Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally.

Methods

Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. and techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-][1,2,4]triazoles against the SARS-CoV-2 spike protein.

Results

Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds (91.83%), (89.75%), (87.69%), (86.60%), (85.40%), (84.70%), (84.70%), (83.40%), (82.60%), (81.90%), while compounds and exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced , which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function.

Conclusion

The combined and investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673323284240911052131
2024-09-23
2025-06-28
Loading full text...

Full text loading...

References

  1. KimJ.Y. KimY.I. ParkS.J. KimI.K. ChoiY.K. KimS.H. Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein.Int. J. Antimicrob. Agents201852573073210.1016/j.ijantimicag.2018.05.00329772395
    [Google Scholar]
  2. MousavizadehL. GhasemiS. Genotype and phenotype of COVID-19: Their roles in pathogenesis.J. Microbiol. Immunol. Infect.202154215916310.1016/j.jmii.2020.03.02232265180
    [Google Scholar]
  3. VankadariN. KetavarapuV. MitnalaS. VishnubotlaR. ReddyD.N. GhosalD. Structure of human TMPRSS2 in complex with SARS-CoV-2 spike glycoprotein and implications for potential therapeutics.J. Phys. Chem. Lett.202213235324533310.1021/acs.jpclett.2c0096735675654
    [Google Scholar]
  4. YadavR. HasanS. MahatoS. CelikI. MaryY.S. KumarA. DhamijaP. SharmaA. ChoudharyN. ChaudharyP.K. KushwahA.S. ChaudharyJ.K. Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2.J. Mol. Liq.202134211694210.1016/j.molliq.2021.11694234305216
    [Google Scholar]
  5. ZawilskaJ.B. LagodzinskiA. BerezinskaM. COVID-19: from the structure and replication cycle of SARS-CoV-2 to its disease symptoms and treatment.J. Physiol. Pharmacol.202172447950134987123
    [Google Scholar]
  6. SohagA.A.M. HannanM.A. RahmanS. HossainM. HasanM. KhanM.K. KhatunA. DashR. UddinM.J. Revisiting potential druggable targets against SARS-CoV -2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review.Drug Dev. Res.202081891994110.1002/ddr.2170932632960
    [Google Scholar]
  7. ErolI. KotilS.E. OrtakciF. DurdagiS. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations.J. Biomol. Struct. Dyn.20234120107741078410.1080/07391102.2022.215893436591650
    [Google Scholar]
  8. ErolI. KotilS.E. FidanO. YetimanA.E. DurdagiS. OrtakciF. In silico analysis of bacteriocins from lactic acid bacteria against SARS-CoV-2.Probiotics Antimicrob. Proteins2023151172910.1007/s12602‑021‑09879‑034837166
    [Google Scholar]
  9. TeiarR. SaneF. ErolI. NekouaM.P. LecouturierD. BoukherroubR. DurdağıS. HoberD. DriderD. Enterocin DD14 can inhibit the infection of eukaryotic cells with enveloped viruses.Arch. Microbiol.2024206626910.1007/s00203‑024‑04002‑738767708
    [Google Scholar]
  10. UllahA. UllahS. HalimS.A. WaqasM. AliB. AtayaF.S. El-SabbaghN.M. BatihaG.E.S. AvulaS.K. CsukR. KhanA. Al-HarrasiA. Identification of new pharmacophore against SARS-CoV-2 spike protein by multi-fold computational and biochemical techniques.Sci. Rep.2024141359010.1038/s41598‑024‑53911‑638351259
    [Google Scholar]
  11. DurdagiS. AksoydanB. DoganB. SahinK. ShahrakiA. Birgül-İyisonN. Screening of clinically approved and investigation drugs as potential inhibitors of SARS-CoV-2 main protease and spike receptor-binding domain bound with ACE2 COVID19 target proteins: A virtual drug repurposing study.ChemRxiv2020412210006210.26434/chemrxiv.12032712.v2
