Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Traditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely , , , , and have been commonly used to treat patients with Alzheimer’s disease (AD). However, only a few studies have investigated the effects of these five TOMs on tau pathology.

Objective

This study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation.

Methods

Immunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively.

Results

The five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. inhibited the aggregation of tau and promoted the dissociation of tau aggregates. and attenuated tau-induced neurotoxicity in HT22 cells. In addition, , , , and reduced tau-induced pro-inflammatory cytokine levels in BV2 cells.

Conclusion

Our results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that is suitable for treating AD patients with tau pathology.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673295901240311072440
2024-03-13
2025-04-22
The full text of this item is not currently available.

References

  1. GaoY.L. WangN. SunF.R. CaoX.P. ZhangW. YuJ.T. Tau in neurodegenerative disease.Ann. Transl. Med.201861017510.21037/atm.2018.04.2329951497
    [Google Scholar]
  2. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  3. IşıkM. TunçA. DuranH.E. NaldanM.E. YılmazA. KoçakM.N. BeydemirŞ. Evaluation of the relationship among gene expressions and enzyme activities with antioxidant role and presenilin 1 expression in Alzheimer’s disease.J. Cell. Mol. Med.202327213388339410.1111/jcmm.1795337772794
    [Google Scholar]
  4. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  5. GyparakiM.T. ArabA. SorokinaE.M. Santiago-RuizA.N. BohrerC.H. XiaoJ. LakadamyaliM. Tau forms oligomeric complexes on microtubules that are distinct from tau aggregates.Proc. Natl. Acad. Sci.202111819e202146111810.1073/pnas.202146111833952699
    [Google Scholar]
  6. EckermannK. MocanuM.M. KhlistunovaI. BiernatJ. NissenA. HofmannA. SchönigK. BujardH. HaemischA. MandelkowE. ZhouL. RuneG. MandelkowE.M. The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy.J. Biol. Chem.200728243317553176510.1074/jbc.M70528220017716969
    [Google Scholar]
  7. Spires-JonesT.L. StoothoffW.H. de CalignonA. JonesP.B. HymanB.T. Tau pathophysiology in neurodegeneration: A tangled issue.Trends Neurosci.200932315015910.1016/j.tins.2008.11.00719162340
    [Google Scholar]
  8. GendronT.F. PetrucelliL. The role of tau in neurodegeneration.Mol. Neurodegener.2009411310.1186/1750‑1326‑4‑1319284597
    [Google Scholar]
  9. BallatoreC. LeeV.M.Y. TrojanowskiJ.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.Nat. Rev. Neurosci.20078966367210.1038/nrn219417684513
    [Google Scholar]
  10. DidonnaA. Tau at the interface between neurodegeneration and neuroinflammation.Genes Immun.202021528830010.1038/s41435‑020‑00113‑533011744
    [Google Scholar]
  11. DasR. BalmikA.A. ChinnathambiS. Melatonin reduces GSK3β-mediated tau phosphorylation, enhances Nrf2 nuclear translocation and anti-inflammation.ASN Neuro20201210.1177/175909142098120433342257
    [Google Scholar]
