Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673297545240507091410
2024-05-09
2025-01-19
Loading full text...

Full text loading...

References

  1. NazirM.A. Prevalence of periodontal disease, its association with systemic diseases and prevention.Int. J. Health Sci.2017112728028539867
    [Google Scholar]
  2. BenjaminR.M. Oral health: the silent epidemic.Public Health Rep.2010125215815910.1177/00333549101250020220297740
    [Google Scholar]
  3. SiesH. BerndtC. JonesD.P. Oxidative stress.Annu. Rev. Biochem.201786171574810.1146/annurev‑biochem‑061516‑04503728441057
    [Google Scholar]
  4. JonesD.P. Radical-free biology of oxidative stress.Am. J. Physiol. Cell Physiol.20082954C849C86810.1152/ajpcell.00283.200818684987
    [Google Scholar]
  5. BattinoM. BullonP. WilsonM. NewmanH. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species.Crit. Rev. Oral Biol. Med.199910445847610.1177/1045441199010004030110634583
    [Google Scholar]
  6. HalliwellB. Biochemistry of oxidative stress.Biochem. Soc. Trans.20073551147115010.1042/BST035114717956298
    [Google Scholar]
  7. FrijhoffJ. WinyardP.G. ZarkovicN. DaviesS.S. StockerR. ChengD. KnightA.R. TaylorE.L. OettrichJ. RuskovskaT. GasparovicA.C. CuadradoA. WeberD. PoulsenH.E. GruneT. SchmidtH.H.H.W. GhezziP. Clinical relevance of biomarkers of oxidative stress.Antioxid. Redox Signal.201523141144117010.1089/ars.2015.631726415143
    [Google Scholar]
  8. FrancoR. VargasM.R. Redox biology in neurological function, dysfunction, and aging.Antioxid. Redox Signal.201828181583158610.1089/ars.2018.750929634346
    [Google Scholar]
  9. SadasivamN. KimY.J. RadhakrishnanK. KimD.K. Oxidative stress, genomic integrity, and liver diseases.Molecules20222710315910.3390/molecules2710315935630636
    [Google Scholar]
  10. TurrensJ.F. Mitochondrial formation of reactive oxygen species.J. Physiol.2003552233534410.1113/jphysiol.2003.04947814561818
    [Google Scholar]
  11. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑025646037
    [Google Scholar]
  12. Espinosa-DiezC. MiguelV. MennerichD. KietzmannT. Sánchez-PérezP. CadenasS. LamasS. Antioxidant responses and cellular adjustments to oxidative stress.Redox Biol.2015618319710.1016/j.redox.2015.07.00826233704
    [Google Scholar]
  13. RussellE.G. CotterT.G. New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes.Int. Rev. Cell Mol. Biol.201531922125410.1016/bs.ircmb.2015.07.00426404470
    [Google Scholar]
  14. FinkelT. Signal transduction by reactive oxygen species.J. Cell Biol.2011194171510.1083/jcb.20110209521746850
    [Google Scholar]
  15. WeidingerA. KozlovA. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction.Biomolecules20155247248410.3390/biom502047225884116
    [Google Scholar]
  16. Obeng-GyasiE. Lead exposure and oxidative stress-a life course approach in U.S. adults.Toxics2018634210.3390/toxics603004230071602
    [Google Scholar]
  17. BesednovaN.N. AndryukovB.G. ZaporozhetsT.S. KuznetsovaT.A. KryzhanovskyS.P. ErmakovaS.P. GalkinaI.V. ShchelkanovM.Y. Molecular targets of brown algae phlorotannins for the therapy of inflammatory processes of various origins.Mar. Drugs202220424310.3390/md2004024335447916
    [Google Scholar]
  18. PereraW.P.T.D. DissanayakeR.K. RanatungaU.I. HettiarachchiN.M. PereraK.D.C. UnagollaJ.M. De SilvaR.T. PahalagedaraL.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications.RSC Advances20201051307853079510.1039/D0RA05755J35516060
    [Google Scholar]
  19. ZhuY. LuoM. BaiX. LiJ. NieP. LiB. LuoP. SS-31, a mitochondria-targeting peptide, ameliorates kidney disease.Oxid. Med. Cell. Longev.2022202211310.1155/2022/129550935707274
    [Google Scholar]
  20. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  21. RuanY. JiangS. GerickeA. Age-related macular degeneration: role of oxidative stress and blood vessels.Int. J. Mol. Sci.2021223129610.3390/ijms2203129633525498
    [Google Scholar]
  22. ChenZ. GanJ. ZhangM. DuY. ZhaoH. Ferroptosis and its emerging role in pre-eclampsia.Antioxidants2022117128210.3390/antiox1107128235883776
    [Google Scholar]
  23. CaliriA.W. TommasiS. BesaratiniaA. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer.Mutat. Res. Rev. Mutat. Res.202178710836510.1016/j.mrrev.2021.10836534083039
    [Google Scholar]
  24. FuZ. ZhangJ. ZhangY. Role of molecular hydrogen in ageing and ageing-related diseases.Oxid. Med. Cell. Longev.2022202211710.1155/2022/224974935340218
    [Google Scholar]
