Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Small endogenous non-coding RNA molecules known as micro-ribonucleic acids (miRNAs) control post-transcriptional gene regulation. A change in miRNA expression is related to various diseases, including bone tumors. Benign bone tumors are categorized based on matrix production and predominant cell type. Osteochondromas and giant cell tumors are among the most common bone tumors. Interestingly, miRNAs can function as either tumor suppressor genes or oncogenes, thereby determining the fate of a tumor. In the present review, we discuss various bone tumors with regard to their prognosis, pathogenesis, and diagnosis. The association between miRNAs and bone tumors, such as osteosarcoma, Ewing’s sarcoma, chondrosarcoma, and giant-cell tumors, is also discussed. Moreover, miRNA may play an important role in tumor proliferation, growth, and metastasis. Knowledge of the dysregulation, amplification, and deletion of miRNA can be beneficial for the treatment of various bone cancers. The miRNAs could be beneficial for prognosis, treatment, future drug design, and treatment of resistant cases of bone cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673284932231226110754
2024-01-30
2025-07-26
Loading full text...

Full text loading...

References

  1. The LibreTexts libraries.Available from: https://bio.libretexts.org/Courses/University_of_Arkansas_Little_Rock/Genetics_BIOL3300_(Fall_2023)/Genetics_Textbook/06%3A_Regulation_of_Gene_Expression/6.02%3A_Eukaryotic_Gene_Regulation/6.2.04%3A_microRNAs (Accessed on: 21/11/2023).2023
  2. WightmanB. HaI. RuvkunG. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell199375585586210.1016/0092‑8674(93)90530‑48252622
    [Google Scholar]
  3. ReinhartB.J. SlackF.J. BassonM. PasquinelliA.E. BettingerJ.C. RougvieA.E. HorvitzH.R. RuvkunG. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature2000403677290190610.1038/3500260710706289
    [Google Scholar]
  4. LeeR.C. AmbrosV. An extensive class of small RNAs in Caenorhabditis elegans.Science2001294554386286410.1126/science.106532911679672
    [Google Scholar]
  5. Lagos-QuintanaM. RauhutR. YalcinA. MeyerJ. LendeckelW. TuschlT. Identification of tissue-specific microRNAs from mouse.Curr. Biol.200212973573910.1016/S0960‑9822(02)00809‑612007417
    [Google Scholar]
  6. AmbrosV. BartelB. BartelD.P. BurgeC.B. CarringtonJ.C. ChenX. DreyfussG. EddyS.R. Griffiths-JonesS. MarshallM. MatzkeM. RuvkunG. TuschlT. A uniform system for microRNA annotation.RNA20039327727910.1261/rna.218380312592000
    [Google Scholar]
  7. LimL.P. GlasnerM.E. YektaS. BurgeC.B. BartelD.P. Vertebrate microRNA genes.Science200329956121540154010.1126/science.108037212624257
    [Google Scholar]
  8. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci.20029924155241552910.1073/pnas.24260679912434020
    [Google Scholar]
  9. ZengY. Principles of micro-RNA production and maturation.Oncogene200625466156616210.1038/sj.onc.120990817028594
    [Google Scholar]
  10. O’BrienJ. HayderH. ZayedY. PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  11. BabiarzJ.E. RubyJ.G. WangY. BartelD.P. BlellochR. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.Genes Dev.200822202773278510.1101/gad.170530818923076
    [Google Scholar]
  12. RubyJ.G. JanC.H. BartelD.P. Intronic microRNA precursors that bypass Drosha processing.Nature20074487149838610.1038/nature0598317589500
    [Google Scholar]
  13. YodaM. KawamataT. ParooZ. YeX. IwasakiS. LiuQ. TomariY. ATP-dependent human RISC assembly pathways.Nat. Struct. Mol. Biol.2010171172310.1038/nsmb.173319966796
    [Google Scholar]
  14. KawamataT. TomariY. Making RISC.Trends Biochem. Sci.201035736837610.1016/j.tibs.2010.03.00920395147
    [Google Scholar]
  15. OlejniczakS.H. La RoccaG. GruberJ.J. ThompsonC.B. Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses.Proc. Natl. Acad. Sci.2013110115716210.1073/pnas.121995811023248281
    [Google Scholar]
  16. LewisB.P. ShihI. Jones-RhoadesM.W. BartelD.P. BurgeC.B. Prediction of mammalian microRNA targets.Cell2003115778779810.1016/S0092‑8674(03)01018‑314697198