  12. DongY. LiangF. HuangL. FangF. YangG. TanziR.E. ZhangY. QuanQ. XieZ. The anesthetic sevoflurane induces tau trafficking from neurons to microglia.Commun. Biol.20214156010.1038/s42003‑021‑02047‑833980987
    [Google Scholar]
  13. PereaJ.R. ÁvilaJ. BolósM. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway.Exp. Neurol.2018310142110.1016/j.expneurol.2018.08.00730138606
    [Google Scholar]
  14. BraakH. AlafuzoffI. ArzbergerT. KretzschmarH. TrediciD.K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry.Acta Neuropathol.2006112438940410.1007/s00401‑006‑0127‑z16906426
    [Google Scholar]
  15. XieL. WisseL.E.M. DasS.R. VergnetN. DongM. IttyerahR. de FloresR. YushkevichP.A. WolkD.A. Longitudinal atrophy in early Braak regions in preclinical Alzheimer’s disease.Hum. Brain Mapp.202041164704471710.1002/hbm.2515132845545
    [Google Scholar]
  16. JosephsK.A. MartinP.R. WeigandS.D. TosakulwongN. BuciucM. MurrayM.E. PetrucelliL. SenjemM.L. SpychallaA.J. KnopmanD.S. BoeveB.F. PetersenR.C. ParisiJ.E. DicksonD.W. JackC.R.Jr WhitwellJ.L. Protein contributions to brain atrophy acceleration in Alzheimer’s disease and primary age-related tauopathy.Brain2020143113463347610.1093/brain/awaa29933150361
    [Google Scholar]
  17. BejaninA. SchonhautD.R. La JoieR. KramerJ.H. BakerS.L. SosaN. AyaktaN. CantwellA. JanabiM. LauriolaM. O’NeilJ.P. Gorno-TempiniM.L. MillerZ.A. RosenH.J. MillerB.L. JagustW.J. RabinoviciG.D. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease.Brain2017140123286330010.1093/brain/awx24329053874
    [Google Scholar]
  18. SchöllM. LockhartS.N. SchonhautD.R. O’NeilJ.P. JanabiM. OssenkoppeleR. BakerS.L. VogelJ.W. FariaJ. SchwimmerH.D. RabinoviciG.D. JagustW.J. PET imaging of Tau deposition in the aging human brain.Neuron201689597198210.1016/j.neuron.2016.01.02826938442
    [Google Scholar]
  19. SchwarzA.J. YuP. MillerB.B. ShcherbininS. DicksonJ. NavitskyM. JoshiA.D. DevousM.D.Sr MintunM.S. Regional profiles of the candidate tau PET ligand 18 F-AV-1451 recapitulate key features of Braak histopathological stages.Brain201613951539155010.1093/brain/aww02326936940
    [Google Scholar]
  20. CongdonE.E. JiC. TetlowA.M. JiangY. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions.Nat. Rev. Neurol.2023191271573610.1038/s41582‑023‑00883‑237875627
    [Google Scholar]
  21. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z29895964
    [Google Scholar]
  22. MillerV.M. GouvionC.M. DavidsonB.L. PaulsonH.L. Targeting Alzheimer’s disease genes with RNA interference: An efficient strategy for silencing mutant alleles.Nucleic Acids Res.200432266166810.1093/nar/gkh20814754988
    [Google Scholar]
  23. CisekK. CooperG. HusebyC. KuretJ. Structure and mechanism of action of tau aggregation inhibitors.Curr. Alzheimer Res.2014111091892710.2174/156720501166614110715033125387336
    [Google Scholar]
  24. SigurdssonE.M. Tau immunotherapies for Alzheimer’s disease and related tauopathies: Progress and potential pitfalls1.J. Alzheimers Dis.201864s1S555S56510.3233/JAD‑17993729865056
    [Google Scholar]
  25. KargboR.B. Treatment of Alzheimer’s by PROTAC-Tau protein degradation.ACS Med. Chem. Lett.201910569970010.1021/acsmedchemlett.9b0008331097984
    [Google Scholar]