  25. MatsuoK. HosodaK. TanakaJ. YamamotoY. ImahoriT. NakaiT. IrinoY. ShinoharaM. SasayamaT. KohmuraE. Geranylgeranylacetone attenuates cerebral ischemia–reperfusion injury in rats through the augmentation of HSP 27 phosphorylation: a preliminary study.BMC Neurosci.2021221910.1186/s12868‑021‑00614‑733557752
    [Google Scholar]
  26. SologovaS.S. ZavadskiyS.P. MokhosoevI.M. MoldogazievaN.T. Short linear motifs orchestrate functioning of human proteins during embryonic development, redox regulation, and cancer.Metabolites202212546410.3390/metabo1205046435629968
    [Google Scholar]
  27. KhanS.N. KumarS. IqbalS. JoyM.T. RamaprabhaG. Oxidative stress, antioxidants and periodontitis: how are they linked?Int. J. Oral Care Res.201862107112
    [Google Scholar]
  28. JonesD.P. Redefining oxidative stress.Antioxid. Redox Signal.200689-101865187910.1089/ars.2006.8.186516987039
    [Google Scholar]
  29. TrivediS. LalN. Oxidative stress and periodontitis: cause or effect.J. Nepal Dent. Assoc.20151587
    [Google Scholar]
  30. JiaL. HanN. DuJ. GuoL. LuoZ. LiuY. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors.Front. Cell. Infect. Microbiol.2019926210.3389/fcimb.2019.0026231380305
    [Google Scholar]
  31. SidhuP. ShankargoudaS. RathA. Hesarghatta RamamurthyP. FernandesB. Kumar SinghA. Therapeutic benefits of liquorice in dentistry.J. Ayurveda Integr. Med.2020111828810.1016/j.jaim.2017.12.00430391123
    [Google Scholar]
  32. MiyasakiK.T. The neutrophil: mechanisms of controlling periodontal bacteria.J. Periodontol.1991621276177410.1902/jop.1991.62.12.7611765939
    [Google Scholar]
  33. GustafssonA. ItoH. ÅsmanB. BergströmK. Hyper-reactive mononuclear cells and neutrophils in chronic periodontitis.J. Clin. Periodontol.200633212612910.1111/j.1600‑051X.2005.00883.x16441737
    [Google Scholar]
  34. MatthewsJ.B. WrightH.J. RobertsA. CooperP.R. ChappleI.L.C. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis.Clin. Exp. Immunol.2007147225526410.1111/j.1365‑2249.2006.03276.x17223966
    [Google Scholar]
  35. LingM.R. ChappleI.L.C. MatthewsJ.B. Neutrophil superoxide release and plasma C-reactive protein levels pre- and post-periodontal therapy.J. Clin. Periodontol.201643865265810.1111/jcpe.1257527168055
    [Google Scholar]
  36. ChappleI. L. MatthewsJ. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction.Periodontol20074316023210.1111/j.1600‑0757.2006.00178.x
    [Google Scholar]
  37. GustafssonA. ÅsmanB. Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Feγ-receptor stimulation.J. Clin. Periodontol.1996231384410.1111/j.1600‑051X.1996.tb00502.x8636455
    [Google Scholar]
  38. FredrikssonM. GustafssonA. ÅsmanB. BergströmK. Hyper-reactive peripheral neutrophils in adult periodontitis: generation of chemiluminescence and intracellular hydrogen peroxide after in vitro priming and FcγR-stimulation.J. Clin. Periodontol.199825539439810.1111/j.1600‑051X.1998.tb02461.x9650876
    [Google Scholar]
  39. FredrikssonM.I. GustafssonA.K. BergströmK.G. ÅsmanB.E. Constitutionally hyperreactive neutrophils in periodontitis.J. Periodontol.200374221922410.1902/jop.2003.74.2.21912666711
    [Google Scholar]
  40. GuarnieriC. ZucchelliG. BernardiF. SchedaM. ValentiniA.F. CalandrielloM. Enhanced superoxide production with no change of the antioxidant activity in gingival fluid of patients with chronic adult periodontitis.Free Radic. Res. Commun.1991151111610.3109/107157691090491201663065
    [Google Scholar]
  41. KimuraS. YonemuraT. KayaH. Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases.J. Periodontal Res.199328319720310.1111/j.1600‑0765.1993.tb01069.x8496783
    [Google Scholar]
  42. BullonP. CorderoM.D. QuilesJ.L. MorilloJ.M. Ramirez-TortosaM.C. BattinoM. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lip- opolysaccharide as a possible link between cardiovascular disease and periodontitis.Free Radic. Biol. Med.201150101336134310.1016/j.freeradbiomed.2011.02.01821354301
    [Google Scholar]
  43. GölzL. MemmertS. Rath-DeschnerB. JägerA. AppelT. BaumgartenG. GötzW. FredeS. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis.Mediators Inflamm.2014201411310.1155/2014/98626425374447
    [Google Scholar]
  44. GovindarajP. KhanN.A. GopalakrishnaP. ChandraR.V. VanniarajanA. ReddyA.A. SinghS. KumaresanR. SrinivasG. SinghL. ThangarajK. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis.Mitochondrion201111350451210.1016/j.mito.2011.01.00921296687
    [Google Scholar]