    [Google Scholar]
  17. XuW. San LucasA. WangZ. LiuY. Identifying microRNA targets in different gene regions.BMC Bioinformatics201415S7S410.1186/1471‑2105‑15‑S7‑S425077573
    [Google Scholar]
  18. FabianM.R. SonenbergN. The mechanics of miRNA- mediated gene silencing: A look under the hood of miRISC.Nat. Struct. Mol. Biol.201219658659310.1038/nsmb.229622664986
    [Google Scholar]
  19. IpsaroJ.J. Joshua-TorL. From guide to target: Molecular insights into eukaryotic RNA-interference machinery.Nat. Struct. Mol. Biol.2015221202810.1038/nsmb.293125565029
    [Google Scholar]
  20. LlaveC. XieZ. KasschauK.D. CarringtonJ.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA.Science200229755892053205610.1126/science.107631112242443
    [Google Scholar]
  21. SzelągowskiA. KozakiewiczM. A glance at biogenesis and functionality of microRNAs and their role in the neuropathogenesis of Parkinson’s disease.Oxid. Med. Cell. Longev.2023202311810.1155/2023/775905337333462
    [Google Scholar]
  22. BukhariS.I.A. TruesdellS.S. LeeS. KolluS. ClassonA. BoukhaliM. JainE. MortensenR.D. YanagiyaA. SadreyevR.I. HaasW. VasudevanS. A specialized mechanism of translation mediated by FXR1a-associated micrornp in cellular quiescence.Mol. Cell201661576077310.1016/j.molcel.2016.02.01326942679
    [Google Scholar]
  23. ØromU.A. NielsenF.C. LundA.H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation.Mol. Cell200830446047110.1016/j.molcel.2008.05.00118498749
    [Google Scholar]
  24. LiJ. ShenJ. ZhaoY. DuF. LiM. XuX. ChenY. WangS. XiaoZ. WuZ. Role of miR-181a-5p in cancer (Review).Int. J. Oncol.202363410810.3892/ijo.2023.555637539738
    [Google Scholar]
  25. XuP. VernooyS.Y. GuoM. HayB.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism.Curr. Biol.200313979079510.1016/S0960‑9822(03)00250‑112725740
    [Google Scholar]
  26. CimminoA. CalinG.A. FabbriM. IorioM.V. FerracinM. ShimizuM. WojcikS.E. AqeilanR.I. ZupoS. DonoM. RassentiL. AlderH. VoliniaS. LiuC. KippsT.J. NegriniM. CroceC.M. miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc. Natl. Acad. Sci.200510239139441394910.1073/pnas.050665410216166262
    [Google Scholar]
  27. AndrianiF. MajoriniM.T. ManoM. LandoniE. MiceliR. FacchinettiF. MensahM. FontanellaE. DugoM. GiaccaM. PastorinoU. SozziG. DeliaD. RozL. LecisD. MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner.J. Hematol. Oncol.20181114510.1186/s13045‑018‑0594‑429558956
    [Google Scholar]
  28. ToffaninS. HoshidaY. LachenmayerA. VillanuevaA. CabellosL. MinguezB. SavicR. WardS.C. ThungS. ChiangD.Y. AlsinetC. TovarV. RoayaieS. SchwartzM. BruixJ. WaxmanS. FriedmanS.L. GolubT. MazzaferroV. LlovetJ.M. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a.Gastroenterology2011140516181628.e1610.1053/j.gastro.2011.02.00921324318
    [Google Scholar]
  29. JinJ. ZhouS. LiC. XuR. ZuL. YouJ. ZhangB. MiR-517a-3p accelerates lung cancer cell proliferation and invasion through inhibiting FOXJ3 expression.Life Sci.20141081485310.1016/j.lfs.2014.05.00624846831
    [Google Scholar]
  30. SalviA. SabelliC. MonciniS. VenturinM. AriciB. RivaP. PortolaniN. GiuliniS.M. De PetroG. BarlatiS. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells.FEBS J.2009276112966298210.1111/j.1742‑4658.2009.07014.x19490101
    [Google Scholar]
  31. ChristensenL.L. HolmA. RantalaJ. KallioniemiO. RasmussenM.H. OstenfeldM.S. Dagnaes-HansenF. ØsterB. SchepelerT. TobiasenH. ThorsenK. SieberO.M. GibbsP. LamyP. HansenT.F. JakobsenA. RiisingE.M. HelinK. LubinskiJ. Hagemann-MadsenR. LaurbergS. ØrntoftT.F. AndersenC.L. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer.PLoS One201496e9676710.1371/journal.pone.009676724892549
    [Google Scholar]
  32. ChenC.Z. LiL. LodishH.F. BartelD.P. MicroRNAs modulate hematopoietic lineage differentiation.Science20043035654838610.1126/science.109190314657504
    [Google Scholar]
  33. Bone Tumor. 2023 Available from: https://www.orthoinfo.org/en/diseases-conditions/bone-tumor/ (Accessed on: 18.9.2023).