  26. ZhangB. CarrollJ. TrojanowskiJ.Q. YaoY. IbaM. PotuzakJ.S. HoganA.M.L. XieS.X. BallatoreC. SmithA.B.III LeeV.M.Y. BrundenK.R. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice.J. Neurosci.201232113601361110.1523/JNEUROSCI.4922‑11.201222423084
    [Google Scholar]
  27. Bartolomé-NebredaJ.M. TrabancoA.A. VelterA.I. BuijnstersP. O-GlcNAcase inhibitors as potential therapeutics for the treatment of Alzheimer’s disease and related tauopathies: analysis of the patent literature.Expert Opin. Ther. Pat.202131121117115410.1080/13543776.2021.194724234176417
    [Google Scholar]
  28. HamanoT. ShirafujiN. YenS.H. YoshidaH. KanaanN.M. HayashiK. IkawaM. YamamuraO. FujitaY. KuriyamaM. NakamotoY. Rho-kinase ROCK inhibitors reduce oligomeric tau protein.Neurobiol. Aging202089415410.1016/j.neurobiolaging.2019.12.00931982202
    [Google Scholar]
  29. WilcockG.K. GauthierS. FrisoniG.B. JiaJ. HardlundJ.H. MoebiusH.J. BenthamP. KookK.A. SchelterB.O. WischikD.J. DavisC.S. StaffR.T. VuksanovicV. AhearnT. BracoudL. ShamsiK. MarekK. SeibylJ. RiedelG. StoreyJ.M.D. HarringtonC.R. WischikC.M. Potential of low dose leuco-methylthioninium bis(Hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: Cohort analysis as modified primary outcome in a phase III clinical trial.J. Alzheimers Dis.201761143545710.3233/JAD‑17056029154277
    [Google Scholar]
  30. AnderssonC.R. FalsigJ. StavenhagenJ.B. ChristensenS. KartbergF. RosenqvistN. FinsenB. PedersenJ.T. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes.Sci. Rep.201991465810.1038/s41598‑019‑41105‑430874605
    [Google Scholar]
  31. GauthierS. BoxerA. KnopmanD. SimsJ. DoodyR. AisenP. IwatsuboT. BatemanR. VellasB. Therapeutic targets for Alzheimer’s disease: Amyloid vs. non-amyloid. Where does consensus lie today? an CTAD task force report.J. Prev. Alzheimers Dis.20229223123535542994
    [Google Scholar]
  32. JeonS.G. SongE.J. LeeD. ParkJ. NamY. KimJ. MoonM. Traditional oriental medicines and Alzheimer’s disease.Aging Dis.201910230732810.14336/AD.2018.032831435482
    [Google Scholar]
  33. SunZ.K. YangH.Q. ChenS.D. Traditional Chinese medicine: A promising candidate for the treatment of Alzheimer’s disease.Transl. Neurodegener.201321610.1186/2047‑9158‑2‑623445907
    [Google Scholar]
  34. WangX. SongR. LuW. LiuZ. WangL. ZhuX. LiuY. SunZ. LiJ. LiX. YXQN reduces Alzheimer’s disease-like pathology and cognitive decline in APPswePS1dE9 transgenic mice.Front. Aging Neurosci.2017915710.3389/fnagi.2017.0015728603494
    [Google Scholar]
  35. ZhangY. GuoK. ZhangP. ZhangM. LiX. ZhouS. SunH. WangW. WangH. HuY. Exploring the mechanism of YangXue QingNao Wan based on network pharmacology in the treatment of Alzheimer’s disease.Front. Genet.20221394220310.3389/fgene.2022.94220336105078
    [Google Scholar]
  36. KimS. NamY. ShinS.J. PrajapatiR. ShinS.M. KimM.J. soo KimH. LeemS.H. KimT.J. ParkY.H. KimJ.J. ChoiJ.S. MoonM. Dual modulators of aggregation and dissociation of amyloid beta and tau: In vitro, in vivo, and in silico studies of Uncaria rhynchophylla and its bioactive components.Biomed. Pharmacother.202215611386510.1016/j.biopha.2022.11386536242849
    [Google Scholar]
  37. ShinS.J. ParkY.H. JeonS.G. KimS. NamY. OhS.M. LeeY.Y. MoonM. Red ginseng inhibits tau aggregation and promotes tau dissociation in vitro.Oxid. Med. Cell. Longev.2020202011210.1155/2020/782984232685100