    [Google Scholar]
  12. DurdagiS. DağÇ. DoganB. YiginM. AvsarT. BuyukdagC. ErolI. ErtemF.B. CalisS. YildirimG. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing.Structure2021291213821396
    [Google Scholar]
  13. DurdagiS. AvsarT. OrhanM.D. SerhatliM. BalciogluB.K. OzturkH.U. KayabolenA. CetinY. AydinlikS. Bagci-OnderT. TekinS. DemirciH. GuzelM. AkdemirA. CalisS. OktayL. ToluI. ButunY.E. ErdemogluE. OlkanA. TokayN. IşıkŞ. OzcanA. AcarE. BuyukkilicS. YumakY. The neutralization effect of montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies.Mol. Ther.202230296397410.1016/j.ymthe.2021.10.01434678509
    [Google Scholar]
  14. CetinY. AydinlikS. GungorA. KanT. AvsarT. DurdagiS. Review on in silico methods, high-throughput screening techniques, and cell culture based in vitro assays for SARS-CoV-2.Curr. Med. Chem.202229385925594810.2174/092986732966622062712141635761502
    [Google Scholar]
  15. Yepes-PérezA.F. Herrera-CalderonO. Sánchez-AparicioJ.E. Tiessler-SalaL. MaréchalJ.D. Cardona-GW. Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CL pro of SARS-CoV-2 by molecular modeling.Evid. Based Complement. Alternat. Med.202020201493257210.1155/2020/493257233029165
    [Google Scholar]
  16. NaikV.R. MunikumarM. RamakrishnaU. SrujanaM. GoudarG. NareshP. KumarB.N. HemalathaR. Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease – in silico approach.J. Biomol. Struct. Dyn.202139134701471410.1080/07391102.2020.178169432568620
    [Google Scholar]
  17. KhanI. KhanA. Ahsan HalimS. SaeedA. MehsudS. CsukR. Al-HarrasiA. IbrarA. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach.Int. J. Biol. Macromol.202014234535410.1016/j.ijbiomac.2019.09.10531593727
    [Google Scholar]
  18. FascioM.L. ErreaM.I. D’AccorsoN.B. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties.Eur. J. Med. Chem.20159066668310.1016/j.ejmech.2014.12.01225499987
    [Google Scholar]
  19. AlegaonS.G. AlagawadiK.R. SonkusareP.V. ChaudharyS.M. DadweD.H. ShahA.S. Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents.Bioorg. Med. Chem. Lett.20122251917192110.1016/j.bmcl.2012.01.05222325950
    [Google Scholar]
  20. El-HashashM. RizkS. Atta-AllahS. Synthesis and regioselective reaction of some unsymmetrical heterocyclic chalcone derivatives and spiro heterocyclic compounds as antibacterial agents.Molecules20152012220692208310.3390/molecules20121982726690393
    [Google Scholar]
  21. AlwanW.S. KarpoormathR. PalkarM.B. PatelH.M. RaneR.A. ShaikhM.S. KajeeA. MlisanaK.P. Novel imidazo[2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans.Eur. J. Med. Chem.20159551452510.1016/j.ejmech.2015.03.02125847769
    [Google Scholar]
  22. JadhavV.B. KulkarniM.V. RasalV.P. BiradarS.S. VinayM.D. Synthesis and anti-inflammatory evaluation of methylene bridged benzofuranyl imidazo[2,1-b][1,3,4]thiadiazoles.Eur. J. Med. Chem.20084381721172910.1016/j.ejmech.2007.06.02317845827
    [Google Scholar]
  23. LesykR. VladzimirskaO. HolotaS. ZaprutkoL. GzellaA. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation.Eur. J. Med. Chem.200742564164810.1016/j.ejmech.2006.12.00617303290
    [Google Scholar]
  24. IbrahimD.A. Synthesis and biological evaluation of 3,6-disubstituted[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents.Eur. J. Med. Chem.20094472776278110.1016/j.ejmech.2009.01.00319203813
