Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

To explore tyrosine metabolism-related characteristics in liver hepatocellular carcinoma (LIHC) and to establish a risk signature for the prognostic prediction of LIHC. Novel prognostic signatures contribute to the mining of novel biomarkers, which are essential for the construction of a precision medicine system for LIHC and the improvement of survival.

Background

Tyrosine metabolism plays a critical role in the initiation and development of LIHC. Based on the tyrosine metabolism-related characteristics in LIHC, this study developed a risk signature to improve the prognostic prediction of patients with LIHC.

Objective

To investigate the correlation between tyrosine metabolism and progression of LIHC and to develop a tyrosine metabolism-related prognostic model.

Methods

Gene expression and clinicopathological information of LIHC were obtained from The Cancer Genome Atlas (TCGA) database. Distinct subtypes of LIHC were classified by performing consensus cluster analysis on the tyrosine metabolism-related genes. Univariate and Lasso Cox regression were used to develop a RiskScore prognosis model. Kaplan-Meier (KM) survival analysis with log-rank test and area under the curve (AUC) of receiver operating characteristic (ROC) were employed in the prognostic evaluation and prediction validation. Immune infiltration, tyrosine metabolism score, and pathway enrichment were evaluated using single-sample gene set enrichment analysis (ssGSEA). Finally, a nomogram model was developed with the RiskScore and other clinicopathological features.

Results

Based on the tyrosine metabolism genes in the TCGA cohort, we identified 3 tyrosine metabolism-related subtypes showing significant prognostic differences. Four candidate genes selected from the common differentially expressed genes (DEGs) between the 3 subtypes were used to develop a RiskScore model, which could effectively divide LIHC patients into high- and low-risk groups. In both the training and validation sets, high-risk patients tended to have worse overall survival, less active immunotherapy response, higher immune infiltration and clinical grade, and higher oxidative, fatty, and xenobiotic metabolism pathways. Multivariate analysis confirmed that the RiskScore was an independent indicator for the prognosis of LIHC. The results from pan-cancer analysis also supported that the RiskScore had a strong prognostic performance in other cancers. The nomogram demonstrated that the RiskScore contributed the most to the prediction of LIHC prognosis.

Conclusion

Our study developed a tyrosine metabolism-related risk model that performed well in survival prediction, showing the potential to serve as an independent prognostic predictor for LIHC treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290101240223074545
2024-02-26
2024-12-25
Loading full text...

Full text loading...