    [Google Scholar]
  38. HuoX. GuY. ZhangY. The discovery of multi-target compounds with anti-inflammation activity from traditional Chinese medicine by TCM-target effects relationship spectrum.J. Ethnopharmacol.202229311528910.1016/j.jep.2022.11528935427724
    [Google Scholar]
  39. LiL. ZhangL. YangC. Multi-target strategy and experimental studies of traditional Chinese medicine for Alzheimer’s disease therapy.Curr. Top. Med. Chem.201516553754810.2174/156802661566615081314400326268330
    [Google Scholar]
  40. XueT. Synergy in traditional Chinese medicine.Lancet Oncol.2016172e3910.1016/S1470‑2045(15)00557‑426868345
    [Google Scholar]
  41. YanH. FengL. LiM. The role of traditional chinese medicine natural products in β-amyloid deposition and tau protein hyperphosphorylation in Alzheimer’s disease.Drug Des. Devel. Ther.2023173295332310.2147/DDDT.S38061238024535
    [Google Scholar]
  42. YuanH. MaQ. CuiH. LiuG. ZhaoX. LiW. PiaoG. How can synergism of traditional medicines benefit from network pharmacology?Molecules2017227113510.3390/molecules2207113528686181
    [Google Scholar]
  43. ZhouX. SetoS.W. ChangD. KiatH. Razmovski-NaumovskiV. ChanK. BensoussanA. Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research.Front. Pharmacol.2016720110.3389/fphar.2016.0020127462269
    [Google Scholar]
  44. KimB-G. KimJ-W. KimH-T. ChungK-C. WhangW-W. The effects on Jowiseungchungtang of patients with early DAT using auditory ERP and K-DRS.J. Orient. Neurosci.20031424359
    [Google Scholar]
  45. ShinS. JeongY. JeonS. KimS. LeeS. NamY. ParkY. KimD. LeeY. ChoiH. KimJ. KimJ.J. MoonM. Jowiseungchungtang inhibits amyloid-β aggregation and amyloid-β-mediated pathology in 5XFAD mice.Int. J. Mol. Sci.20181912402610.3390/ijms1912402630551564
    [Google Scholar]
  46. ShinS.J. JeongY. JeonS.G. KimS. LeeS. ChoiH.S. ImC.S. KimS.H. KimS.H. ParkJ.H. KimJ. KimJ.J. MoonM. Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice.Neurochem. Int.201812111412410.1016/j.neuint.2018.10.00330291956
    [Google Scholar]
  47. HuangD.S. YuY.C. WuC.H. LinJ.Y. Protective effects of wogonin against Alzheimer’s disease by inhibition of amyloidogenic pathway.Evid. Based Complement. Alternat. Med.2017201711310.1155/2017/354516928680449
    [Google Scholar]
  48. XianY.F. LinZ.X. MaoQ.Q. HuZ. ZhaoM. CheC.T. IpS.P. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity.Evid. Based Complement. Alternat. Med.201220121810.1155/2012/80262522778778
    [Google Scholar]
  49. LiH. KangT. QiB. KongL. JiaoY. CaoY. ZhangJ. YangJ. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D -galactose/AlCl 3 inducing rats model of Alzheimer’s disease.J. Ethnopharmacol.201617916216910.1016/j.jep.2015.12.02026721223
    [Google Scholar]
  50. HaqueM.M. KimD. YuY.H. LimS. KimD.J. ChangY.T. HaH.H. KimY.K. Inhibition of tau aggregation by a rosamine derivative that blocks tau intermolecular disulfide cross-linking.Amyloid201421318519010.3109/13506129.2014.92910324919397
    [Google Scholar]
  51. LimS. HaqueM.M. KimD. KimD.J. KimY.K. Cell-based models to investigate tau aggregation.Comput. Struct. Biotechnol. J.20141220-2171310.1016/j.csbj.2014.09.01125505502