    [Google Scholar]
  25. SarigolD. Uzgoren-BaranA. TelB.C. SomuncuogluE.I. KazkayasiI. Ozadali-SariK. Unsal-TanO. OkayG. ErtanM. TozkoparanB. Novel thiazolo[3,2-b]-1,2,4- triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biological evaluation and molecular modeling studies.Bioorg. Med. Chem.201523102518252810.1016/j.bmc.2015.03.04925868745
    [Google Scholar]
  26. KhanI. IbrarA. AbbasN. Triazolothiadiazoles and triazolothiadiazines – biologically attractive scaffolds.Eur. J. Med. Chem.20136385486810.1016/j.ejmech.2013.01.06023603045
    [Google Scholar]
  27. KarkiS.S. PanjamurthyK. KumarS. NambiarM. RamareddyS.A. ChiruvellaK.K. RaghavanS.C. Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4′-fluorophenyl)-imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent anticancer agents.Eur. J. Med. Chem.20114662109211610.1016/j.ejmech.2011.02.06421439690
    [Google Scholar]
  28. Demir ErolD. ÇalişÜ. DemirdamarR. YuluǧN. ErtanM. Synthesis and biological activities of some 3,6-disubstituted thiazolo[3,2-b][1,2,4]triazoles.J. Pharm. Sci.199584446246510.1002/jps.26008404147629737
    [Google Scholar]
  29. El-SherifH.A.H. MahmoudA.M. SarhanA.A.O. HozienZ.A. HabibO.M.A. One pot synthesis of novel thiazolo[3,2-b][1,2,4]triazoles: A useful synthetic application of the acidified acetic acid method.J. Sulfur Chem.2006271658510.1080/17415990500520908
    [Google Scholar]
  30. KarthikeyanM.S. Synthesis, analgesic, anti-inflammatory and antimicrobial studies of 2,4-dichloro-5-fluorophenyl containing thiazolotriazoles.Eur. J. Med. Chem.200944282783310.1016/j.ejmech.2008.04.02218579259
    [Google Scholar]
  31. PignatelloR. MazzoneS. PanicoA.M. MazzoneG. PennisiG. CastanaR. MateraM. BlandinoG. Synthesis and biological evaluation of thiazolo-triazole derivatives.Eur. J. Med. Chem.199126992993810.1016/0223‑5234(91)90135‑A
    [Google Scholar]
  32. BerkB. AktayG. YesiladaE. ErtanM. ChemInform abstract: Synthesis and pharmacological activities of some new 2-[1-(6-Methoxy-2-naphthyl)ethyl]-6-(substituted)benzylidene thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one derivatives.ChemInform20013247chin.20014710710.1002/chin.20014710711534335
    [Google Scholar]
  33. RoyP. LeblancY. BallR.G. BrideauC. ChanC.C. ChauretN. CromlishW. EthierD. GauthierJ.Y. GordonR. GreigG. GuayJ. KargmanS. LauC.K. O’NeillG. SilvaJ. ThérienM. van StadenC. WongE. XuL. PrasitP. A new series of selective COX-2 inhibitors: 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles.Bioorg. Med. Chem. Lett.199771576210.1016/S0960‑894X(96)00582‑3
    [Google Scholar]
  34. DemirayakS. ZitouniG. ChevalletP. ErolK. KiliçF.S. Synthesis and vasodilatory activity of some thiazolo-triazole derivative.Farmaco19934857077128343214
    [Google Scholar]
  35. ChannarP.A. SaeedA. LarikF.A. RashidS. IqbalQ. RoziM. YounisS. MaharJ. Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis.Biomed. Pharmacother.20179449951310.1016/j.biopha.2017.07.13928780468
    [Google Scholar]
  36. NegiM. ChawlaP.A. FarukA. ChawlaV. Role of heterocyclic compounds in SARS and SARS-CoV-2 pandemic.Bioorg. Chem.202010410431510.1016/j.bioorg.2020.10431533007742
    [Google Scholar]
  37. MüllerW.E.G. NeufurthM. ScheplerH. WangS. TolbaE. SchröderH.C. WangX. The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor.Biomater. Sci.20208236603661010.1039/D0BM01244K33231598