  34. HendersonM. NeumeisterM.W. BuenoR.A.Jr. Hand tumors.Plast. Reconstr. Surg.20141336814e821e10.1097/PRS.000000000000017824867740
    [Google Scholar]
  35. WoertlerK. Benign bone tumors and tumor-like lesions: Value of cross-sectional imaging.Eur. Radiol.20031381820183510.1007/s00330‑003‑1902‑z12700923
    [Google Scholar]
  36. DahlinD. UnniK. Bone Tumors: General Aspects and Data on 11087 Cases.4th edCharles C Thomas198619(10).
    [Google Scholar]
  37. LamY. Bone tumors: Benign bone tumors.FP Essent.2020493112132573182
    [Google Scholar]
  38. PetcaR.C. GavriliuS. BurneiG. Retrospective clinicopathological study of malignant bone tumors in children and adolescents in Romania - single center experience.J. Med. Life20169220521027453756
    [Google Scholar]
  39. FletcherC. BridgeJ. HogendoornP. MertensF. WHO Classification of Tumours of Soft Tissue and Bone.4th edLyonIARC Press2013Vol. 5
    [Google Scholar]
  40. AhlawatS. FayadL.M. Revisiting the WHO classification system of bone tumours: Emphasis on advanced magnetic resonance imaging sequences. Part 2.Pol. J. Radiol.202085e409e41910.5114/pjr.2020.9868632999694
    [Google Scholar]
  41. HwangS. HameedM. KransdorfM. The 2020 World Health Organization classification of bone tumors: What radiologists should know.Skeletal Radiol.202352332934810.1007/s00256‑022‑04093‑735852560
    [Google Scholar]
  42. ClarkJ.C.M. DassC.R. ChoongP.F.M. A review of clinical and molecular prognostic factors in osteosarcoma.J. Cancer Res. Clin. Oncol.2008134328129710.1007/s00432‑007‑0330‑x17965883
    [Google Scholar]
  43. EleutérioS.J.P. SenerchiaA.A. AlmeidaM.T. CostaC.M.D. LustosaD. CalheirosL.M. BarretoJ.H.S. BrunettoA.L. MacedoC.R.P.D. PetrilliA.S. Osteosarcoma in patients younger than 12 years old without metastases have similar prognosis as adolescent and young adults.Pediatr. Blood Cancer20156271209121310.1002/pbc.2545925755160
    [Google Scholar]
  44. XinS. WeiG. Prognostic factors in osteosarcoma: A study level meta-analysis and systematic review of current practice.J. Bone Oncol.20202110028110.1016/j.jbo.2020.10028132140401
    [Google Scholar]
  45. De SalvoS. PavoneV. CocoS. Dell’AgliE. BlattiC. TestaG. Benign bone tumors: An overview of what we know today.J. Clin. Med.202211369910.3390/jcm1103069935160146
    [Google Scholar]
  46. HameedM. MandelkerD. Tumor syndromes predisposing to osteosarcoma.Adv. Anat. Pathol.201825421722210.1097/PAP.000000000000019029668499
    [Google Scholar]
  47. Bone cancer.2023Available from: https://www.mayoclinic.org/diseases-conditions/bone-cancer/symptoms-causes/syc-20350217 (Accessed on: 18.9.2023).
  48. Berrington de GonzalezA. KutsenkoA. RajaramanP. Sarcoma risk after radiation exposure.Clin. Sarcoma Res.2012211810.1186/2045‑3329‑2‑1823036235
    [Google Scholar]
  49. Upadhyay R., Radiation induced therapeutic effects in cancerous and tumor cells: A review. J. Stem Cell Res. Therap., 2023, 8(1), 1-12.