  45. SuiL. WangJ. XiaoZ. YangY. YangZ. AiK. ROS-scavenging nanomaterials to treat periodontitis.Front Chem.2020859553010.3389/fchem.2020.59553033330384
    [Google Scholar]
  46. TottoliE.M. DoratiR. GentaI. ChiesaE. PisaniS. ContiB. Skin wound healing process and new emerging technologies for skin wound care and regeneration.Pharmaceutics202012873510.3390/pharmaceutics1208073532764269
    [Google Scholar]
  47. CordaniM. Resines-UrienE. GamonalA. Milán-RoisP. SalmonL. BousseksouA. CostaJ.S. SomozaÁ. Water soluble iron-based coordination trimers as synergistic adjuvants for pancreatic cancer.Antioxidants20211016610.3390/antiox1001006633430324
    [Google Scholar]
  48. LeeN.K. ChoiY.G. BaikJ.Y. HanS.Y. JeongD. BaeY.S. KimN. LeeS.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation.Blood2005106385285910.1182/blood‑2004‑09‑366215817678
    [Google Scholar]
  49. CochranD.L. Inflammation and bone loss in periodontal disease.J. Periodontol.2008798SSuppl.1569157610.1902/jop.2008.08023318673012
    [Google Scholar]
  50. GravesD. Cytokines that promote periodontal tissue destruction.J. Periodontol.2008798SSuppl.1585159110.1902/jop.2008.08018318673014
    [Google Scholar]
  51. GarrettI.R. BoyceB.F. OreffoR.O. BonewaldL. PoserJ. MundyG.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo.J. Clin. Invest.199085363263910.1172/JCI1144852312718
    [Google Scholar]
  52. FearonI.M. PhillipsG. CarrT. TaylorM. BrehenyD. FauxS.P. The role of oxidative stress in smoking-related diseases.Mini Rev. Org. Chem.2011836037110.2174/157019311797440317
    [Google Scholar]
  53. CaleyM.P. MartinsV.L.C. O’TooleE.A. Metalloproteinases and wound healing.Adv. Wound Care (New Rochelle)20154422523410.1089/wound.2014.058125945285
    [Google Scholar]
  54. StanisicD. ObradovicR. VujovicS. JovanovicM. ZivkovicV. The connection of periodontal disease and diabetes mellitus: the role of matrix metalloproteinases and oxidative stress.Serbian J. Exp. Clin. Res.10192019110
    [Google Scholar]
  55. FrancoC. PatriciaH.R. TimoS. ClaudiaB. MarcelaH. Matrix metalloproteinases as regulators of periodontal inflammation.Int. J. Mol. Sci.201718244010.3390/ijms1802044028218665
    [Google Scholar]
  56. Cook-MillsJ.M. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration.Cell. Mol. Biol.200652481617543193
    [Google Scholar]
  57. OsorioC. CavallaF. Paula-LimaA. Díaz-ArayaG. VernalR. AhumadaP. GamonalJ. HernándezM. H 2 O 2 activates matrix metalloproteinases through the nuclear factor kappa B pathway and Ca2+ signals in human periodontal fibroblasts.J. Periodontal Res.201550679880610.1111/jre.1226725824649
    [Google Scholar]
  58. Hernández-RíosP. PussinenP.J. VernalR. HernándezM. Oxidative stress in the local and systemic events of apical periodontitis.Front. Physiol.2017886910.3389/fphys.2017.0086929163211
    [Google Scholar]
  59. DesardaH. GaikwadS. Matrix metalloproteinases & Implication in periodontitis- A short review.Journal of Dental and Allied Sciences2013226610.4103/2277‑4696.159288
    [Google Scholar]
  60. MoseleyR. WaddingtonR.J. EmberyG. Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes.Biochim. Biophys. Acta Mol. Basis Dis.199713622-322123110.1016/S0925‑4439(97)00083‑59540853
    [Google Scholar]
  61. MontemurroN. PerriniP. RaponeB. Clinical risk and overall survival in patients with diabetes mellitus, hyperglycemia and glioblastoma multiforme. a review of the current literature.Int. J. Environ. Res. Public Health20201722850110.3390/ijerph1722850133212778
    [Google Scholar]
  62. PhamV.H. Gargiulo IsaccoC. NguyenK.C.D. LeS.H. TranD.K. NguyenQ.V. PhamH.T. AityanS. PhamS.T. CantoreS. InchingoloA.M. InchingoloA.D. DipalmaG. BalliniA. InchingoloF. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: a translational research and cooperation between the Phan Chau Trinh University in Vietnam and University of Bari “Aldo Moro” in Italy.Eur. Rev. Med. Pharmacol. Sci.202024127173719110.26355/eurrev_202006_2171332633414
    [Google Scholar]
  63. RittiéL. MonboisseJ.C. GorisseM.C. GilleryP. Malondialdehyde binding to proteins dramatically alters fibroblast functions.J. Cell. Physiol.2002191222723610.1002/jcp.1009312064466
    [Google Scholar]
  64. ŻukowskiP. MaciejczykM. WaszkielD. Sources of free radicals and oxidative stress in the oral cavity.Arch. Oral Biol.20189281710.1016/j.archoralbio.2018.04.01829729478
    [Google Scholar]
  65. SamC.H. LuH.K. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease.J. Dent. Sci.200942455410.1016/S1991‑7902(09)60008‑8