References

  1. ParkJ.W. ChenM. ColomboM. RobertsL.R. SchwartzM. ChenP.J. KudoM. JohnsonP. WagnerS. OrsiniL.S. ShermanM. Global patterns of hepatocellular carcinoma management from diagnosis to death: The BRIDGE Study.Liver Int.20153592155216610.1111/liv.1281825752327
    [Google Scholar]
  2. ShiJ. ChenY. PengC. KuangL. ZhangZ. LiY. HuangK. Advances in targeted therapy against driver mutations and epigenetic alterations in non-small cell lung cancer.Oncologie202224461364810.32604/oncologie.2022.027545
    [Google Scholar]
  3. YanC. NiuY. MaL. TianL. MaJ. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma.J. Transl. Med.202220145210.1186/s12967‑022‑03630‑136195876
    [Google Scholar]
  4. JemalA. WardE.M. JohnsonC.J. CroninK.A. MaJ. RyersonA.B. MariottoA. LakeA.J. WilsonR. ShermanR.L. AndersonR.N. HenleyS.J. KohlerB.A. PenberthyL. FeuerE.J. WeirH.K. Annual report to the nation on the status of cancer, 1975–2014, featuring survival.J. Natl. Cancer Inst.20171099djx03010.1093/jnci/djx03028376154
    [Google Scholar]
  5. BamoduO.A. ChangH.L. OngJ.R. LeeW.H. YehC.T. TsaiJ.T. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma.Cells20209374610.3390/cells903074632197467
    [Google Scholar]
  6. GuX. GuanJ. XuJ. ZhengQ. ChenC. YangQ. HuangC. WangG. ZhouH. ChenZ. ZhuH. Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes.J. Transl. Med.20211912610.1186/s12967‑020‑02691‑433407546
    [Google Scholar]
  7. LurjeI. CziganyZ. BednarschJ. RoderburgC. IsfortP. NeumannU.P. LurjeG. Treatment strategies for hepatocellular carcinoma: A multidisciplinary approach.Int. J. Mol. Sci.2019206146510.3390/ijms2006146530909504
    [Google Scholar]
  8. KamranM. RaeesA. JafriW. JafriW. Updates on the diagnosis and management of hepatocellular carcinoma.Euroasian J. Hepatogastroenterol.2021111324010.5005/jp‑journals‑10018‑133534316462
    [Google Scholar]
  9. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  10. NguyenT.N. NguyenH.Q. LeD.H. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses.PLoS One2020156e022927610.1371/journal.pone.022927632542016
    [Google Scholar]
  11. PavlovaN.N. ZhuJ. ThompsonC.B. The hallmarks of cancer metabolism: Still emerging.Cell Metab.202234335537710.1016/j.cmet.2022.01.00735123658
    [Google Scholar]
  12. TaddeiM.L. PardellaE. PranziniE. RaugeiG. PaoliP. Role of tyrosine phosphorylation in modulating cancer cell metabolism.Biochim. Biophys. Acta Rev. Cancer20201874218844210.1016/j.bbcan.2020.18844233017632
    [Google Scholar]
  13. DaubnerS.C. LeT. WangS. Tyrosine hydroxylase and regulation of dopamine synthesis.Arch. Biochem. Biophys.2011508111210.1016/j.abb.2010.12.01721176768
    [Google Scholar]
  14. HermanS. NiemeläV. Emami KhoonsariP. SundblomJ. BurmanJ. LandtblomA.M. SpjuthO. NyholmD. KultimaK. Alterations in the tyrosine and phenylalanine pathways revealed by biochemical profiling in cerebrospinal fluid of Huntington’s disease subjects.Sci. Rep.201991412910.1038/s41598‑019‑40186‑530858393
    [Google Scholar]
  15. RemmingtonT. SmithS. Tyrosine supplementation for phenylketonuria.Cochrane Database Syst. Rev.202111CD00150733427303
    [Google Scholar]
  16. KoppleJ.D. Phenylalanine and tyrosine metabolism in chronic kidney failure.J. Nutr.200713761586S1590S10.1093/jn/137.6.1586S17513431
    [Google Scholar]
  17. WigginsT. KumarS. MarkarS.R. AntonowiczS. HannaG.B. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review.Cancer Epidemiol. Biomarkers Prev.2015241323810.1158/1055‑9965.EPI‑14‑098025344892
    [Google Scholar]
  18. LaiH.S. LeeJ.C. LeeP.H. WangS.T. ChenW.J. Plasma free amino acid profile in cancer patients.Semin. Cancer Biol.200515426727610.1016/j.semcancer.2005.04.00315894488
