Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The molecular mechanism of L-ascorbate (Vitamin C) in the treatment of Chronic Obstructive Pulmonary Disease (COPD) has not been fully explained. In this study, we aimed to explore the potential signaling pathways of L-ascorbate in the treatment of COPD.

Methods

The non-targeted metabolomics method was used to analyze the differential metabolites in the blood of healthy subjects and COPD patients. The COPD rat model was established by exposing them to Cigarette Smoke (CS). Network pharmacology, molecular docking, and molecular dynamics simulation analyses were performed to analyze the regulatory pathways of the differential metabolites.

Results

A non-targeted metabolomics analysis revealed metabolic disorders and significantly reduced levels of L-ascorbate in COPD patients compared with healthy subjects. The L-ascorbate intervention reduced lung inflammation and histological damage in COPD rat models. Network pharmacology analysis revealed 280 common targets between L-ascorbate (drug) and COPD (disease), of which seven core targets were MMP3, MME, PCNA, GCLC, SOD2, EDN1, and EGF. According to molecular docking prediction, L-ascorbate had the highest affinity with EGF. Molecular dynamics simulation indicated relatively stable EGF and L-ascorbate complexes. The PI3K/AKT signaling pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis. and experiments confirmed that L-ascorbate affected COPD by regulating the EGF/PI3K/AKT pathway.

Conclusion

In summary, based on network pharmacology and molecular docking analyses, this study revealed that L-ascorbate affects COPD development by regulating the PI3K/AKT signaling pathway through EGF and thus contributes to the understanding and clinical application of L-ascorbate in the treatment of COPD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673302394240823114448
2024-08-26
2025-04-04
Loading full text...

Full text loading...

