M. Role of immunotherapy in triple-negative breast cancer.J. Natl. Compr. Canc. Netw.202018447948910.6004/jnccn.2020.755432259782
    [Google Scholar]
  74. LiY. ZhangH. MerkherY. ChenL. LiuN. LeonovS. ChenY. Recent advances in therapeutic strategies for triple-negative breast cancer.J. Hematol. Oncol.202215112110.1186/s13045‑022‑01341‑036038913
    [Google Scholar]
  75. PensonA. CamachoN. ZhengY. VargheseA.M. Al-AhmadieH. RazaviP. ChandarlapatyS. VallejoC.E. VakianiE. GilewskiT. RosenbergJ.E. ShadyM. TsuiD.W.Y. RealesD.N. AbeshouseA. SyedA. ZehirA. SchultzN. LadanyiM. SolitD.B. KlimstraD.S. HymanD.M. TaylorB.S. BergerM.F. Development of genome-derived tumor type prediction to inform clinical cancer care.JAMA Oncol.202061849110.1001/jamaoncol.2019.398531725847
    [Google Scholar]
  76. DasP.K. PillaiS. RakibM.A. KhanamJ.A. GopalanV. LamA.K.Y. IslamF. Plasticity of cancer stem cell: origin and role in disease progression and therapy resistance.Stem Cell Rev. Rep.202016239741210.1007/s12015‑019‑09942‑y31965409
    [Google Scholar]
  77. ShibueT. WeinbergR.A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications.Nat. Rev. Clin. Oncol.2017141061162910.1038/nrclinonc.2017.4428397828
    [Google Scholar]
  78. SparanoJ.A. GrayR.J. MakowerD.F. PritchardK.I. AlbainK.S. HayesD.F. GeyerC.E.Jr DeesE.C. GoetzM.P. OlsonJ.A.Jr LivelyT. BadveS.S. SaphnerT.J. WagnerL.I. WhelanT.J. EllisM.J. PaikS. WoodW.C. RavdinP.M. KeaneM.M. Gomez MorenoH.L. ReddyP.S. GogginsT.F. MayerI.A. BrufskyA.M. ToppmeyerD.L. KaklamaniV.G. BerenbergJ.L. AbramsJ. SledgeG.W.Jr. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer.N. Engl. J. Med.2018379211112110.1056/NEJMoa180471029860917
    [Google Scholar]
  79. PaikS. ShakS. TangG. KimC. BakerJ. CroninM. BaehnerF.L. WalkerM.G. WatsonD. ParkT. HillerW. FisherE.R. WickerhamD.L. BryantJ. WolmarkN. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.N. Engl. J. Med.2004351272817282610.1056/NEJMoa04158815591335
    [Google Scholar]
  80. PaikS. TangG. ShakS. KimC. BakerJ. KimW. CroninM. BaehnerF.L. WatsonD. BryantJ. CostantinoJ.P. GeyerC.E.Jr WickerhamD.L. WolmarkN. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer.J. Clin. Oncol.200624233726373410.1200/JCO.2005.04.798516720680
    [Google Scholar]
  81. ZhangH. YuX. YangJ. HeG. ZhangX. WuX. ShenL. ZhouY. ChengX. LiuX. ZhuY. Comprehensive analysis of pyroptotic gene prognostic signatures associated with tumor immune microenvironment and genomic mutation in breast cancer.Front. Immunol.20221393377910.3389/fimmu.2022.93377936090993
    [Google Scholar]
  82. JiangM. WuX. BaoS. WangX. QuF. LiuQ. HuangX. LiW. TangJ. YinY. Immunometabolism characteristics and a potential prognostic risk model associated with TP53 mutations in breast cancer.Front. Immunol.20221394646810.3389/fimmu.2022.94646835935965
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673320179240803071001
Loading
/content/journals/cmc/10.2174/0109298673320179240803071001
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test