Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

A family of 4-benzo[][1,3]oxazines were obtained from a group of -(2-alkynyl)aryl benzamides precursors gold(I) catalysed chemoselective 6--dig C-O cyclization.

Methods

The precursors and oxazines obtained were studied in breast cancer cell lines MCF-7, CAMA-1, HCC1954 and SKBR-3 with differential biological activity showing various degrees of inhibition with a notable effect for those that had an aryl substituted at C-2 of the molecules. 4-benzo[][1,3]oxazines showed an IC rating from 0.30 to 157.4 µM in MCF-7, 0.16 to 139 in CAMA-1, 0.09 to 93.08 in SKBR-3, and 0.51 to 157.2 in HCC1954 cells.

Results

We observed that etoposide is similar to benzoxazines while taxol effect is more potent. Four cell lines responded to benzoxazines while SKBR-3 cell line responded to precursors and benzoxazines. Compounds , , and have the potent effect in cell proliferation inhibition in the 4 cell lines tested and correlated with oxidant activity suggesting a possible mechanism by ROS generation.

Conclusion

These compounds represent possible drug candidates for the treatment of breast cancer. However, further trials are needed to elucidate its full effect on cellular and molecular features of cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673292365240422104456
2024-04-26
2024-11-19
Loading full text...

Full text loading...