  50. ForestM. TomenoB. VanelD. Orthopedic Surgical Pathology. Orthopedic surgical pathology: diagnosis of tumors and pseudotumoral lesions of bone and joints.EdinburghChurchill Livingstone199771516
    [Google Scholar]
  51. BesticJ.M. WessellD.E. BeamanF.D. CassidyR.C. CzuczmanG.J. DemertzisJ.L. LenchikL. MotamediK. PierceJ.L. SharmaA. SloanA.E. ThanK. WalkerE.A. Ying-Kou YungE. KransdorfM.J. ACR appropriateness criteria® primary bone tumors.J. Am. Coll. Radiol.2020175S226S23810.1016/j.jacr.2020.01.03832370967
    [Google Scholar]
  52. GarofaloM. CroceC.M. Role of microRNAs in maintaining cancer stem cells.Adv. Drug Deliv. Rev.201581536110.1016/j.addr.2014.11.01425446141
    [Google Scholar]
  53. WangB. RicardoS. Role of microRNA machinery in kidney fibrosis.Clin. Exp. Pharmacol. Physiol.201441854355010.1111/1440‑1681.1224924798583
    [Google Scholar]
  54. Di LevaG. GarofaloM. CroceC.M. MicroRNAs in cancer.Annu. Rev. Pathol.20149128731410.1146/annurev‑pathol‑012513‑10471524079833
    [Google Scholar]
  55. YuanX. QianN. LingS. LiY. SunW. LiJ. DuR. ZhongG. LiuC. YuG. CaoD. LiuZ. WangY. QiZ. YaoY. WangF. LiuJ. HaoS. JinX. ZhaoY. XueJ. ZhaoD. GaoX. LiangS. LiY. SongJ. YuS. LiY. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells.Theranostics20211131429144510.7150/thno.4535133391543
    [Google Scholar]
  56. VoorhoeveP.M. le SageC. SchrierM. GillisA.J.M. StoopH. NagelR. LiuY.P. van DuijseJ. DrostJ. GriekspoorA. ZlotorynskiE. YabutaN. De VitaG. NojimaH. LooijengaL.H.J. AgamiR. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.Cell200612461169118110.1016/j.cell.2006.02.03716564011
    [Google Scholar]
  57. HuH. DuL. NagabayashiG. SeegerR.C. GattiR.A. ATM is down-regulated by N-Myc–regulated microRNA-421.Proc. Natl. Acad. Sci.201010741506151110.1073/pnas.090776310720080624
    [Google Scholar]
  58. ÖstlingP. LeivonenS.K. AakulaA. KohonenP. MäkeläR. HagmanZ. EdsjöA. KangaspeskaS. EdgrenH. NicoriciD. BjartellA. CederY. PeräläM. KallioniemiO. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells.Cancer Res.20117151956196710.1158/0008‑5472.CAN‑10‑242121343391
    [Google Scholar]
  59. HaoJ. ZhangS. ZhouY. LiuC. HuX. ShaoC. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer.Biochem. Biophys. Res. Commun.2011406455255710.1016/j.bbrc.2011.02.08621352803
    [Google Scholar]
  60. VanacoreD. BoccellinoM. RossettiS. CavaliereC. D’AnielloC. Di FrancoR. RomanoF.J. MontanariM. La MantiaE. PiscitelliR. NocerinoF. CappuccioF. GrimaldiG. IzzoA. CastaldoL. PepeM.F. MalzoneM.G. IovaneG. AmetranoG. StiusoP. QuagliuoloL. BarberioD. PerdonàS. MutoP. MontellaM. MaiolinoP. VenezianiB.M. BottiG. CaragliaM. FacchiniG. Micrornas in prostate cancer: An overview.Oncotarget2017830502405025110.18632/oncotarget.1693328445135
    [Google Scholar]
  61. ShinV.Y. ChuK.M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer.World J. Gastroenterol.20142030104321043910.3748/wjg.v20.i30.1043225132759
    [Google Scholar]
  62. IqbalM.A. AroraS. PrakasamG. CalinG.A. SyedM.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance.Mol. Aspects Med.20197032010.1016/j.mam.2018.07.00330102929
    [Google Scholar]
  63. BuscagliaL.E.B. LiY. Apoptosis and the target genes of microRNA-21.Chin. J. Cancer.201130637138010.5732/cjc.011.10132
    [Google Scholar]
  64. HerbertS.P. StainierD.Y.R. Molecular control of endothelial cell behaviour during blood vessel morphogenesis.Nat. Rev. Mol. Cell Biol.201112955156410.1038/nrm317621860391
    [Google Scholar]
  65. SasahiraT. KuriharaM. BhawalU.K. UedaN. ShimomotoT. YamamotoK. KiritaT. KuniyasuH. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer.Br. J. Cancer2012107470070610.1038/bjc.2012.33022836510