    [Google Scholar]
  66. MorganM.J. LiuZ. Crosstalk of reactive oxygen species and NF-κB signaling.Cell Res.201121110311510.1038/cr.2010.17821187859
    [Google Scholar]
  67. SouzaJ.A.C. JuniorC.R. GarletG.P. NogueiraA.V.B. CirelliJ.A. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease.J. Appl. Oral Sci.201220212813810.1590/S1678‑7757201200020000222666826
    [Google Scholar]
  68. NakanoH. NakajimaA. Sakon-KomazawaS. PiaoJ-H. XueX. OkumuraK. Reactive oxygen species mediate crosstalk between NF-κB and JNK.Cell Death Differ.200613573073710.1038/sj.cdd.440183016341124
    [Google Scholar]
  69. KangS.W. ParkH.J. BanJ.Y. ChungJ.H. ChunG.S. ChoJ.O. Effects of nicotine on apoptosis in human gingival fibroblasts.Arch. Oral Biol.201156101091109710.1016/j.archoralbio.2011.03.01621497792
    [Google Scholar]
  70. ObenK.Z. AlhakeemS.S. McKennaM.K. BrandonJ.A. ManiR. NoothiS.K. JinpengL. AkunuruS. DharS.K. SinghI.P. LiangY. WangC. Abdel-LatifA. StillsH.F.Jr St ClairD.K. GeigerH. MuthusamyN. TohyamaK. GuptaR.C. BondadaS. Oxidative stress-induced JNK/AP-1 signaling is a major pathway involved in selective apoptosis of myelodysplastic syndrome cells by Withaferin-A.Oncotarget2017844774367745210.18632/oncotarget.2049729100399
    [Google Scholar]
  71. GuoH. CallawayJ.B. TingJ.P.Y. Inflammasomes: mechanism of action, role in disease, and therapeutics.Nat. Med.201521767768710.1038/nm.389326121197
    [Google Scholar]
  72. DingP.H. YangM.X. WangN.N. JinL.J. DongY. CaiX. ChenL.L. Porphyromonas gingivalis-induced NLRP3 inflammasome activation and its downstream interleukin-1β release depend on caspase-4.Front. Microbiol.202011188110.3389/fmicb.2020.0188132903638
    [Google Scholar]
  73. MarchesanJ.T. GirnaryM.S. MossK. MonaghanE.T. EgnatzG.J. JiaoY. ZhangS. BeckJ. SwansonK.V. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics.Periodontol. 200020208219311410.1111/prd.1226931850638
    [Google Scholar]
  74. NitureS.K. KhatriR. JaiswalA.K. Regulation of Nrf2-an update.Free Radic. Biol. Med.201466364410.1016/j.freeradbiomed.2013.02.00823434765
    [Google Scholar]
  75. YamaguchiY. Kurita-OchiaiT. KobayashiR. SuzukiT. AndoT. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease.Inflamm. Res.2017661596510.1007/s00011‑016‑0992‑427665233
    [Google Scholar]
  76. FranchiL. EigenbrodT. Muñoz-PlanilloR. NuñezG. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis.Nat. Immunol.200910324124710.1038/ni.170319221555
    [Google Scholar]
  77. SimaC. AboodiG.M. LakschevitzF.S. SunC. GoldbergM.B. GlogauerM. Nuclear Factor Erythroid 2-Related Factor 2 Down-Regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis.Am. J. Pathol.201618661417142610.1016/j.ajpath.2016.01.01327070823
    [Google Scholar]
  78. HyeonS. LeeH. YangY. JeongW. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.Free Radic. Biol. Med.20136578979910.1016/j.freeradbiomed.2013.08.00523954472
    [Google Scholar]
  79. KataokaK. EkuniD. TomofujiT. IrieK. KunitomoM. UchidaY. FukuharaD. MoritaM. Visualization of oxidative stress induced by experimental periodontitis in Keap1-dependent oxidative stress detector- luciferase mice.Int. J. Mol. Sci.20161711190710.3390/ijms1711190727854327
    [Google Scholar]
  80. Ahmadi-MotamayelF. GoodarziM.T. JamshidiZ. KebriaeiR. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: A case-control study.Front. Physiol.2017818910.3389/fphys.2017.0018928408887
    [Google Scholar]
  81. YagiK. A simple fluorometric assay for lipoperoxide in blood plasma.Biochem. Med.197615221221610.1016/0006‑2944(76)90049‑1962904
    [Google Scholar]
  82. PanjamurthyK. ManoharanS. RamachandranC.R. Lipid peroxidation and antioxidant status in patients with periodontitis.Cell. Mol. Biol. Lett.200510225526416010291
    [Google Scholar]
  83. TonguçM.Ö. ÖztürkÖ. SütçüR. CeyhanB.M. KılınçG. SönmezY. Yetkin AyZ. ŞahinÜ. BaltacıoğluE. KırzıoğluF.Y. The impact of smoking status on antioxidant enzyme activity and malondialdehyde levels in chronic periodontitis.J. Periodontol.20118291320132810.1902/jop.2011.10061821219099
    [Google Scholar]
  84. GhallabN.A. HamdyE. ShakerO.G. Malondialdehyde, superoxide, dismutase and melatonin levels in GFC of aggressive and chronic periodontitis patients.Aust. Dent. J.201661536110.1111/adj.1229425581300
    [Google Scholar]
  85. DakovicD. Malondialdehyde as an indicator of local oxidative cell damage in periodontitis patients. Master's thesis, Military Medical Academy, Sofia, Bulgaria, 2005.