References

  1. ZhangY.R. XieJ.W. HuangX.J. ZhuW.D. Construction of functionalized 2,3-dihydro-1,4-benzoxazines via [5 + 1] annulations of 2-halo-1,3-dicarbonyl compounds with imines.Org. Biomol. Chem.201210326554656110.1039/c2ob25927c22760526
    [Google Scholar]
  2. SugimotoY. OtaniT. OieS. WierzbaK. YamadaY. Mechanism of action of a new macromolecular antitumor antibiotic, C-1027.J. Antibiot.199043441742110.7164/antibiotics.43.417
    [Google Scholar]
  3. LiuY.L. HsuC-W. ChouC-I. Silicon-containing benzoxazines and their polymers: Copolymerization and copolymer properties.J. Polym. Sci. A Polym. Chem.20074561007101510.1002/pola.21853
    [Google Scholar]
  4. ZinadD.S. MahalA. MohapatraR.K. SarangiA.K. PratamaM.R.F. Medicinal chemistry of oxazines as promising agents in drug discovery.Chem. Biol. Drug Des.2020951164710.1111/cbdd.1363331583840
    [Google Scholar]
  5. GirardC. LiuS. CadepondF. AdamsD. LacroixC. VerleyeM. GillardinJ.M. BaulieuE.E. SchumacherM. Schweizer-GroyerG. Etifoxine improves peripheral nerve regeneration and functional recovery.Proc. Natl. Acad. Sci. USA200810551205052051010.1073/pnas.081120110619075249
    [Google Scholar]
  6. NahideP.D. Alba-BetancourtC. Chávez-RiveraR. Romo-RodríguezP. Solís-HernándezM. Segura-QuezadaL.A. Torres-CarbajalK.R. Gámez-MontañoR. Deveze-ÁlvarezM.A. Ramírez-MoralesM.A. Alonso-CastroA.J. Zapata-MoralesJ.R. Ruiz-PadillaA.J. Mendoza-MacíasC.L. Meza-CarmenV. Cortés-GarcíaC.J. Corrales-EscobosaA.R. Núñez-AnitaR.E. Ortíz-AlvaradoR. Chacón-GarcíaL. Solorio-AlvaradoC.R. Novel 2-aryl-4-aryloxyquinoline-based fungistatics for Mucor circinelloides. Biological evaluation of activity, QSAR and docking study.Bioorg. Med. Chem. Lett.20226312864910.1016/j.bmcl.2022.12864935245665
    [Google Scholar]
  7. Torres-CarbajalK.R.S-Q. Indomethacin synthesis, historical overview of their structural modifications.ChemistrySelect20227e202201897
    [Google Scholar]
  8. ZhangP. TerefenkoE.A. FensomeA. WrobelJ. WinnekerR. LundeenS. MarschkeK.B. ZhangZ. 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin- 2-ones: A novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists.J. Med. Chem.200245204379438210.1021/jm025555e12238914
    [Google Scholar]
  9. HaysS.J. CapratheB.W. GilmoreJ.L. AminN. EmmerlingM.R. MichaelW. NadimpalliR. NathR. RaserK.J. StaffordD. WatsonD. WangK. JaenJ.C. 2-Amino-4 H -3,1-benzoxazin-4-ones as inhibitors of C1r serine protease.J. Med. Chem.19984171060106710.1021/jm970394d9544206
    [Google Scholar]
  10. HernándezE. VélezJ.M. VlaarC.P. Synthesis of 1,4-dihydro-benzo[d][1,3]oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol.Tetrahedron Lett.200748518972897510.1016/j.tetlet.2007.10.11419096499
    [Google Scholar]
  11. ZhangP. TerefenkoE.A. FensomeA. ZhangZ. ZhuY. CohenJ. WinnekerR. WrobelJ. YardleyJ. Potent nonsteroidal progesterone receptor agonists: Synthesis and SAR study of 6-aryl benzoxazines.Bioorg. Med. Chem. Lett.200212578779010.1016/S0960‑894X(02)00025‑211859003
    [Google Scholar]
  12. YarimM. KoksalM. DurmazI. AtalayR. Cancer cell cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives.Int. J. Mol. Sci.20121378071808510.3390/ijms1307807122942690
    [Google Scholar]
  13. AtaollahiM.R. SharifiJ. PaknahadM.R. PaknahadA. Breast cancer and associated factors: A review.J Med Life20158Spec Iss 4611
    [Google Scholar]
  14. RamadossV. Alonso-CastroA.J. Campos-XolalpaN. Solorio-AlvaradoC.R. Protecting-group-free total synthesis and biological evaluation of 3-methylkealiiquinone and structural analogues.J. Org. Chem.20188317106271063510.1021/acs.joc.8b0143630091606
    [Google Scholar]