    [Google Scholar]
  52. SoedaY. SaitoM. MaedaS. IshidaK. NakamuraA. KojimaS. TakashimaA. Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: A plausible key to understanding failure of a clinical trial for Alzheimer’s disease.J. Alzheimers Dis.20196841677168610.3233/JAD‑18100130909223
    [Google Scholar]
  53. ViramontesL.N.I. CórdobaC.B.B. TorresO.M.Á. HarringtonC.R. FierroV.I. OrtízG.P. RamírezG.L. de la CruzF. AlejandroH.M. RoblesM.S. BallesterosG.E. HerreroP.M. MuñozL.J. PHF-core tau as the potential initiating event for tau pathology in alzheimer’s disease.Front. Cell. Neurosci.20201424710.3389/fncel.2020.0024733132840
    [Google Scholar]
  54. HorieK. BarthélemyN.R. MallipeddiN. LiY. FranklinE.E. PerrinR.J. BatemanR.J. SatoC. Regional correlation of biochemical measures of amyloid and tau phosphorylation in the brain.Acta Neuropathol. Commun.20208114910.1186/s40478‑020‑01019‑z32854776
    [Google Scholar]
  55. FoidlB.M. HumpelC. Differential hyperphosphorylation of Tau-S199, -T231 and -S396 in organotypic brain slices of alzheimer mice. A model to study early tau hyperphosphorylation using okadaic acid.Front. Aging Neurosci.20181011310.3389/fnagi.2018.0011329725295
    [Google Scholar]
  56. ShenX.Y. LuoT. LiS. TingO.Y. HeF. XuJ. WangH.Q. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+-calpain-p25-CDK5 pathway in HT22 cells.Int. J. Mol. Med.20184121138114629207020
    [Google Scholar]
  57. GongC.X. IqbalK. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease.Curr. Med. Chem.200815232321232810.2174/09298670878590911118855662
    [Google Scholar]
  58. NieznanskaH. BoykoS. DecR. RedowiczM.J. DzwolakW. NieznanskiK. Neurotoxicity of oligomers of phosphorylated Tau protein carrying tauopathy-associated mutation is inhibited by prion protein.Biochim. Biophys. Acta Mol. Basis Dis.202118671116620910.1016/j.bbadis.2021.16620934246750
    [Google Scholar]
  59. ZhaoJ. HuventI. LippensG. EliezerD. ZhangA. LiQ. TessierP. LinhardtR.J. ZhangF. WangC. Glycan determinants of heparin-tau interaction.Biophys. J.2017112592193210.1016/j.bpj.2017.01.02428297651
    [Google Scholar]
  60. CowanC.M. MudherA. Are tau aggregates toxic or protective in tauopathies?Front. Neurol.2013411410.3389/fneur.2013.0011423964266
    [Google Scholar]
  61. GersonJ.E. MudherA. KayedR. Potential mechanisms and implications for the formation of tau oligomeric strains.Crit. Rev. Biochem. Mol. Biol.201651648249610.1080/10409238.2016.122625127650389
    [Google Scholar]
  62. DongY. YuH. LiX. BianK. ZhengY. DaiM. FengX. SunY. HeY. YuB. ZhangH. WuJ. YuX. WuH. KongW. Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease.J. Neuroinflammation202219120510.1186/s12974‑022‑02567‑y35971179
    [Google Scholar]
  63. MengJ.X. ZhangY. SamanD. HaiderA.M. DeS. SangJ.C. BrownK. JiangK. HumphreyJ. JulianL. HidariE. LeeS.F. BalmusG. FlotoR.A. BryantC.E. BeneschJ.L.P. YeY. KlenermanD. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses.Nat. Commun.2022131269210.1038/s41467‑022‑30461‑x35577786
    [Google Scholar]
  64. ChoS-H. KimJ-W. KimH-T. ChungK-C. WhangW-W. A study of jowiseungchungtang in patients with mild dementia of Alzheimer type.J. Orient. Neurosci.20031411726