    [Google Scholar]
  66. ChengJ. ChenY. ZhaoP. LiuX. DongJ. LiJ. HuangC. WuR. LvY. Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF.Oncotarget2016721307023071110.18632/oncotarget.893027120793
    [Google Scholar]
  67. KobayashiE. HornicekF.J. DuanZ. MicroRNA involvement in osteosarcoma.Sarcoma201220121810.1155/2012/35973922550419
    [Google Scholar]
  68. OttavianiG. JaffeN. The epidemiology of osteosarcoma.Pediatric and Adolescent Osteosarcoma JaffeN. BrulandO.S. BielackS. Boston, MASpringer US152200931310.1007/978‑1‑4419‑0284‑9_1
    [Google Scholar]
  69. TangN. SongW.X. LuoJ. HaydonR.C. HeT.C. Osteosarcoma development and stem cell differentiation.Clin. Orthop. Relat. Res.200846692114213010.1007/s11999‑008‑0335‑z18563507
    [Google Scholar]
  70. HeC. XiongJ. XuX. LuW. LiuL. XiaoD. WangD. Functional elucidation of miR-34 in osteosarcoma cells and primary tumor samples.Biochem. Biophys. Res. Commun.20093881354010.1016/j.bbrc.2009.07.10119632201
    [Google Scholar]
  71. BaeY. YangT. ZengH.C. CampeauP.M. ChenY. BertinT. DawsonB.C. MunivezE. TaoJ. LeeB.H. miRNA-34c regulates Notch signaling during bone development.Hum. Mol. Genet.201221132991300010.1093/hmg/dds12922498974
    [Google Scholar]
  72. EnginF. YaoZ. YangT. ZhouG. BertinT. JiangM.M. ChenY. WangL. ZhengH. SuttonR.E. BoyceB.F. LeeB. Dimorphic effects of Notch signaling in bone homeostasis.Nat. Med.200814329930510.1038/nm171218297084
    [Google Scholar]
  73. LiaoY.Y. TsaiH.C. ChouP.Y. WangS.W. ChenH.T. LinY.M. ChiangI.P. ChangT.M. HsuS.K. ChouM.C. TangC.H. FongY.C. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells.Oncotarget2016744310432510.18632/oncotarget.670826713602
    [Google Scholar]
  74. XuE. ZhaoJ. MaJ. WangC. ZhangC. JiangH. ChengJ. GaoR. ZhouX. miR-146b-5p promotes invasion and metastasis contributing to chemoresistance in osteosarcoma by targeting zinc and ring finger 3.Oncol. Rep.201635127528310.3892/or.2015.439326549292
    [Google Scholar]
  75. SunX. DaiG. YuL. HuQ. ChenJ. GuoW. miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2.Sci. Rep.20188160610.1038/s41598‑017‑18739‑329330462
    [Google Scholar]
  76. ZhuY. TangL. ZhaoS. SunB. ChengL. TangY. LuoZ. LinZ. ZhuJ. ZhuW. ZhaoR. LuB. LongH. CXCR 4-mediated osteosarcoma growth and pulmonary metastasis is suppressed by microRNA-613.Cancer Sci.201810982412242210.1111/cas.1365329845707
    [Google Scholar]
  77. HesseE. TaipaleenmäkiH. MicroRNAs in bone metastasis.Curr. Osteoporos. Rep.201917312212810.1007/s11914‑019‑00510‑430905007
    [Google Scholar]
  78. SchwabJ.H. SpringfieldD.S. RaskinK.A. MankinH.J. HornicekF.J. What’s new in primary bone tumors.J. Bone Joint Surg. Am.201294201913191910.2106/JBJS.L.0095523079883
    [Google Scholar]
  79. RiggiN. StamenkovicI. The biology of ewing sarcoma.Cancer Lett.2007254111010.1016/j.canlet.2006.12.00917250957
    [Google Scholar]
  80. KovarH. Downstream EWS/FLI1 - upstream Ewing’s sarcoma.Genome Med.201021810.1186/gm12920156317
    [Google Scholar]
  81. BanJ. JugG. MestdaghP. SchwentnerR. KauerM. AryeeD.N.T. SchaeferK-L. NakataniF. ScotlandiK. ReiterM. StrunkD. SpelemanF. VandesompeleJ. KovarH. Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved in a positive feedback loop in Ewing’s sarcoma.Oncogene201130182173218010.1038/onc.2010.58121217773
    [Google Scholar]
  82. AsfaS. ToyH.I. Arshinchi BonabR. ChrousosG.P. PavlopoulouA. GeronikolouS.A. Soft tissue ewing sarcoma cell drug resistance revisited: A systems biology approach.Int. J. Environ. Res. Public Health20232013628810.3390/ijerph2013628837444135
    [Google Scholar]