References

  1. AgustíA. CelliB.R. CrinerG.J. HalpinD. AnzuetoA. BarnesP. BourbeauJ. HanM.K. MartinezF.J. Montes de OcaM. MortimerK. PapiA. PavordI. RocheN. SalviS. SinD.D. SinghD. StockleyR. López VarelaM.V. WedzichaJ.A. VogelmeierC.F. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary.Eur. Respir. J.2023614230023910.1183/13993003.00239‑202336858443
    [Google Scholar]
  2. HisataS. RacanelliA.C. KermaniP. SchreinerR. HoughtonS. PalikuqiB. KunarB. ZhouA. McConnK. CapiliA. RedmondD. NolanD.J. GinsbergM. DingB.S. MartinezF.J. ScanduraJ.M. CloonanS.M. RafiiS. ChoiA.M.K. Reversal of emphysema by restoration of pulmonary endothelial cells.J. Exp. Med.20212188e2020093810.1084/jem.2020093834287647
    [Google Scholar]
  3. DiazA.A. OrejasJ.L. GrumleyS. NathH.P. WangW. DolliverW.R. YenA. KligermanS.J. JacobsK. ManapragadaP.P. AbozeedM. AzizM.U. ZahidM. AhmedA.N. TerryN.L. San José EstéparR. KimV. MakeB.J. HanM.K. SonavaneS. WashkoG.R. ChoM. San José EstéparR. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease.JAMA2023329211832183910.1001/jama.2023.206537210745
    [Google Scholar]
  4. RabyK.L. MichaeloudesC. TonkinJ. ChungK.F. BhavsarP.K. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD.Front. Immunol.202314120165810.3389/fimmu.2023.120165837520564
    [Google Scholar]
  5. ChristensonS.A. SmithB.M. BafadhelM. PutchaN. Chronic obstructive pulmonary disease.Lancet2022399103422227224210.1016/S0140‑6736(22)00470‑635533707
    [Google Scholar]
  6. AlfahadA.J. AlzaydiM.M. AldossaryA.M. AlshehriA.A. AlmughemF.A. ZaidanN.M. TawfikE.A. Current views in chronic obstructive pulmonary disease pathogenesis and management.Saudi Pharm. J.202129121361137310.1016/j.jsps.2021.10.00835002373
    [Google Scholar]
  7. BrandsmaC.A. Van den BergeM. HackettT.L. BrusselleG. TimensW. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine.J. Pathol.2020250562463510.1002/path.536431691283
    [Google Scholar]
  8. World Health Organisation. 2021 Chronic obstructive pulmonary disease (COPD).Available from: https://www.who.int/respiratory/copd/en/ (accessed October 2021).
  9. KahnertK. JörresR.A. BehrJ. WelteT. The diagnosis and treatment of COPD and its comorbidities.Dtsch. Arztebl. Int.20231202543444410.3238/arztebl.m2023.002736794439
    [Google Scholar]
  10. BahramiM. ForouharnejadK. MirgaloyebayatH. Ghasemi DarestaniN. GhadimiM. MasaeliD. FazeliP. MohammadiH. ShabaniM. Emami ArdestaniM. Correlations and diagnostic tools for metabolic syndrome (MetS) and chronic obstructive pulmonary disease (COPD).Int. J. Physiol. Pathophysiol. Pharmacol.202214631131536741201
    [Google Scholar]
  11. LiS. ZhangT. YangH. ChangQ. ZhaoY. ChenL. ZhaoL. XiaY. Metabolic syndrome, genetic susceptibility, and risk of chronic obstructive pulmonary disease: The UK Biobank Study.Diabetes Obes. Metab.202426248249410.1111/dom.1533437846527
    [Google Scholar]
  12. ChanS.M.H. SelemidisS. BozinovskiS. VlahosR. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): Clinical significance and therapeutic strategies.Pharmacol. Ther.201919816018810.1016/j.pharmthera.2019.02.01330822464
    [Google Scholar]
  13. KarsanjiU. EvansR.A. QuintJ.K. KhuntiK. LawsonC.A. PetherickE. GreeningN.J. SinghS.J. RichardsonM. SteinerM.C. Mortality associated with metabolic syndrome in people with COPD managed in primary care.ERJ Open Res.20228400211-202210.1183/23120541.00211‑202236299367
    [Google Scholar]
  14. NuceraF. MumbyS. PaudelK.R. DharwalV. Di StefanoA. CasolaroV. HansbroP.M. AdcockI.M. CaramoriG. Role of oxidative stress in the pathogenesis of COPD.Minerva Med.2022113337040410.23736/S0026‑4806.22.07972‑135142479
    [Google Scholar]
  15. BarnesP.J. Oxidative stress in chronic obstructive pulmonary disease.Antioxidants202211596510.3390/antiox1105096535624831
    [Google Scholar]
  16. MiklósZ. HorváthI. The role of oxidative stress and antioxidants in cardiovascular comorbidities in COPD.Antioxidants2023126119610.3390/antiox1206119637371927
    [Google Scholar]
  17. FujiiJ. OsakiT. BoT. Ascorbate is a primary antioxidant in mammals.Molecules20222719618710.3390/molecules2719618736234722
    [Google Scholar]
  18. DosedělM. JirkovskýE. MacákováK. KrčmováL. JavorskáL. PourováJ. MercoliniL. RemiãoF. NovákováL. MladěnkaP. On Behalf Of The Oemonom Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination.Nutrients202113261510.3390/nu1302061533668681