    [Google Scholar]
  38. SapanC.V. LundbladR.L. PriceN.C. Colorimetric protein assay techniques.Biotechnol. Appl. Biochem.19992929910810.1111/j.1470‑8744.1999.tb00538.x10075906
    [Google Scholar]
  39. GuC. WuY. GuoH. ZhuY. XuW. WangY. ZhouY. SunZ. CaiX. LiY. LiuJ. HuangZ. YuanZ. ZhangR. DengQ. QuD. XieY. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2.Sci. Bull. (Beijing)202166992593610.1016/j.scib.2020.12.00533318880
    [Google Scholar]
  40. PrajapatM. ShekharN. SarmaP. AvtiP. SinghS. KaurH. BhattacharyyaA. KumarS. SharmaS. PrakashA. MedhiB. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2.J. Mol. Graph. Model.202010110771610.1016/j.jmgm.2020.10771632866780
    [Google Scholar]
  41. ZhouY. WongM.W. Halogen bonding in haspin-halogenated tubercidin complexes: molecular dynamics and quantum chemical calculations.Molecules202227370610.3390/molecules2703070635163974
    [Google Scholar]
  42. ZaharuddinN.D. BarkiaI. Wan IbadullahW.Z. ZareiM. SaariN. Identification, molecular docking, and kinetic studies of six novel angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from Kenaf (Hibiscus cannabinus L.) seed.Int. J. Biol. Macromol.20222201512152210.1016/j.ijbiomac.2022.09.14236126810
    [Google Scholar]
  43. GhoshI. KwonY. Badamchi ShabestariA. ChikhaleR. ChenJ. WieseC. SungP. DeBenedettiA. TLK1- mediated RAD54 phosphorylation spatio-temporally regulates homologous recombination repair.Nucleic Acid Research2023511686436210.1101/2022.09.19.508551
    [Google Scholar]
  44. KhalilR. UsmaniS. Nur-e-AlamM. AhmedS. Ul-HaqZ. Site-directed fragnomics and MD simulations approaches to identify interleukin-2 inhibitors.Med. Chem.202117440741710.2174/157340641699920111310450133191887
    [Google Scholar]
  45. ScholzC. KnorrS. HamacherK. SchmidtB. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.J. Chem. Inf. Model.201555239840610.1021/ci500681r25541749
    [Google Scholar]
  46. AlamriA. RaufA. KhalilA.A. AlghamdiA. AlafnanA. AlshammariA. AlshammariF. MalikJ.A. AnwarS. In silico screening of marine compounds as an emerging and promising approach against estrogen receptor alpha-positive breast cancer.BioMed Res. Int.202120211710.1155/2021/973427934957309
    [Google Scholar]
  47. AngelovaM. AlovP. TsakovskaI. JerevaD. PajevaI. PenchevaT. Application of intercriteria analysis to assess the performance of scoring functions in molecular docking software packages.Mathematics202210152549
    [Google Scholar]
  48. LiangJ. ZhangT. LiZ. ChenZ. YanX. MengF. Predicting potential antitumor targets of Aconitum alkaloids by molecular docking and protein–ligand interaction fingerprint.Med. Chem. Res.20162561115112410.1007/s00044‑016‑1553‑7
    [Google Scholar]
  49. ChemamY. BenayacheS. MarchioniE. ZhaoM. MossetP. BenayacheF. On-line screening, isolation and identification of antioxidant compounds of Helianthemum ruficomum.Molecules201722223910.3390/molecules2202023928208718
    [Google Scholar]
  50. NiD. LauK. TurelliP. RaclotC. BeckertB. NazarovS. PojerF. MyasnikovA. StahlbergH. TronoD. Structural analysis of the Spike of the Omicron SARS-COV-2 variant by cryo-EM and implications for immune evasion.BioRxiv202120211210.1101/2021.12.27.474250
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673323284240911052131
Loading
/content/journals/cmc/10.2174/0109298673323284240911052131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test