    [Google Scholar]
  19. SchiffM. BroueP. ChabrolB. De LaetC. HabesD. MentionK. SarlesJ. SpraulA. ValayannopoulosV. Ogier de BaulnyH. French-Belgian study group for HT-1 Heterogeneity of follow-up procedures in French and Belgian patients with treated hereditary tyrosinemia type 1: Results of a questionnaire and proposed guidelines.J. Inherit. Metab. Dis.201235582382910.1007/s10545‑011‑9429‑y22167277
    [Google Scholar]
  20. BaumannU. DuhmeV. AuthM.K.H. McKiernanP.J. HolmeE. Lectin-reactive alpha-fetoprotein in patients with tyrosinemia type I and hepatocellular carcinoma.J. Pediatr. Gastroenterol. Nutr.2006431778210.1097/01.mpg.0000228112.29359.f816819381
    [Google Scholar]
  21. FuL. DongS.S. XieY.W. TaiL.S. ChenL. KongK.L. ManK. XieD. LiY. ChengY. TaoQ. GuanX.Y. Down-regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma.Hepatology20105151624163410.1002/hep.2354020209601
    [Google Scholar]
  22. WongT.L.M. WongT.L. ZhouL. ManK. PurcellJ. LeeT.K. YunJ.P. MaS. Protein tyrosine kinase 7 (PTK7) promotes metastasis in hepatocellular carcinoma via SOX9 regulation and TGF-β signaling.Cell. Mol. Gastroenterol. Hepatol.2023151133710.1016/j.jcmgh.2022.09.01536202326
    [Google Scholar]
  23. HanM. LiY. GuoY. ZhuW. JiangJ. Integrative and comprehensive pan-cancer analysis of lymphocyte-specific protein tyrosine kinase in human tumors.Int. J. Mol. Sci.202223221399810.3390/ijms23221399836430477
    [Google Scholar]
  24. HuL. ChenM. DaiH. WangH. YangW. A metabolism-related gene signature predicts the prognosis of breast cancer patients: Combined analysis of high-throughput sequencing and gene chip data sets.Oncologie202224480382210.32604/oncologie.2022.026419
    [Google Scholar]
  25. ZhouH. ChenL. LeiY. LiT. LiH. ChengX. Integrated analysis of tumor mutation burden and immune infiltrates in endometrial cancer.Curr. Probl. Cancer202145210066010.1016/j.currproblcancer.2020.10066033012523
    [Google Scholar]
  26. ChenH. LiuX. YaoF. YinM. ChengB. YangS. Identification of metabolic signatures related to metastasis and immunotherapy resistance in oral squamous cell carcinoma.Am. J. Transl. Res.202315137339136777871
    [Google Scholar]
  27. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  28. HeY. JiangZ. ChenC. WangX. Classification of triple-negative breast cancers based on Immunogenomic profiling.J. Exp. Clin. Cancer Res.201837132710.1186/s13046‑018‑1002‑130594216
    [Google Scholar]
  29. LiY. ZengX. A novel cuproptosis-related prognostic gene signature and validation of differential expression in hepatocellular carcinoma.Front. Pharmacol.202313108195210.3389/fphar.2022.108195236703728
    [Google Scholar]
  30. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  31. LiuT.T. LiR. HuoC. LiJ.P. YaoJ. JiX. QuY.Q. Identification of CDK2-related immune forecast model and cerna in lung adenocarcinoma, a pan-cancer analysis.Front. Cell Dev. Biol.2021968200210.3389/fcell.2021.68200234409029
    [Google Scholar]
  32. GuoS. WuJ. ZhouW. LiuX. LiuY. ZhangJ. JiaS. LiJ. WangH. Identification and analysis of key genes associated with acute myocardial infarction by integrated bioinformatics methods.Medicine202110015e2555310.1097/MD.000000000002555333847684
    [Google Scholar]
  33. AlhamzawiR. AliH.T.M. The Bayesian adaptive lasso regression.Math. Biosci.2018303758210.1016/j.mbs.2018.06.00429920251
    [Google Scholar]
  34. GeeleherP. CoxN.J. HuangR.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines.Genome Biol.2014153R4710.1186/gb‑2014‑15‑3‑r4724580837
    [Google Scholar]
  35. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  36. ZhangS. TongY.X. ZhangX.H. ZhangY.J. XuX.S. XiaoA.T. ChaoT.F. GongJ.P. A novel and validated nomogram to predict overall survival for gastric neuroendocrine neoplasms.J. Cancer201910245944595410.7150/jca.3578531762804