    [Google Scholar]
  19. MilaniG.P. MacchiM. Guz-MarkA. Vitamin C in the treatment of COVID-19.Nutrients2021134117210.3390/nu1304117233916257
    [Google Scholar]
  20. GuptaI. GangulyS. RozanasC.R. StuehrD.J. PandaK. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis.Proc. Natl. Acad. Sci. USA201611329E4208E421710.1073/pnas.160005611327382160
    [Google Scholar]
  21. GhalibafM.H.E. KianianF. BeigoliS. BehrouzS. MarefatiN. BoskabadyM. BoskabadyM.H. The effects of vitamin C on respiratory, allergic and immunological diseases: An experimental and clinical-based review.Inflammopharmacology202331265367210.1007/s10787‑023‑01169‑136849854
    [Google Scholar]
  22. LeiT. LuT. YuH. SuX. ZhangC. ZhuL. YangK. LiuJ. Efficacy of Vitamin C supplementation on chronic obstructive pulmonary disease (COPD): A systematic review and meta-analysis.Int. J. Chron. Obstruct. Pulmon. Dis.2022172201221610.2147/COPD.S36864536118282
    [Google Scholar]
  23. NoorF. Tahir ul QamarM. AshfaqU.A. AlbuttiA. AlwashmiA.S.S. AljasirM.A. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals202215557210.3390/ph1505057235631398
    [Google Scholar]
  24. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of traditional Chinese medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑737245871
    [Google Scholar]
  25. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  26. ShangL. Mechanism of sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J Ethnopharmacol2023302Part A11587610.1016/j.jep.2022.11587636343798
    [Google Scholar]
  27. CramponK. GiorkallosA. DeldossiM. BaudS. SteffenelL.A. Machine-learning methods for ligand–protein molecular docking.Drug Discov. Today202227115116410.1016/j.drudis.2021.09.00734560276
    [Google Scholar]
  28. Bitencourt-FerreiraG. Duarte da SilvaA. Filgueira de AzevedoW.Jr. Application of machine learning techniques to predict binding affinity for drug targets: A study of cyclin-dependent kinase 2.Curr. Med. Chem.202128225326510.2174/1875533XMTAy4MDQm431729287
    [Google Scholar]
  29. DongY. TaoB. XueX. FengC. RenY. MaH. ZhangJ. SiY. ZhangS. LiuS. LiH. ZhouJ. LiG. WangZ. XieJ. ZhuZ. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology.BMC Complement. Med. Ther.202121122210.1186/s12906‑021‑03389‑w34479552
    [Google Scholar]
  30. HuX. Molecular dynamics simulation of the interaction of food proteins with small molecules.Food Chem2023405Part A13482410.1016/j.foodchem.2022.13482436370554
    [Google Scholar]
  31. JiangX.Z. VentikosY. Molecular dynamics simulation: A new way to understand the functionality of the endothelial glycocalyx.Curr. Opin. Struct. Biol.20227310233010.1016/j.sbi.2022.10233035189526
    [Google Scholar]
  32. WuX. XuL.Y. LiE.M. DongG. Application of molecular dynamics simulation in biomedicine.Chem. Biol. Drug Des.202299578980010.1111/cbdd.1403835293126
    [Google Scholar]
  33. LuoW. DengJ. HeJ. YinL. YouR. ZhangL. ShenJ. HanZ. XieF. HeJ. GuanY. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes.J. Cell. Mol. Med.202327141959197410.1111/jcmm.1778737257051
    [Google Scholar]
  34. FuS. ZhouY. HuC. XuZ. HouJ. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy.BMC Complement. Med. Ther.202222121010.1186/s12906‑022‑03662‑635932042
    [Google Scholar]
  35. LiuJ. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation.Comput. Biol. Med.2022151Part A10629836403355
    [Google Scholar]
  36. BishtA. TewariD. KumarS. ChandraS. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia.Mol. Divers.202310.1007/s11030‑023‑10684‑w37439907
    [Google Scholar]
  37. LiX. MiaoF. XinR. TaiZ. PanH. HuangH. YuJ. ChenZ. ZhuQ. Combining network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification to examine the efficacy and immunoregulation mechanism of FHB granules on vitiligo.Front. Immunol.202314119482310.3389/fimmu.2023.119482337575231
    [Google Scholar]
  38. LiuL. JiaoY. YangM. WuL. LongG. HuW. Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler.Int. J. Mol. Sci.202324121037010.3390/ijms24121037037373516
    [Google Scholar]
  39. ZhangM. ZhangY. RothM. ZhangL. ShiR. YangX. LiY. ZhangJ. Sirtuin 3 inhibits airway epithelial mitochondrial oxidative stress in cigarette smoke-induced COPD.Oxid. Med. Cell. Longev.2020202011210.1155/2020/758298033005288
    [Google Scholar]