    [Google Scholar]
  86. WeiD. ZhangX-L. WangY-Z. YangC-X. ChenG. Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy.Aust. Dent. J.2010551707810.1111/j.1834‑7819.2009.01123.x20415915
    [Google Scholar]
  87. PetersenD.R. DoornJ.A. Reactions of 4-hydroxynonenal with proteins and cellular targets.Free Radic. Biol. Med.200437793794510.1016/j.freeradbiomed.2004.06.01215336309
    [Google Scholar]
  88. AltıngözS.M. KurganŞ. ÖnderC. SerdarM.A. ÜnlütürkU. UyanıkM. BaşkalN. TatakisD.N. GünhanM. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study.J. Periodontol.20219291274128510.1002/JPER.20‑040633277933
    [Google Scholar]
  89. RobertsL.J.II MorrowJ.D. Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation.Cell. Mol. Life Sci.200259580882010.1007/s00018‑002‑8469‑812088281
    [Google Scholar]
  90. SuH. GornitskyM. VellyA.M. YuH. BenarrochM. SchipperH.M. Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease.Free Radic. Biol. Med.200946791492110.1016/j.freeradbiomed.2009.01.00819280702
    [Google Scholar]
  91. PradeepA.R. RaoN.S. BajajP. AgarwalE. 8-Isoprostane: A lipid peroxidation product in gingival crevicular fluid in healthy, gingivitis and chronic periodontitis subjects.Arch. Oral Biol.201358550050410.1016/j.archoralbio.2013.01.01123453083
    [Google Scholar]
  92. NguyenT.T. NgoL.Q. PromsudthiA. SuraritR. Salivary oxidative stress biomarkers in chronic periodontitis and acute coronary syndrome.Clin. Oral Investig.20172172345235310.1007/s00784‑016‑2029‑327987039
    [Google Scholar]
  93. HalliwellB. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come?Am. J. Clin. Nutr.20007251082108710.1093/ajcn/72.5.108211063432
    [Google Scholar]
  94. EkuniD. TomofujiT. TamakiN. SanbeT. AzumaT. YamanakaR. YamamotoT. WatanabeT. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis.Arch. Oral Biol.200853432432910.1016/j.archoralbio.2007.10.00518031711
    [Google Scholar]
  95. YangX. LiC. PanY. The influences of periodontal status and periodontal pathogen quantity on salivary 8-hydroxydeoxyguanosine and interleukin-17 levels.J. Periodontol.201687559160010.1902/jop.2015.15039026654345
    [Google Scholar]
  96. ÖnderC. KurganŞ. AltıngözS.M. BağışN. UyanıkM. SerdarM.A. KantarcıA. GünhanM. Impact of non-surgical periodontal therapy on saliva and serum levels of markers of oxidative stress.Clin. Oral Investig.20172161961196910.1007/s00784‑016‑1984‑z27807715
    [Google Scholar]
  97. Zamora-PerezA.L. Ortiz-GarcíaY.M. Lazalde-RamosB.P. Guerrero-VelázquezC. Gómez-MedaB.C. Ramírez-AguilarM.Á. Zúñiga-GonzálezG.M. Increased micronuclei and nuclear abnormalities in buccal mucosa and oxidative damage in saliva from patients with chronic and aggressive periodontal diseases.J. Periodontal Res.2015501283610.1111/jre.1217524666368
    [Google Scholar]
  98. ÇanakçıC.F. TatarA. ÇanakçıV. CicekY. OztasS. OrbakR. New evidence of premature oxidative DNA damage: mitochondrial DNA deletion in gingival tissue of patients with periodontitis.J. Periodontol.200677111894190010.1902/jop.2006.06010817076616
    [Google Scholar]
  99. MasiS. SalpeaK.D. LiK. ParkarM. NibaliL. DonosN. PatelK. TaddeiS. DeanfieldJ.E. D’AiutoF. HumphriesS.E. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis.Free Radic. Biol. Med.201150673073510.1016/j.freeradbiomed.2010.12.03121195167
    [Google Scholar]
  100. VoT.T.T. ChuP.M. TuanV.P. TeJ.S.L. LeeI.T. The promising role of antioxidant phytochemicals in the prevention and preatment of periodontal disease via the inhibition of oxidative stress pathways: updated insights.Antioxidants2020912121110.3390/antiox912121133271934
    [Google Scholar]
  101. BouayedJ. BohnT. Exogenous antioxidants-double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses.Oxid. Med. Cell. Longev.20103422823710.4161/oxim.3.4.1285820972369
    [Google Scholar]
  102. J MbahC. OrabuezeI. H OkorieN. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system.Acta Scientific Pharmaceutical Sciences201936284210.31080/ASPS.2019.03.0273
    [Google Scholar]
  103. JindalM. TripathiP. BlagganaV. UpadhyayP. GuptaS. NishatS. Antioxidant therapy (lycopene and green tea extract) in periodontal disease: A promising paradigm.J. Indian Soc. Periodontol.2019231253010.4103/jisp.jisp_277_1830692739
    [Google Scholar]
  104. KaurG. KathariyaR. BansalS. SinghA. ShahakarD. Dietary antioxidants and their indispensable role in periodontal health.J. Food Drug Anal.201624223924610.1016/j.jfda.2015.11.00328911576
    [Google Scholar]
  105. ToramanA. ArabaciT. AytekinZ. AlbayrakM. BayirY. Effects of vitamin C local application on ligature-induced periodontitis in diabetic rats.J. Appl. Oral Sci.202028e2020044410.1590/1678‑7757‑2020‑044433263670
    [Google Scholar]