  83. DavidE. BlanchardF. HeymannM.F. De PinieuxG. GouinF. RédiniF. HeymannD. The bone niche of chondrosarcoma: A sanctuary for drug resistance, tumour growth and also a source of new therapeutic targets.Sarcoma201120111810.1155/2011/93245121647363
    [Google Scholar]
  84. YoshitakaT. KawaiA. MiyakiS. NumotoK. KikutaK. OzakiT. LotzM. AsaharaH. Analysis of microRNAs expressions in chondrosarcoma.J. Orthop. Res.201331121992199810.1002/jor.2245723940002
    [Google Scholar]
  85. BerezaM. DembińskiM. ZającA.E. PiątkowskiJ. Dudzisz-ŚledźM. RutkowskiP. CzarneckaA.M. Epigenetic abnormalities in chondrosarcoma.Int. J. Mol. Sci.2023245453910.3390/ijms2405453936901967
    [Google Scholar]
  86. RaskinK.A. SchwabJ.H. MankinH.J. SpringfieldD.S. HornicekF.J. Giant cell tumor of bone.J. Am. Acad. Orthop. Surg.201321211812610.5435/JAAOS‑21‑02‑11823378375
    [Google Scholar]
  87. GhertM. SimunovicN. CowanR.W. ColterjohnN. SinghG. Properties of the stromal cell in giant cell tumor of bone.Clin. Orthop. Relat. Res.200745945981310.1097/BLO.0b013e31804856a117327805
    [Google Scholar]
  88. CowanR.W. MakI.W.Y. ColterjohnN. SinghG. GhertM. Collagenase expression and activity in the stromal cells from giant cell tumour of bone.Bone200944586587110.1016/j.bone.2009.01.39319442604
    [Google Scholar]
  89. WuZ. YinH. LiuT. YanW. LiZ. ChenJ. ChenH. WangT. JiangZ. ZhouW. XiaoJ. MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13.Biochem. Biophys. Res. Commun.2014443394494910.1016/j.bbrc.2013.12.07524360951
    [Google Scholar]
  90. MosakhaniN. PazzagliaL. BenassiM.S. BorzeI. QuattriniI. PicciP. KnuutilaS. MicroRNA expression profiles in metastatic and non-metastatic giant cell tumor of bone.Histol. Histopathol.201328567167810.14670/HH‑28.67123172052
    [Google Scholar]
  91. MengC. JiangB. LiuW. WangL. ZhaoZ. BaiR. ZhaoY. MiR-217 regulates autophagy through OPG/RANKL/RANK in giant cell tumors.J. Orthop. Surg. Res.202318134610.1186/s13018‑023‑03826‑137165403
    [Google Scholar]
  92. CrosetM. PantanoF. KanC.W.S. BonnelyeE. DescotesF. Alix-PanabièresC. LecellierC.H. BachelierR. AllioliN. HongS.S. BartkowiakK. PantelK. ClézardinP. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis–associated genes.Cancer Res.201878185259527310.1158/0008‑5472.CAN‑17‑305830042152
    [Google Scholar]
  93. MaoL. LiuS. HuL. JiaL. WangH. GuoM. ChenC. LiuY. XuL. miR-30 family: A promising regulator in development and disease.Bio. Med. Res. Int.201820181810.1155/2018/962341230003109
    [Google Scholar]
  94. ZhangL. LiG. WangK. WangY. DongJ. WangH. XuL. ShiF. CaoX. HuZ. ZhangS. MiR-30 family members inhibit osteoblast differentiation by suppressing Runx2 under unloading conditions in MC3T3-E1 cells.Biochem. Biophys. Res. Commun.2020522116417010.1016/j.bbrc.2019.11.05731757419
    [Google Scholar]
  95. ZhangT. ZhuX. SunQ. QinX. ZhangZ. FengY. YanM. ChenW. Identification and confirmation of the miR-30 family as a potential central player in tobacco-related head and neck squamous cell carcinoma.Front. Oncol.20211161637210.3389/fonc.2021.61637234336638
    [Google Scholar]
  96. JinY. ZhangJ. ZhuH. FanG. ZhouG. Expression profiles of miRNAs in giant cell tumor of bone showed miR-187-5p and miR-1323 can regulate biological functions through inhibiting FRS2.Cancer Med.2020993163317310.1002/cam4.285332154662
    [Google Scholar]
  97. LiY. LongX. WangJ. PengJ. ShenK. miRNA-128 modulates bone neoplasms cells proliferation and migration through the Wnt/β-catenin and EMT signal pathways.J. Orthop. Surg. Res.20211617110.1186/s13018‑020‑02164‑w33472642
    [Google Scholar]