  40. MathyssenC. SerréJ. SacreasA. EveraertsS. MaesK. VerledenS. VerlindenL. VerstuyfA. PiletteC. Gayan-RamirezG. VanaudenaerdeB. JanssensW. Vitamin D modulates the response of bronchial epithelial cells exposed to cigarette smoke extract.Nutrients2019119213810.3390/nu1109213831500220
    [Google Scholar]
  41. WuH. MaH. WangL. ZhangH. LuL. XiaoT. ChengC. WangP. YangY. WuM. WangS. ZhangJ. LiuQ. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a.Int. J. Biol. Sci.202218266167410.7150/ijbs.6586135002516
    [Google Scholar]
  42. SunF. WangJ. SunQ. LiF. GaoH. XuL. ZhangJ. SunX. TianY. ZhaoQ. ShenH. ZhangK. LiuJ. Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201938144910.1186/s13046‑019‑1455‑x31684995
    [Google Scholar]
  43. ShiY. XuY. YaoJ. YanC. SuH. ZhangX. ChenE. YingK. MTHFD2 promotes tumorigenesis and metastasis in lung adenocarcinoma by regulating AKT/GSK-3β/β-catenin signalling.J. Cell. Mol. Med.202125147013702710.1111/jcmm.1671534121323
    [Google Scholar]
  44. LinH. WangC. YuH. LiuY. TanL. HeS. LiZ. WangC. WangF. LiP. LiuJ. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology.Biomed. Pharmacother.202214911282310.1016/j.biopha.2022.11282335334426
    [Google Scholar]
  45. MengP. ZhangX. LiD. YangH. LinX. ZhaoH. LiP. WangY. WangX. GeJ. Leonurine regulates hippocampal nerve regeneration in rats with chronic and unpredictable mild stress by activating SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis.Neural Plast.2023202311210.1155/2023/145563436647544
    [Google Scholar]
  46. SaloP.M. MendyA. WilkersonJ. MolsberryS.A. FeinsteinL. LondonS.J. FesslerM.B. ThorneP.S. ZeldinD.C. Serum antioxidant vitamins and respiratory morbidity and mortality: A pooled analysis.Respir. Res.202223115010.1186/s12931‑022‑02059‑w35681205
    [Google Scholar]
  47. HureauT.J. Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD.J Appl Physiol20211301697910.1152/japplphysiol.00611.202033151775
    [Google Scholar]
  48. van IerselL.E.J. BeijersR.J.H.C.G. GoskerH.R. ScholsA.M.W.J. Nutrition as a modifiable factor in the onset and progression of pulmonary function impairment in COPD: A systematic review.Nutr. Rev.20228061434144410.1093/nutrit/nuab07734537848
    [Google Scholar]
  49. AnnangiS. Coz-YatacoA.O. Clinical implications of bronchodilator testing: Diagnosing and differentiating COPD and asthma-COPD overlap.Respir. Care202267444044710.4187/respcare.0921535338095
    [Google Scholar]
  50. JianT. ChenJ. DingX. LvH. LiJ. WuY. RenB. TongB. ZuoY. SuK. LiW. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: The role of TRPV1 signaling pathways.Food Funct.20201143516352610.1039/C9FO02921D32253400
    [Google Scholar]
  51. ZuoL. PratherE.R. StetskivM. GarrisonD.E. MeadeJ.R. PeaceT.I. ZhouT. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments.Int. J. Mol. Sci.20192018447210.3390/ijms2018447231510091
    [Google Scholar]
  52. FuY.S. KangN. YuY. MiY. GuoJ. WuJ. WengC.F. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD.Eur. Respir. Rev.20223116422002810.1183/16000617.0028‑202235705209
    [Google Scholar]
  53. StrzelakA. RatajczakA. AdamiecA. FeleszkoW. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review.Int. J. Environ. Res. Public Health2018155103310.3390/ijerph1505103329883409
    [Google Scholar]
  54. QianY. YanL. WeiM. SongP. WangL. Seeds of Ginkgo biloba L. inhibit oxidative stress and inflammation induced by cigarette smoke in COPD rats through the Nrf2 pathway.J. Ethnopharmacol.202330111575810.1016/j.jep.2022.11575836167232
    [Google Scholar]
  55. ZhengP ZengB LiuM ChenJ PanJ HanY LiuY ChengK ZhouC WangH ZhouX GuiS PerrySW WongML LicinioJ WeiH XieP. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice.Sci Adv201952eaau831730775438
    [Google Scholar]
  56. FeketeM. CsípőT. Fazekas-PongorV. FehérÁ. SzarvasZ. KaposváriC. HorváthK. LehoczkiA. TarantiniS. VargaJ.T. The effectiveness of supplementation with key vitamins, minerals, antioxidants and specific nutritional supplements in COPD-a review.Nutrients20231512274110.3390/nu1512274137375645
    [Google Scholar]
  57. BchirS. ben NasrH. GarrouchA. ben AnesA. AbbassiA. TabkaZ. ChahedK. MMP-3 (–1171 5A/6A; Lys45Glu) variants affect serum levels of matrix metalloproteinase (MMP)-3 and correlate with severity of COPD: A study of MMP-3, MMP-7 and MMP-12 in a Tunisian population.J. Gene Med.2018201e299910.1002/jgm.299929165854