    [Google Scholar]
  37. KashyapA. RapsomanikiM.A. BarrosV. Fomitcheva-KhartchenkoA. MartinelliA.L. RodriguezA.F. GabraniM. Rosen-ZviM. KaigalaG. Quantification of tumor heterogeneity: From data acquisition to metric generation.Trends Biotechnol.202240664767610.1016/j.tibtech.2021.11.00634972597
    [Google Scholar]
  38. WangT. DangN. TangG. LiZ. LiX. ShiB. XuZ. LiL. YangX. XuC. YeK. Integrating bulk and single-cell RNA sequencing reveals cellular heterogeneity and immune infiltration in hepatocellular carcinoma.Mol. Oncol.202216112195221310.1002/1878‑0261.1319035124891
    [Google Scholar]
  39. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.III HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell2019177718881902.e2110.1016/j.cell.2019.05.03131178118
    [Google Scholar]
  40. PengJ. SunB.F. ChenC.Y. ZhouJ.Y. ChenY.S. ChenH. LiuL. HuangD. JiangJ. CuiG.S. YangY. WangW. GuoD. DaiM. GuoJ. ZhangT. LiaoQ. LiuY. ZhaoY.L. HanD.L. ZhaoY. YangY.G. WuW. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.Cell Res.201929972573810.1038/s41422‑019‑0195‑y31273297
    [Google Scholar]
  41. SuC. LvY. LuW. YuZ. YeY. GuoB. LiuD. YanH. LiT. ZhangQ. ChengJ. MoZ. Single-Cell RNA sequencing in multiple pathologic types of renal cell carcinoma revealed novel potential tumor-specific markers.Front. Oncol.20211171956410.3389/fonc.2021.71956434722263
    [Google Scholar]
  42. LeeJ.J. BernardV. SemaanA. MonbergM.E. HuangJ. StephensB.M. LinD. RajapaksheK.I. WestonB.R. BhutaniM.S. HaymakerC.L. BernatchezC. TaniguchiC.M. MaitraA. GuerreroP.A. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies.Clin. Cancer Res.202127215912592110.1158/1078‑0432.CCR‑20‑392534426439
    [Google Scholar]
  43. Rodríguez-HernándezJ.L. Rodríguez-GonzálezF. Riaño-RuizM. Martínez-QuintanaE. Risk factors for hyperuricemia in congenital heart disease patients and its relation to cardiovascular death.Congenit. Heart Dis.201813565566210.1111/chd.1262030066365
    [Google Scholar]
  44. AmatoM. FrancoR. FacchiniG. AddeoR. CiardielloF. BerrettaM. VitaG. SgambatoA. PignataS. CaragliaM. AccardoM. Zito MarinoF. Microsatellite instability: From the implementation of the detection to a prognostic and predictive role in cancers.Int. J. Mol. Sci.20222315872610.3390/ijms2315872635955855
    [Google Scholar]
  45. ShimanR. GrayD.W. Formation and fate of tyrosine. Intracellular partitioning of newly synthesized tyrosine in mammalian liver.J. Biol. Chem.199827352347603476910.1074/jbc.273.52.347609857000
    [Google Scholar]
  46. DuD. LiuC. QinM. ZhangX. XiT. YuanS. HaoH. XiongJ. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.Acta Pharm. Sin. B202212255858010.1016/j.apsb.2021.09.01935256934
    [Google Scholar]
  47. WuT. DaiY. Tumor microenvironment and therapeutic response.Cancer Lett.2017387616810.1016/j.canlet.2016.01.04326845449
    [Google Scholar]
  48. ZhengR. ZuoT. ZengH. ZhangS. ChenW. Mortality and survival analysis of liver cancer in China.Zhonghua Zhong Liu Za Zhi201537969770226813436
    [Google Scholar]
  49. LiK. DuY. LiL. WeiD.Q. Bioinformatics approaches for anti-cancer drug discovery.Curr. Drug Targets201921131710.2174/138945012066619092316220331549592
    [Google Scholar]
  50. LuD.Y. QuR.X. LuT.R. WuH.Y. Cancer bioinformatics for updating anticancer drug developments and personalized therapeutics.Rev. Recent Clin. Trials201712210111010.2174/157488711266617020916144428190390
    [Google Scholar]
  51. MiyanishiK. HokiT. TanakaS. KatoJ. Prevention of hepatocellular carcinoma: Focusing on antioxidant therapy.World J. Hepatol.20157359359910.4254/wjh.v7.i3.59325848483