    [Google Scholar]
  65. HsuY.L. KuoP.L. TzengT.F. SungS.C. YenM.H. LinL.T. LinC.C. Huang-lian-jie-du-tang, a traditional Chinese medicine prescription, induces cell-cycle arrest and apoptosis in human liver cancer cells in vitro and in vivo.J. Gastroenterol. Hepatol.2008237pt2e290e29910.1111/j.1440‑1746.2008.05390.x18522681
    [Google Scholar]
  66. MaZ. OtsuyamaK. LiuS. AbrounS. IshikawaH. TsuyamaN. ObataM. LiF.J. ZhengX. MakiY. MiyamotoK. KawanoM.M. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells.Blood200510583312331810.1182/blood‑2004‑10‑391515626742
    [Google Scholar]
  67. JunX. FuP. LeiY. ChengP. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC.Chin. Med.20181315910.1186/s13020‑018‑0216‑730505341
    [Google Scholar]
  68. ZhouX. ZhangY. JiangY. ZhouC. LingY. Poria cocos polysaccharide attenuates damage of nervus in Alzheimer’s disease rat model induced by D-galactose and aluminum trichloride.Neuroreport202132872773710.1097/WNR.000000000000164833913927
    [Google Scholar]
  69. XinX.L. YuZ.L. TianX.G. WeiJ.C. WangC. HuoX.K. NingJ. FengL. SunC.P. DengS. ZhangB-J. ZhangH-L. ZhaoX-Y. FanG-J. Phenylpropanoid amides from Alisma orientalis and their protective effects against H2O2 -induced damage in SH-SY5Y cells.Phytochem. Lett.201721465010.1016/j.phytol.2017.05.027
    [Google Scholar]
  70. LeeS.M. YoonM.Y. ParkH.R. Protective effects of Paeonia lactiflora pall on hydrogen peroxide-induced apoptosis in PC12 cells.Biosci. Biotechnol. Biochem.20087251272127710.1271/bbb.7075618460804
    [Google Scholar]
  71. BaekI-S. ParkC-S. ParkC-G. The effects of Cnidium officinale extract on the ischemic stroke and oxidative neural damage in ratsbrain.Korea J. Herbolog.20031843737
    [Google Scholar]
  72. SowndhararajanK. KimS. Neuroprotective and cognitive enhancement potentials of Angelica gigas nakai root: A review.Sci. Pharm.20178522110.3390/scipharm8502002128452965
    [Google Scholar]
  73. KangS.Y. LeeK.Y. KooK.A. YoonJ.S. LimS.W. KimY.C. SungS.H. ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice.Life Sci.200576151691170510.1016/j.lfs.2004.07.02915698848
    [Google Scholar]
  74. SeoJ.S. JungE.Y. KimJ.H. LyuY.S. HanP.L. KangH.W. A modified preparation (LMK03) of the oriental medicine Jangwonhwan reduces Aβ1–42 level in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease.J. Ethnopharmacol.2010130357858510.1016/j.jep.2010.05.05520669372
    [Google Scholar]
  75. SeoJ.S. YunJ.H. BaekI.S. LeemY.H. KangH.W. ChoH.K. LyuY.S. SonH.J. HanP.L. Oriental medicine Jangwonhwan reduces Aβ(1–42) level and β-amyloid deposition in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease.J. Ethnopharmacol.2010128120621210.1016/j.jep.2010.01.01420079417
    [Google Scholar]
  76. SongM.D. KimD.H. KimJ.M. LeeH.E. ParkS.J. RyuJ.H. LewJ.H. Danggui-Jakyak-San ameliorates memory impairment and increase neurogenesis induced by transient forebrain ischemia in mice.BMC Complement. Altern. Med.201313132410.1186/1472‑6882‑13‑32424261472
    [Google Scholar]
  77. HwangD.S. KimN. ChoiJ.G. KimH.G. KimH. OhM.S. Dangguijakyak-san ameliorates memory deficits in ovariectomized mice by upregulating hippocampal estrogen synthesis.BMC Complement. Altern. Med.201717150110.1186/s12906‑017‑2015‑629178947