  106. LiL. ZhangY.L. LiuX.Y. MengX. ZhaoR.Q. OuL.L. LiB.Z. XingT. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress.Front. Microbiol.20211265637210.3389/fmicb.2021.65637234211440
    [Google Scholar]
  107. PermuyM. López-PeñaM. González-CantalapiedraA. MuñozF. Melatonin: A review of its potential functions and effects on dental disease.Int. J. Mol. Sci.201718486510.3390/ijms1804086528422058
    [Google Scholar]
  108. RameshA. VargheseS. DoraiswamyJ. MalaiappanS. Herbs as an antioxidant arsenal for periodontal diseases.J. Intercult. Ethnopharmacol.201651929610.5455/jice.2016012206555627069730
    [Google Scholar]
  109. StahlW. SiesH. Antioxidant activity of carotenoids.Mol. Aspects Med.200324634535110.1016/S0098‑2997(03)00030‑X14585305
    [Google Scholar]
  110. KajiuraY. NishikawaY. LewJ.H. KidoJ. NagataT. NaruishiK. β-carotene suppresses Porphyromonas gingivalis lipopolysaccharide-mediated cytokine production in THP-1 monocytes cultured with high glucose condition.Cell Biol. Int.201842110511110.1002/cbin.1087328906038
    [Google Scholar]
  111. YoungA.J. LoweG.M. Antioxidant and prooxidant properties of carotenoids.Arch. Biochem. Biophys.20013851202710.1006/abbi.2000.214911361018
    [Google Scholar]
  112. NishigakiM. YamamotoT. IchiokaH. HonjoK. YamamotoK. OsekoF. KitaM. MazdaO. KanamuraN. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells.Arch. Oral Biol.201358788088610.1016/j.archoralbio.2013.01.00523452546
    [Google Scholar]
  113. Balci YuceH. Lektemur AlpanA. GevrekF. TokerH. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis.J. Periodontal Res.201853113113810.1111/jre.1249729044575
    [Google Scholar]
  114. MartillanesS. Rocha-PimientaJ. Delgado-AdamezJ. Agrifood by-products as a source of phytochemical compounds.Descriptive food science.intechopen2018
    [Google Scholar]
  115. VuoloM.M. LimaV.S. JuniorM.R.M. Bioactive Compounds: Health Benefits and Potential Applications.Cambridge, UKWoodhead Publishing2019335010.1016/B978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  116. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep. (Amst.)201924e0037010.1016/j.btre.2019.e0037031516850
    [Google Scholar]
  117. NugalaB. NamasiA. EmmadiP. KrishnaP.M. Role of green tea as an antioxidant in periodontal disease: The Asian paradox.J. Indian Soc. Periodontol.201216331331610.4103/0972‑124X.10090223162321
    [Google Scholar]
  118. CaiY. ChenZ. LiuH. XuanY. WangX. LuanQ. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis -induced periodontitis in mice.Int. Immunopharmacol.201529283984510.1016/j.intimp.2015.08.03326359545
    [Google Scholar]
  119. HrishiT.S. KundapurP.P. NahaA. ThomasB.S. KamathS. BhatG.S. Effect of adjunctive use of green tea dentifrice in periodontitis patients – A Randomized Controlled Pilot Study.Int. J. Dent. Hyg.201614317818310.1111/idh.1213125690541
    [Google Scholar]
  120. CarochoM. FerreiraI.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives.Food Chem. Toxicol.201351152510.1016/j.fct.2012.09.02123017782
    [Google Scholar]
  121. Gutiérrez-VenegasG. Kawasaki-CárdenasP. Rita Arroyo-CruzS. Maldonado-FríasS. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts.Eur. J. Pharmacol.20065411-29510510.1016/j.ejphar.2006.03.06916762341
    [Google Scholar]
  122. Ben LaghaA. DudonnéS. DesjardinsY. GrenierD. Wild blueberry (Vaccinium angustifolium Ait.) polyphenols target Fisobacterium nucleatum and the host inflammatory response: Potential innovative molecules for treating periodontal disease.J. Agric. Food Chem.201563316999700810.1021/acs.jafc.5b0152526207764
    [Google Scholar]
  123. Ben LaghaA. HaasB. GrenierD. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum.Sci. Rep.2017714481510.1038/srep4481528322293
    [Google Scholar]
  124. Bouarab-ChibaneL. ForquetV. LantériP. ClémentY. Léonard-AkkariL. OulahalN. DegraeveP. BordesC. Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure activity relationship) models.Front. Microbiol.20191082910.3389/fmicb.2019.0082931057527
    [Google Scholar]
  125. BatchuS.N. ChaudharyK.R. WiebeG.J. SeubertJ.M. Bioactive compounds in heart disease.Bioactive Food as Dietary Interventions for Cardiovascular Disease. WatsonR.R. PreedyV.R. San Diego, CA, USAAcademic Press201343144210.1016/B978‑0‑12‑396485‑4.00026‑8
    [Google Scholar]
  126. ChanJ.Y.Y. YuenA.C.Y. ChanR.Y.K. ChanS.W. A review of the cardiovascular benefits and antioxidant properties of allicin.Phytother. Res.201327563764610.1002/ptr.479622888009
    [Google Scholar]
  127. ProvincialiM. PierpaoliE. PiacenzaF. GiacconiR. CostarelliL. BassoA. RecchioniR. MarcheselliF. BrayD. BenlhassanK. Nutritional modulators of cellular senescence in vitro.Molecular Basis of Nutrition and Aging.Academic Press.London, UK.201610.1016/B978‑0‑12‑801816‑3.00022‑4
    [Google Scholar]