  15. BhatM. Al-DhfyanA. NaglahA. KhanA. Al-OmarM. Lead optimization of 2-Cyclohexyl-N- [(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides for targeting the HER-2 overexpressed breast cancer cell line SKBr-3.Molecules20152010182461826310.3390/molecules20101824626457700
    [Google Scholar]
  16. RamadossV. Alonso-CastroA.J. Campos-XolalpaN. Ortiz-AlvaradoR. Yahuaca-JuárezB. Solorio-AlvaradoC.R. Total synthesis of kealiiquinone: The regio-controlled strategy for accessing its 1-methyl-4-arylbenzimidazolone core.RSC Advances2018854307613077610.1039/C8RA06676K35548717
    [Google Scholar]
  17. RamadossV.G-M. Solorio-Alvarado, C.R.; Ramadoss, V.; Gámez-Montaño, R.; Zapata-Morales, J.R.; and Alonso-Castro, A.J.; Total synthesis of the linear and angular 3-methylated regioisomers of the marine natural product Kealiiquinone and biological evaluation of related Leucetta sp. alkaloids on human breast cancerMed. Chem. Res.201928473484
    [Google Scholar]
  18. SharmaG.N. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912622247839
    [Google Scholar]
  19. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  20. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.201750112310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  21. ComşaŞ. CîmpeanA.M. RaicaM. The story of MCF-7 breast cancer cell line: 40 years of experience in research.Anticancer Res.20153563147315426026074
    [Google Scholar]
  22. BoomsA. CoetzeeG.A. PierceS.E. MCF-7 as a model for functional analysis of breast cancer risk variants.Cancer Epidemiol. Biomarkers Prev.201928101735174510.1158/1055‑9965.EPI‑19‑006631292138
    [Google Scholar]
  23. GazdarA.F. KurvariV. VirmaniA. GollahonL. SakaguchiM. WesterfieldM. KodagodaD. StasnyV. CunninghamH.T. WistubaI.I. TomlinsonG. TonkV. AshfaqR. LeitchA.M. MinnaJ.D. ShayJ.W. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.Int. J. Cancer199878676677410.1002/(SICI)1097‑0215(19981209)78:6<766::AID‑IJC15>3.0.CO;2‑L9833771
    [Google Scholar]
  24. FoghJ. WrightW.C. LovelessJ.D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors.J. Natl. Cancer Inst.197758220921410.1093/jnci/58.2.209833871
    [Google Scholar]
  25. LalK. YadavP. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents.Anticancer. Agents Med. Chem.2018181213710.2174/187152061666616081111353127528183
    [Google Scholar]
  26. Córdova-RivasS. Araujo-HuitradoJ.G. Rivera-AvalosE. Escalante-GarcíaI.L. Durón-TorresS.M. López-HernándezY. Hernández-LópezH. LópezL. de LoeraD. LópezJ.A. Differential proliferation effect of the newly synthesized valine, tyrosine and tryptophan–naphthoquinones in immortal and tumorigenic cervical cell lines.Molecules2020259205810.3390/molecules2509205832354078
    [Google Scholar]
  27. Segura-QuezadaL.A. Torres-CarbajalK.R. MaliN. PatilD.B. Luna-ChagollaM. Ortiz-AlvaradoR. Tapia-JuárezM. Fraire-SotoI. Araujo-HuitradoJ.G. Granados-LópezA.J. Gutiérrez-HernándezR. Reyes-EstradaC.A. López-HernándezY. LópezJ.A. Chacón-GarcíaL. Solorio-AlvaradoC.R. Gold(I)-catalyzed synthesis of 4 H -Benzo[ d ][1,3]oxazines and biological evaluation of activity in breast cancer cells.ACS Omega2022786944695510.1021/acsomega.1c0663735252686
    [Google Scholar]
  28. ManagaM.G. SultanbawaY. SivakumarD. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.).Molecules2020256132610.3390/molecules2506132632183223
    [Google Scholar]
  29. XuB.J. ChangS.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents.J. Food Sci.2007722S159S16610.1111/j.1750‑3841.2006.00260.x17995858
    [Google Scholar]
  30. NahideP.D. Jiménez-HallaJ.O.C. WrobelK. Solorio-AlvaradoC.R. Ortiz AlvaradoR. Yahuaca-JuárezB. Gold( i )-catalysed high-yielding synthesis of indenes by direct C sp3 –H bond activation.Org. Biomol. Chem.201816407330733510.1039/C8OB02056F30259052