    [Google Scholar]
  78. ZhangZ. ZhaoR. QiJ. WenS. TangY. WangD. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons.J. Neurosci. Res.201189343744710.1002/jnr.2256321259330
    [Google Scholar]
  79. HuangS.H. LinC.M. ChiangB.H. Protective effects of Angelica sinensis extract on amyloid β-peptide-induced neurotoxicity.Phytomedicine200815971072110.1016/j.phymed.2008.02.02218448320
    [Google Scholar]
  80. DuanM.H. WangL.N. JiangY.H. PeiY.Y. GuanD.D. QiuZ.D. Angelica sinensis reduced A β -induced memory impairment in rats.J. Drug Target.201624434034710.3109/1061186X.2015.107784826821843
    [Google Scholar]
  81. SunX. LiS. XuL. WangH. MaZ. FuQ. QuR. MaS. Paeoniflorin ameliorates cognitive dysfunction via regulating SOCS2/IRS-1 pathway in diabetic rats.Physiol. Behav.201717416216910.1016/j.physbeh.2017.03.02028322909
    [Google Scholar]
  82. MaX.H. DuanW.J. MoY.S. ChenJ.L. LiS. ZhaoW. YangL. MiS.Q. MaoX.L. WangH. WangQ. Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3β pathway in SH-SY5Y cells.Brain Res.2018169011110.1016/j.brainres.2018.03.02229596798
    [Google Scholar]
  83. DurairajanS.S.K. LiuL.F. LuJ.H. ChenL.L. YuanQ. ChungS.K. HuangL. LiX.S. HuangJ.D. LiM. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model.Neurobiol. Aging201233122903291910.1016/j.neurobiolaging.2012.02.01622459600
    [Google Scholar]
  84. ZhouJ. ZhouL. HouD. TangJ. SunJ. BondyS.C. Paeonol increases levels of cortical cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer’s disease.Brain Res.2011138814114710.1016/j.brainres.2011.02.06421377451
    [Google Scholar]
  85. FujiwaraH. TabuchiM. YamaguchiT. IwasakiK. FurukawaK. SekiguchiK. IkarashiY. KudoY. HiguchiM. SaidoT.C. MaedaS. TakashimaA. HaraM. YaegashiN. KaseY. AraiH. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta- O -galloyl-β- d -glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo.J. Neurochem.200910961648165710.1111/j.1471‑4159.2009.06069.x19457098
    [Google Scholar]
  86. LeeK.Y. SungS.H. KimS.H. JangY.P. OhT.H. KimY.C. Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice.Arch. Pharm. Res.200932567768310.1007/s12272‑009‑1505‑619471881
    [Google Scholar]
  87. HuangJ.Z. WuJ. XiangS. ShengS. JiangY. YangZ. HuaF. Catalpol preserves neural function and attenuates the pathology of Alzheimer’s disease in mice.Mol. Med. Rep.201613149149610.3892/mmr.2015.449626531891
    [Google Scholar]
  88. WangZ. LiuQ. ZhangR. LiuS. XiaZ. HuY. Catalpol ameliorates beta amyloid–induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors.Neuroscience200916341363137210.1016/j.neuroscience.2009.07.04119635525
    [Google Scholar]
  89. YuH. OhhashiK. TanakaT. SaiA. InoueM. HirataY. KiuchiK. Rehmannia glutinosa induces glial cell line-derived neurotrophic factor gene expression in astroglial cells via cPKC and ERK1/2 pathways independently.Pharmacol. Res.2006541394510.1016/j.phrs.2006.01.01416600621
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673295901240311072440
Loading
/content/journals/cmc/10.2174/0109298673295901240311072440
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test