  128. ShahzadM. MillhouseE. CulshawS. EdwardsC.A. RamageG. CombetE. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation.Food Funct.20156371972910.1039/C4FO01087F25585200
    [Google Scholar]
  129. ElburkiM.S. MooreD.D. TerezakisN.G. ZhangY. LeeH.M. JohnsonF. GolubL.M. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects.J. Periodontal Res.201752218620010.1111/jre.1238127038334
    [Google Scholar]
  130. GuimarãesM.R. CoimbraL.S. de AquinoS.G. SpolidorioL.C. KirkwoodK.L. RossaC.Jr. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo.J. Periodontal Res.201146226927910.1111/j.1600‑0765.2010.01342.x21306385
    [Google Scholar]
  131. ElburkiM.S. RossaC.Jr Guimarães-StabiliM.R. LeeH.M. Curylofo-ZottiF.A. JohnsonF. GolubL.M. A chemically modified curcumin (CMC 2.24) inhibits nuclear factor kappaB activation and inflammatory bone loss in murine models of LPS-induced experimental periodontitis and diabetes-associated natural periodontitis.Inflammation20174041436144910.1007/s10753‑017‑0587‑428534138
    [Google Scholar]
  132. GuruS. KothiwaleS. SarochN. GuruR. Comparative evaluation of inhibitory effect of curcumin and doxycycline on matrix metalloproteinase-9 activity in chronic periodontitis.Indian J. Dent. Res.201728556056510.4103/ijdr.IJDR_461_1629072221
    [Google Scholar]
  133. MartinsC.A. LeyhausenG. VolkJ. GeurtsenW. Curcumin in combination with piperine suppresses osteoclastogenesis in vitro.J. Endod.201541101638164510.1016/j.joen.2015.05.00926300429
    [Google Scholar]
  134. de Almeida BrandãoD. SpolidorioL.C. JohnsonF. GolubL.M. Guimarães-StabiliM.R. RossaC.Jr Dose-response assessment of chemically modified curcumin in experimental periodontitis.J. Periodontol.201990553554510.1002/JPER.18‑039230394523
    [Google Scholar]
  135. GuimarãesM.R. de AquinoS.G. CoimbraL.S. SpolidorioL.C. KirkwoodK.L. RossaC.Jr. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats.Innate Immun.201218115516310.1177/175342591039293521242275
    [Google Scholar]
  136. Curylofo-ZottiF.A. ElburkiM.S. OliveiraP.A. CerriP.S. SantosL.A. LeeH.M. JohnsonF. GolubL.M. RossaC. Guimarães-StabiliM.R. Differential effects of natural Curcumin and chemically modified curcumin on inflammation and bone resorption in model of experimental periodontitis.Arch. Oral Biol.201891425010.1016/j.archoralbio.2018.04.00729669267
    [Google Scholar]
  137. ZambranoL.M.G. BrandaoD.A. RochaF.R.G. MarsiglioR.P. LongoI.B. PrimoF.L. TedescoA.C. Guimaraes-StabiliM.R. Rossa JuniorC. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease.Sci. Rep.201881665210.1038/s41598‑018‑24866‑229703905
    [Google Scholar]
  138. MazzarinoL. BorsaliR. Lemos-SennaE. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.J. Pharm. Sci.2014103113764377110.1002/jps.2414225187001
    [Google Scholar]
  139. CarbinattoF.M. RibeiroT.S. ColnagoL.A. EvangelistaR.C. CuryB.S.F. Preparation and characterization of amylose inclusion complexes for drug delivery applications.J. Pharm. Sci.2016105123124110.1002/jps.2470226579874
    [Google Scholar]
  140. NasraM.M.A. KhiriH.M. HazzahH.A. AbdallahO.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis.Drug Deliv.201724113314210.1080/10717544.2016.123359128156166
    [Google Scholar]
  141. FranckF.C. BenattiB.B. AndiaD.C. CiranoF.R. CasarinR.C. CorrêaM.G. RibeiroF.V. Impact of resveratrol on bone repair in rats exposed to cigarette smoke inhalation: histomorphometric and bone-related gene expression analysis.Int. J. Oral Maxillofac. Surg.201847454154810.1016/j.ijom.2017.08.00428927744
    [Google Scholar]
  142. IkedaE. IkedaY. WangY. FineN. SheikhZ. ViniegraA. BarzilayO. GanssB. TenenbaumH.C. GlogauerM. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis.J. Periodontol.201889558659510.1002/JPER.17‑035229856488
    [Google Scholar]
  143. Orihuela-CamposR.C. TamakiN. MukaiR. FukuiM. MikiK. TeraoJ. ItoH.O. Biological impacts of resveratrol, quercetin, and N-acetylcysteine on oxidative stress in human gingival fibroblasts.J. Clin. Biochem. Nutr.201556322022710.3164/jcbn.14‑12926060353
    [Google Scholar]
  144. BhattaraiG. PoudelS.B. KookS.H. LeeJ.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.Acta Biomater.20162939840810.1016/j.actbio.2015.10.03126497626
    [Google Scholar]
  145. RizzoA. BevilacquaN. GuidaL. AnnunziataM. Romano CarratelliC. PaolilloR. Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells.Cytokine201260119720410.1016/j.cyto.2012.06.00422749236
    [Google Scholar]
  146. WadhwaD. BeyA. HasijaM. MoinS. KumarA. AmanS. SharmaV.K. Determination of levels of nitric oxide in smoker and nonsmoker patients with chronic periodontitis.J. Periodontal Implant Sci.201343521522010.5051/jpis.2013.43.5.21524236243
    [Google Scholar]