    [Google Scholar]
  58. ChengL. LiuJ. LiB. LiuS. LiX. TuH. Cigarette smoke-induced hypermethylation of the GCLC gene is associated with COPD.Chest2016149247448210.1378/chest.14‑230926087411
    [Google Scholar]
  59. HautamakiR.D. KobayashiD.K. SeniorR.M. ShapiroS.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice.Science199727753342002200410.1126/science.277.5334.20029302297
    [Google Scholar]
  60. LiuX. LiC. LiJ. XieL. HongZ. ZhengK. ZhaoX. YangA. XuX. TaoH. QiuM. YangJ. EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes.Mol. Med.20222815010.1186/s10020‑022‑00478‑535508991
    [Google Scholar]
  61. AidoukovitchA. BodahlS. TufvessonE. NilssonB.O. Desquamated epithelial cells of unstimulated human whole saliva express both EGF transcript and protein.Int. J. Dent.202220221910.1155/2022/319470336573202
    [Google Scholar]
  62. ShinS.H. KohY.G. LeeW.G. SeokJ. ParkK.Y. ShinS.H. The use of epidermal growth factor in dermatological practice.Int. Wound J.20232062414242310.1111/iwj.1407536584669
    [Google Scholar]
  63. SuY. LuoH. YangJ. Heparin-binding EGF-like growth factor attenuates lung inflammation and injury in a murine model of pulmonary emphysema.Growth Factors2018365-624626210.1080/08977194.2018.155227030600734
    [Google Scholar]
  64. ZhouP. MaJ. YuW. ChenK. ZhangW. ZhouJ. Tiao-Bu-Fei-Shen formula improves glucocorticoid resistance of chronic obstructive pulmonary disease via downregulating the PI3K-Akt signaling pathway and promoting GRα expression.Evid. Based Complement. Alternat. Med.2023202311710.1155/2023/435961636820399
    [Google Scholar]
  65. MoradiS. JarrahiE. AhmadiA. SalimianJ. KarimiM. ZareiA. JamalkandiA.S. GhaneiM. PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy.J. Pathol.2021254550551810.1002/path.569633959951
    [Google Scholar]
  66. HuY. LanY. RanQ. GanQ. HuangW. Analysis of the clinical efficacy and molecular mechanism of xuefu zhuyu decoction in the treatment of copd based on meta-analysis and network pharmacology.Comput. Math. Methods Med.2022202212410.1155/2022/261558036479314
    [Google Scholar]
  67. WangY. LiY. WangL. ChenB. ZhuM. MaC. MuC. TaoA. LiS. LuoL. MaP. JiS. LanT. Cinnamaldehyde suppressed EGF-induced EMT process and inhibits ovarian cancer progression through PI3K/AKT pathway.Front. Pharmacol.20221377960810.3389/fphar.2022.77960835645793
    [Google Scholar]
  68. ZhangQ. YaoM. QiJ. SongR. WangL. LiJ. ZhouX. ChangD. HuangQ. LiL. WangN. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway.Front. Pharmacol.202314113438010.3389/fphar.2023.113438037284311
    [Google Scholar]
  69. XieX. WangF. GeW. MengX. FanL. ZhangW. WangZ. DingM. GuS. XingX. SunX. Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways.Eur. J. Pharmacol.202395717597910.1016/j.ejphar.2023.17597937611841
    [Google Scholar]
  70. WuJ. XuH. WongP.F. XiaS. XuJ. DongJ. Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling.Food Chem. Toxicol.20146430731310.1016/j.fct.2013.12.00624333105
    [Google Scholar]
  71. LiQ. WangG. XiongS.H. CaoY. LiuB. SunJ. LiL. MohammadtursunN. YuH. DongJ. WuJ. Bu-Shen-Fang-Chuan formula attenuates cigarette smoke-induced inflammation by modulating the PI3K/Akt-Nrf2 and NF-κB signalling pathways.J. Ethnopharmacol.202026111309510.1016/j.jep.2020.11309532531410
    [Google Scholar]
  72. SunX. ChenL. HeZ. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease.Curr. Drug Metab.201920430130410.2174/138920022066619022722474830827233
    [Google Scholar]
  73. BarnesP.J. Oxidative stress-based therapeutics in COPD.Redox Biol.20203310154410.1016/j.redox.2020.10154432336666
    [Google Scholar]
  74. CazzolaM. PageC.P. WedzichaJ.A. CelliB.R. AnzuetoA. MateraM.G. Use of thiols and implications for the use of inhaled corticosteroids in the presence of oxidative stress in COPD.Respir. Res.202324119410.1186/s12931‑023‑02500‑837517999
    [Google Scholar]
  75. AustinV. CrackP.J. BozinovskiS. MillerA.A. VlahosR. COPD and stroke: Are systemic inflammation and oxidative stress the missing links?Clin. Sci.2016130131039105010.1042/CS2016004327215677
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673302394240823114448
Loading
/content/journals/cmc/10.2174/0109298673302394240823114448
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test