    [Google Scholar]
  31. MatoM. FranchinoA. García-MoralesC. EchavarrenA.M. Gold-catalyzed synthesis of small rings.Chem. Rev.2021121148613868410.1021/acs.chemrev.0c0069733136374
    [Google Scholar]
  32. BrandesL.J. HermonatM.W. Receptor status and subsequent sensitivity of subclones of MCF-7 human breast cancer cells surviving exposure to diethylstilbestrol.Cancer Res.1983436283128356850594
    [Google Scholar]
  33. LewandowskiM. GwozdzinskiK. Nitroxides as antioxidants and anticancer drugs.Int. J. Mol. Sci.20171811249010.3390/ijms1811249029165366
    [Google Scholar]
  34. WinterJ.M. YadavT. RutterJ. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer.Mol. Cell202282183321333210.1016/j.molcel.2022.07.01235961309
    [Google Scholar]
  35. ValabregaG. BerrinoG. MilaniA. AgliettaM. MontemurroF. A retrospective analysis of the activity and safety of oral Etoposide in heavily pretreated metastatic breast cancer patients.Breast J.201521324124510.1111/tbj.1239825772707
    [Google Scholar]
  36. GottesmanM.M. PastanI. AmbudkarS.V. P-glycoprotein and multidrug resistance.Curr. Opin. Genet. Dev.19966561061710.1016/S0959‑437X(96)80091‑88939727
    [Google Scholar]
  37. MbabaM. DingleL.M.K. CashD. MareJ.A. LamingD. TaylorD. HoppeH.C. EdkinsA.L. KhanyeS.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives.Eur. J. Med. Chem.202018711192410.1016/j.ejmech.2019.11192431855792
    [Google Scholar]
  38. BolluR. PalemJ.D. BantuR. GugulothV. NagarapuL. PolepalliS. JainN. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids.Eur. J. Med. Chem.20158913814610.1016/j.ejmech.2014.10.05125462234
    [Google Scholar]
  39. de BritoM.R.M. PeláezW.J. FaillaceM.S. MilitãoG.C.G. AlmeidaJ.R.G.S. ArgüelloG.A. SzakonyiZ. FülöpF. SalvadoriM.C. TeixeiraF.S. FreitasR.M. PintoP.L.S. MengardaA.C. SilvaM.P.N. Da Silva FilhoA.A. de MoraesJ. Cyclohexene-fused 1,3-oxazines with selective antibacterial and antiparasitic action and low cytotoxic effects.Toxicol. In vitro 20174427327910.1016/j.tiv.2017.07.02128755871
    [Google Scholar]
  40. NishiyamaT. HataeN. YoshimuraT. TakakiS. AbeT. IshikuraM. HibinoS. ChoshiT. Concise synthesis of carbazole-1,4-quinones and evaluation of their antiproliferative activity against HCT-116 and HL-60 cells.Eur. J. Med. Chem.201612156157710.1016/j.ejmech.2016.05.06527318980
    [Google Scholar]
  41. ChoiS.J. LeeJ.E. JeongS.Y. ImI. LeeS.D. LeeE.J. LeeS.K. KwonS.M. AhnS.G. YoonJ.H. HanS.Y. KimJ.I. KimY.C. 5,5′-substituted indirubin-3′-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity.J. Med. Chem.20105393696370610.1021/jm100080z20361800
    [Google Scholar]
  42. TercelM. LeeH.H. MehtaS.Y. Youte TendoungJ.J. BaiS.Y. LiyanageH.D.S. PruijnF.B. Influence of a basic side chain on the properties of hypoxia-selective nitro analogues of the duocarmycins: Demonstration of substantial anticancer activity in combination with irradiation or chemotherapy.J. Med. Chem.201760135834585610.1021/acs.jmedchem.7b0056328644035
    [Google Scholar]
  43. Muthu RamalingamB. Dhatchana MoorthyN. ChowdhuryS.R. MageshwaranT. VellaichamyE. SahaS. GanesanK. RajeshB.N. IqbalS. MajumderH.K. GunasekaranK. SivaR. MohanakrishnanA.K. Synthesis and biological evaluation of calothrixins B and their deoxygenated analogues.J. Med. Chem.20186131285131510.1021/acs.jmedchem.7b0179729313676
    [Google Scholar]
  44. BeckD.E. AbdelmalakM. LvW. ReddyP.V.N. TenderG.S. O’NeillE. AgamaK. MarchandC. PommierY. CushmanM. Discovery of potent indenoisoquinoline topoisomerase I poisons lacking the 3-nitro toxicophore.J. Med. Chem.20155893997401510.1021/acs.jmedchem.5b0030325909279
    [Google Scholar]