  147. CasatiM.Z. AlgayerC. Cardoso da CruzG. RibeiroF.V. CasarinR.C.V. PimentelS.P. CiranoF.R. Resveratrol decreases periodontal breakdown and modulates local levels of cytokines during periodontitis in rats.J. Periodontol.20138410e58e6410.1902/jop.2013.12074623489233
    [Google Scholar]
  148. CiranoF.R. CasarinR.C.V. RibeiroF.V. CasatiM.Z. PimentelS.P. TaieteT. BernardiM.M. Effect of Resveratrol on periodontal pathogens during experimental periodontitis in rats.Braz. Oral Res.2016301e12810.1590/1807‑3107bor‑2016.vol30.012827901209
    [Google Scholar]
  149. OrnstrupM.J. HarsløfT. SørensenL. StenkjærL. LangdahlB.L. PedersenS.B. Resveratrol increases osteoblast differentiation in vitro independently of inflammation.Calcif. Tissue Int.201699215516310.1007/s00223‑016‑0130‑x27000750
    [Google Scholar]
  150. TamakiN. Cristina Orihuela-CamposR. InagakiY. FukuiM. NagataT. ItoH.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model.Free Radic. Biol. Med.20147522222910.1016/j.freeradbiomed.2014.07.03425091897
    [Google Scholar]
  151. RibeiroI.M. de Souza BarrosoM.E. KampkeE.H. BragaL.T.F. CampagnaroB.P. MeyrellesS.S. Infrared laser therapy decreases systemic oxidative stress and inflammation in hypercholesterolemic mice with periodontitis.Lipids Health Dis.202322117110.1186/s12944‑023‑01934‑937817126
    [Google Scholar]
  152. BaoX. ZhaoJ. SunJ. HuM. YangX. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease.ACS Nano20181298882889210.1021/acsnano.8b0402230028940
    [Google Scholar]
  153. HiguchiJ. FortunatoG. WoźniakB. ChodaraA. DomaschkeS. Męczyńska-WielgoszS. KruszewskiM. DommannA. ŁojkowskiW. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration.Nanomaterials (Basel)2019911162510.3390/nano911162531731775
    [Google Scholar]
  154. KahramanE. ÿzhanG. ÿzsoyY. GüngörS. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment.Colloids Surf. B Biointerfaces201614669269910.1016/j.colsurfb.2016.07.02927434156
    [Google Scholar]
  155. BhattaraiG. PoudelS.B. KookS.H. LeeJ.C. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis.J. Biomed. Mater. Res. A201710592510252110.1002/jbm.a.3610928509410
    [Google Scholar]
  156. MurgiaD. AngellottiG. D’AgostinoF. De CaroV. Bioadhesive matrix tablets loaded with lipophilic nanoparticles as vehicles for drugs for periodontitis treatment: development and characterization.Polymers (Basel)20191111180110.3390/polym1111180131684081
    [Google Scholar]
  157. GoyalG. GargT. RathG. GoyalA.K. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease.Crit. Rev. Ther. Drug Carrier Syst.20143128911910.1615/CritRevTherDrugCarrierSyst.201400811724940625
    [Google Scholar]
  158. ShaheenM.A. ElmeadawyS.H. BazeedF.B. AneesM.M. SalehN.M. Innovative coenzyme Q10-loaded nanoformulation as an adjunct approach for the management of moderate periodontitis: preparation, evaluation, and clinical study.Drug Deliv. Transl. Res.202010254856410.1007/s13346‑019‑00698‑z31953677
    [Google Scholar]
  159. Alvarez EchazúM.I. OlivettiC.E. PeraltaI. AlonsoM.R. AnesiniC. PerezC.J. AlvarezG.S. DesimoneM.F. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.Colloids Surf. B Biointerfaces2018169829110.1016/j.colsurfb.2018.05.01529751344
    [Google Scholar]
  160. SaitaM. KanekoJ. SatoT. TakahashiS. Wada-TakahashiS. KawamataR. SakuraiT. LeeM.C. HamadaN. KimotoK. NagasakiY. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption.Biomaterials20167629230110.1016/j.biomaterials.2015.10.07726559357
    [Google Scholar]
  161. MillsM.P. RosenP.S. ChambroneL. GreenwellH. KaoR.T. KlokkevoldP.R. McAllisterB.S. ReynoldsM.A. RomanosG.E. WangH.L. American Academy of Periodontology best evidence consensus statement on the efficacy of laser therapy used alone or as an adjunct to non-surgical and surgical treatment of periodontitis and peri-implant diseases.J. Periodontol.201889773774210.1002/JPER.17‑035629693260
    [Google Scholar]
  162. SantosM.A.F.M. SilvaD.N. RovarisK. SousaF.B. DantasE.L.A. LoureiroL.A. PereiraT.M.C. MeyrellesS.S. BertolloR.M. VasquezE.C. Optimal parameters of laser therapy to improve critical calvarial defects.Front. Physiol.20221384114610.3389/fphys.2022.84114635283760
    [Google Scholar]
  163. MarquesM.M. PereiraA.N. FujiharaN.A. NogueiraF.N. EduardoC.P. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts.Lasers Surg. Med.200434326026510.1002/lsm.2000815022254
    [Google Scholar]
  164. R HamblinM. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation.AIMS Biophys.20174333736110.3934/biophy.2017.3.33728748217
    [Google Scholar]
  165. KaruT.I. Low-power laser therapy.Biomedical Photonics Handbook.1st ed Vo-DinhT. Boca Raton, FLCRC Press200312510.1201/9780203008997.ch48
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673297545240507091410
Loading
/content/journals/cmc/10.2174/0109298673297545240507091410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test