  98. BhushanR. GrünhagenJ. BeckerJ. RobinsonP.N. OttC.E. KnausP. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules.Int. J. Biochem. Cell Biol.201345369670510.1016/j.biocel.2012.12.00823262291
    [Google Scholar]
  99. MizunoY. TokuzawaY. NinomiyaY. YagiK. Yatsuka-KanesakiY. SudaT. FukudaT. KatagiriT. KondohY. AmemiyaT. TashiroH. OkazakiY. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b.FEBS Lett.2009583132263226810.1016/j.febslet.2009.06.00619520079
    [Google Scholar]
  100. MizunoY. YagiK. TokuzawaY. Kanesaki-YatsukaY. SudaT. KatagiriT. FukudaT. MaruyamaM. OkudaA. AmemiyaT. KondohY. TashiroH. OkazakiY. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation.Biochem. Biophys. Res. Commun.2008368226727210.1016/j.bbrc.2008.01.07318230348
    [Google Scholar]
  101. CanalisE. AdamsD.J. BoskeyA. ParkerK. KranzL. ZanottiS. Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling.J. Biol. Chem.201328835256142562510.1074/jbc.M113.47049223884415
    [Google Scholar]
  102. NugentM. MicroRNA function and dysregulation in bone tumors: the evidence to date.Cancer Manag. Res.20146152510.2147/CMAR.S5392824426787
    [Google Scholar]
  103. CrowJ. SamuelG. FarrowE. GibsonM. JohnstonJ. GuestE. MillerN. PeiD. KoestlerD. PathakH. LiangX. MangelsC. GodwinA.K. MicroRNA content of ewing sarcoma derived extracellular vesicles leads to biomarker potential and identification of a previously undocumented EWS-FLI1 translocation.Biomark. Insights2022171177271922113269310.1177/1177271922113269336341281
    [Google Scholar]
  104. SakiN. AbrounS. HajizamaniS. RahimF. ShahjahaniM. Association of chromosomal translocation and MiRNA expression with the pathogenesis of multiple myeloma.Cell J.20141629911024567933
    [Google Scholar]
  105. ZhouL. LiuF. WangX. OuyangG. The roles of microRNAs in the regulation of tumor metastasis.Cell Biosci.2015513210.1186/s13578‑015‑0028‑826146543
    [Google Scholar]
  106. SieuwertsA.M. MostertB. Bolt-de VriesJ. PeetersD. de JonghF.E. StouthardJ.M.L. DirixL.Y. van DamP.A. Van GalenA. de WeerdV. KraanJ. van der SpoelP. Ramírez-MorenoR. van DeurzenC.H.M. SmidM. YuJ.X. JiangJ. WangY. GratamaJ.W. SleijferS. FoekensJ.A. MartensJ.W.M. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients.Clin. Cancer Res.201117113600361810.1158/1078‑0432.CCR‑11‑025521505063
    [Google Scholar]
  107. AlečkovićM. KangY. Regulation of cancer metastasis by cell-free miRNAs.Biochim. Biophys. Acta. BBA - Rev Cancer.201518551244210.1016/j.bbcan.2014.10.005
    [Google Scholar]
  108. KrzeszinskiJ.Y. WeiW. HuynhH. JinZ. WangX. ChangT.C. XieX.J. HeL. MangalaL.S. Lopez-BeresteinG. SoodA.K. MendellJ.T. WanY. Retraction Note: miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2.Nature2020582781013413410.1038/s41586‑020‑2273‑132483375
    [Google Scholar]
  109. LianJ.B. SteinG.S. van WijnenA.J. SteinJ.L. HassanM.Q. GaurT. ZhangY. MicroRNA control of bone formation and homeostasis.Nat. Rev. Endocrinol.20128421222710.1038/nrendo.2011.23422290358
    [Google Scholar]
  110. JiaJ. TianQ. LingS. LiuY. YangS. ShaoZ. miR-145 suppresses osteogenic differentiation by targeting Sp7.FEBS Lett.2013587183027303110.1016/j.febslet.2013.07.03023886710
    [Google Scholar]
  111. BalasubramanianK. New developments in cancer treatment using miRNA manipulation: Oncology-miRNA.Int J Tre Onc Sci2023121925
    [Google Scholar]
  112. DoghishA.S. ElballalM.S. ElazazyO. ElesawyA.E. ShahinR.K. MidanH.M. SallamA.A.M. ElbadryA.M.M. MohamedA.K.I. IshakN.W. HassanK.A. AyoubA.M. ShalabyR.E. ElrebehyM.A. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses.Pathol. Res. Pract.202324515444010.1016/j.prp.2023.15444037031531
    [Google Scholar]