  45. Dhatchana MoorthyN. Muthu RamalingamB. IqbalS. MohanakrishnanA.K. GunasekaranK. VellaichamyE. Novel isothiacalothrixin B analogues exhibit cytotoxic activity on human colon cancer cells in vitro by inducing irreversible DNA damage.PLoS One2018139e020290310.1371/journal.pone.020290330188913
    [Google Scholar]
  46. QiuG.L. HeS.S. ChenS.C. LiB. WuH.H. ZhangJ. TangW.J. Design, synthesis and biological evaluation of tricyclic pyrazolo[1,5- c ][1,3]benzoxazin-5(5 H )-one scaffolds as selective BuChE inhibitors.J. Enzyme Inhib. Med. Chem.20183311506151510.1080/14756366.2018.148869630284486
    [Google Scholar]
  47. Jalili-BalehL. NadriH. MoradiA. BukhariS.N.A. ShakibaieM. JafariM. GolshaniM. Homayouni MoghadamF. FiroozpourL. AsadipourA. EmamiS. KhoobiM. ForoumadiA. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease.Eur. J. Med. Chem.201713928028910.1016/j.ejmech.2017.07.07228803044
    [Google Scholar]
  48. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  49. TanosT. RojoL.J. EcheverriaP. BriskenC. ER and PR signaling nodes during mammary gland development.Breast Cancer Res.201214421010.1186/bcr316622809143
    [Google Scholar]
  50. HiltonH.N. DoanT.B. GrahamJ.D. OakesS.R. SilvestriA. SantucciN. KantimmS. HuschtschaL.I. OrmandyC.J. FunderJ.W. SimpsonE.R. KuczekE.S. LeedmanP.J. TilleyW.D. FullerP.J. MuscatG.E.O. ClarkeC.L. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease.Oncotarget20145188651866410.18632/oncotarget.235425261374
    [Google Scholar]
  51. DiepC.H. AhrendtH. LangeC.A. Progesterone induces progesterone receptor gene (PGR) expression via rapid activation of protein kinase pathways required for cooperative estrogen receptor alpha (ER) and progesterone receptor (PR) genomic action at ER/PR target genes.Steroids2016114485810.1016/j.steroids.2016.09.00427641443
    [Google Scholar]
  52. DuZ. GaoW. SunJ. LiY. SunY. ChenT. GeS. GuoW. Identification of long non-coding RNA-mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2- and triple negative breast cancer.Int. J. Mol. Med.20194431015102510.3892/ijmm.2019.426131257479
    [Google Scholar]
  53. RadojicicJ. ZaravinosA. VrekoussisT. KafousiM. SpandidosD.A. StathopoulosE.N. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer.Cell Cycle201110350751710.4161/cc.10.3.1475421270527
    [Google Scholar]
  54. ZhaoY.G. ChenY. MiaoG. ZhaoH. QuW. LiD. WangZ. LiuN. LiL. ChenS. LiuP. FengD. ZhangH. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation.Mol. Cell201767697498910.1016/j.molcel.2017.08.00528890335
    [Google Scholar]
  55. KolesnikovN.N. VeryaskinaY.A. TitovS.E. RodionovV.V. GeningT.P. AbakumovaT.V. KometovaV.V. TorosyanM.K. ZhimulevI.F. Expression of micrornas in molecular genetic breast cancer subtypes.Cancer Treat. Res. Commun.20192010002610.1016/j.ctarc.2016.08.00631255253
    [Google Scholar]
  56. KunduT. BhattacharjeeB. HazraS. GhoshA.K. BandyopadhyayD. PramanikA. Synthesis and biological assessment of pyrrolobenzoxazine scaffold as a potent antioxidant.J. Med. Chem.201962136315632910.1021/acs.jmedchem.9b0071731246452
    [Google Scholar]
  57. KavalappaY.P. GopalS.S. PonesakkiG. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis.J. Cell. Physiol.202123631798180910.1002/jcp.2996132710479
    [Google Scholar]
  58. Sowmya ShreeG. Yogendra PrasadK. ArpithaH.S. DeepikaU.R. Nawneet KumarK. MondalP. GanesanP. β-carotene at physiologically attainable concentration induces apoptosis and down-regulates cell survival and antioxidant markers in human breast cancer (MCF-7) cells.Mol. Cell. Biochem.20174361-211210.1007/s11010‑017‑3071‑428550445
    [Google Scholar]
  59. SharmaP. KumarS. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD).Cell Oncol.201841663765010.1007/s13402‑018‑0398‑030088260
    [Google Scholar]
  60. FirpoG. RamírezM.L. FaillaceM.S. de BritoM.R.M. e SilvaA.P.S.C.L. CostaJ.P. RodríguezM.C. ArgüelloG.A. SzakonyiZ. FülöpF. PeláezW.J. Evaluation of the antioxidant activity of Cis/Trans-N-Phenyl-1,4,4a,5,8,8a-Hexahydro-3,1-Benzoxazin-2-Imines.Antioxidants20198619710.3390/antiox806019731242617
    [Google Scholar]
  61. CastelliS. CiccaroneF. TavianD. CirioloM.R. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells.J. Exp. Clin. Cancer Res.20214019410.1186/s13046‑021‑01887‑w33706793
    [Google Scholar]
  62. HouX. YangS. YinJ. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis.Am. J. Physiol. Cell Physiol.20193161C104C11010.1152/ajpcell.00313.201830485138
    [Google Scholar]
  63. WuZ. WangH. FangS. XuC. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells.Mol. Med. Rep.20181854163417410.3892/mmr.2018.944330221706
    [Google Scholar]
  64. LuoY. MaJ. LuW. The significance of mitochondrial dysfunction in cancer.Int. J. Mol. Sci.20202116559810.3390/ijms2116559832764295
    [Google Scholar]
  65. HolenyaP. CanS. RubbianiR. AlborziniaH. JüngerA. ChengX. OttI. WölflS. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold( i ) complex.Metallomics2014691591160110.1039/C4MT00075G24777153
    [Google Scholar]
  66. ZengC. LinJ. ZhangK. OuH. ShenK. LiuQ. WeiZ. DongX. ZengX. ZengL. WangW. YaoJ. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling.Cancer Sci.2022113113766377510.1111/cas.1553135968603
    [Google Scholar]
  67. PurohitP.K. EdwardsR. TokatlidisK. SainiN. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells.RNA Biol.201916791892910.1080/15476286.2019.160099930932749
    [Google Scholar]
  68. YangA.J. ShiW.W. LiY. WangZ. ShaoR.G. LiD.D. HeQ.Y. Role of prosurvival molecules in the action of lidamycin toward human tumor cells.Biomed. Environ. Sci.200922324425210.1016/S0895‑3988(09)60052‑019725468
    [Google Scholar]
  69. WeiR. ZhaoY. WangJ. YangX. LiS. WangY. YangX. FeiJ. HaoX. ZhaoY. GuiL. DingX. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells.Int. J. Biol. Sci.202117112703271710.7150/ijbs.5940434345202
    [Google Scholar]
  70. LobodaA. DamulewiczM. PyzaE. JozkowiczA. DulakJ. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism.Cell. Mol. Life Sci.201673173221324710.1007/s00018‑016‑2223‑027100828
    [Google Scholar]
  71. FacchinettiM.M. Heme-Oxygenase-1.Antioxid. Redox Signal.202032171239124210.1089/ars.2020.806532148070
    [Google Scholar]
  72. SonY. KimS. ChungH.T. PaeH.O. Reactive oxygen species in the activation of MAP kinases.Methods Enzymol.2013528274810.1016/B978‑0‑12‑405881‑1.00002‑123849857
    [Google Scholar]
  73. TorresM. FormanH.J. Redox signaling and the MAP kinase pathways.Biofactors2003171-428729610.1002/biof.552017012812897450
    [Google Scholar]
  74. KmaL. BaruahT.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation.Biotechnol. Appl. Biochem.202269124826410.1002/bab.210433442914
    [Google Scholar]
  75. DengS. DaiG. ChenS. NieZ. ZhouJ. FangH. PengH. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway.Biomed. Pharmacother.201911060260810.1016/j.biopha.2018.11.10330537677
    [Google Scholar]
  76. MorganM.J. LiuZ. Crosstalk of reactive oxygen species and NF-κB signaling.Cell Res.201121110311510.1038/cr.2010.17821187859
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673292365240422104456
Loading
/content/journals/cmc/10.2174/0109298673292365240422104456
Loading

Data & Media loading...

Supplements

PRISMA checklist and supplementary material are available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): benzoxazines; Breast cancer; cell lines; oxidation; proliferation; reduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test