  113. WeberB. StresemannC. BruecknerB. LykoF. Methylation of human microRNA genes in normal and neoplastic cells.Cell Cycle2007691001100510.4161/cc.6.9.420917457051
    [Google Scholar]
  114. SaitoY. SuzukiH. TsugawaH. NakagawaI. MatsuzakiJ. KanaiY. HibiT. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells.Oncogene200928302738274410.1038/onc.2009.14019503096
    [Google Scholar]
  115. FabbriM. GarzonR. CimminoA. LiuZ. ZanesiN. CallegariE. LiuS. AlderH. CostineanS. Fernandez- CymeringC. VoliniaS. GulerG. MorrisonC.D. ChanK.K. MarcucciG. CalinG.A. HuebnerK. CroceC.M. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B.Proc. Natl. Acad. Sci.200710440158051581010.1073/pnas.070762810417890317
    [Google Scholar]
  116. HuX. DengK. YeH. SunZ. HuangW. SunY. YanW. Trends in tumor site-specific survival of bone sarcomas from 1980 to 2018: A surveillance, epidemiology and end results-based study.Cancers20211321538110.3390/cancers1321538134771548
    [Google Scholar]
  117. American Cancer SocietyBone Cancer Early Detection, Diagnosis, and Staging.2022Available from: https://www.cancer.org/cancer/types/bone-cancer/detection-diagnosis-staging.html
  118. ArakiY. AsanoN. YamamotoN. HayashiK. TakeuchiA. MiwaS. IgarashiK. HiguchiT. AbeK. TaniguchiY. YonezawaH. MorinagaS. AsanoY. YoshidaT. HanayamaR. MatsuzakiJ. OchiyaT. KawaiA. TsuchiyaH. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma.Oncol. Lett.202325622210.3892/ol.2023.1380837153065
    [Google Scholar]
  119. SasakiR. OsakiM. OkadaF. MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma.Cancers201911455310.3390/cancers1104055331003401
    [Google Scholar]
  120. FujiwaraT. UotaniK. YoshidaA. MoritaT. NezuY. KobayashiE. YoshidaA. UeharaT. OmoriT. SugiuK. KomatsubaraT. TakedaK. KunisadaT. KawamuraM. KawaiA. OchiyaT. OzakiT. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma.Oncotarget2017820333753339210.18632/oncotarget.1649828380419
    [Google Scholar]
  121. SharmaA.R. LeeY.H. LeeS.S. Recent advancements of miRNAs in the treatment of bone diseases and their delivery potential.CRPHAR2023410015010.1016/j.crphar.2022.10015036691422
    [Google Scholar]
  122. WangS. MaF. FengY. LiuT. HeS. Role of exosomal miR-21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review).Int. J. Oncol.20205651055106310.3892/ijo.2020.499232319566
    [Google Scholar]
  123. MonfaredH. JahangardY. NikkhahM. Mirnajafi-ZadehJ. MowlaS.J. Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma.Front. Oncol.2019978210.3389/fonc.2019.0078231482067
    [Google Scholar]
  124. ChenR. WangG. ZhengY. HuaY. CaiZ. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies.J. Cell. Mol. Med.20192342280229210.1111/jcmm.1406430724027
    [Google Scholar]
  125. XuM. JinH. XuC.X. SunB. MaoZ. BiW.Z. WangY. miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma.Oncotarget20145199472948310.18632/oncotarget.241825344865
    [Google Scholar]
  126. OtoukeshB. AbbasiM. GorganiH.L. FarahiniH. MoghtadaeiM. BoddouhiB. KaghazianP. HosseinzadehS. AlaeeA. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma.Cancer Cell Int.202020125410.1186/s12935‑020‑01342‑432565738
    [Google Scholar]
  127. ZhaoM. XuL. QianH. Bioinformatics analysis of microRNA profiles and identification of microRNA-mRNA network and biological markers in intracranial aneurysm.Medicine20209931e2118610.1097/MD.000000000002118632756097
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673284932231226110754
Loading
/content/journals/cmc/10.2174/0109298673284932231226110754
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bone cancer; Bone tumors; canonical pathway; miRNAs; suppressor gene; therapeutic agents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test