    [Google Scholar]
  52. WangZ. LiZ. YeY. XieL. LiW. Oxidative stress and liver cancer: Etiology and therapeutic targets.Oxid. Med. Cell. Longev.2016201611010.1155/2016/789157427957239
    [Google Scholar]
  53. ZhangQ. MaS. LiuB. LiuJ. ZhuR. LiM. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells.Exp. Ther. Med.201612146947410.3892/etm.2016.328227347080
    [Google Scholar]
  54. MengQ. ZhangY. HaoS. SunH. LiuB. ZhouH. WangY. XuZ.X. Recent findings in the regulation of G6PD and its role in diseases.Front. Pharmacol.20221393215410.3389/fphar.2022.93215436091812
    [Google Scholar]
  55. ZhangJ. YangL. XiangX. LiZ. QuK. LiK. A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy.Aging20181061366137910.18632/aging.10147329910195
    [Google Scholar]
  56. DonehowerL.A. SoussiT. KorkutA. LiuY. SchultzA. CardenasM. LiX. BaburO. HsuT.K. LichtargeO. WeinsteinJ.N. AkbaniR. WheelerD.A. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas.Cell Rep.201928513701384.e510.1016/j.celrep.2019.07.00131365877
    [Google Scholar]
  57. TavakoliF. SartakhtiJ.S. ManshaeiM.H. BasantaD. Cancer immunoediting: A game theoretical approach. In Silico Biol.2021141-211210.3233/ISB‑20047533216021
    [Google Scholar]
  58. WherryE.J. KurachiM. Molecular and cellular insights into T cell exhaustion.Nat. Rev. Immunol.201515848649910.1038/nri386226205583
    [Google Scholar]
  59. GhyselinckN.B. DuesterG. Retinoic acid signaling pathways.Development201914613dev16750210.1242/dev.16750231273085
    [Google Scholar]
  60. BushueN. WanY.J.Y. Retinoid pathway and cancer therapeutics.Adv. Drug Deliv. Rev.201062131285129810.1016/j.addr.2010.07.00320654663
    [Google Scholar]
  61. ZhuY.H. LiJ.B. WuR.Y. YuY. LiX. LiZ.L. ZhangH.L. FengG.K. DengR. ZhuX.F. Clinical significance and function of RDH16 as a tumor-suppressing gene in hepatocellular carcinoma.Hepatol. Res.202050111012010.1111/hepr.1343231661588
    [Google Scholar]
  62. MussunoorS. MurrayG.I. The role of annexins in tumour development and progression.J. Pathol.2008216213114010.1002/path.240018698663
    [Google Scholar]
  63. HungM.S. ChenY.C. LinP.Y. LiY.C. HsuC.C. LungJ.H. YouL. XuZ. MaoJ.H. JablonsD.M. YangC.T. Cul4A modulates invasion and metastasis of lung cancer through regulation of ANXA10.Cancers201911561810.3390/cancers1105061831052599
    [Google Scholar]
  64. IshikawaA. KuraokaK. ZaitsuJ. SaitoA. KuwaiT. SuzukiT. TashiroH. TaniyamaK. YasuiW. Loss of annexin a10 expression is associated with poor prognosis in early gastric cancer.Acta Histochem. Cytochem.202053511311910.1267/ahc.20‑0001433177783
    [Google Scholar]
  65. ZhangC. PengL. GuH. WangJ. WangY. XuZ. ANXA10 is a prognostic biomarker and suppressor of hepatocellular carcinoma: a bioinformatics analysis and experimental validation.Sci. Rep.2023131158310.1038/s41598‑023‑28527‑x36709331
    [Google Scholar]
  66. StantonR.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.IUBMB Life201264536236910.1002/iub.101722431005
    [Google Scholar]
  67. RaoX. DuanX. MaoW. LiX. LiZ. LiQ. ZhengZ. XuH. ChenM. WangP.G. WangY. ShenB. YiW. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth.Nat. Commun.201561846810.1038/ncomms946826399441
    [Google Scholar]
  68. JuH.Q. LinJ.F. TianT. XieD. XuR.H. NADPH homeostasis in cancer: Functions, mechanisms and therapeutic implications.Signal Transduct. Target. Ther.20205123110.1038/s41392‑020‑00326‑033028807
    [Google Scholar]
  69. KoikeY. YinC. SatoY. NaganoY. YamamotoA. KitajimaT. ShimuraT. KawamuraM. MatsushitaK. OkugawaY. AmanoK. OtakeK. OkitaY. OhiM. InoueM. UchidaK. HirayamaM. ToiyamaY. TPX2 is a prognostic marker and promotes cell proliferation in neuroblastoma.Oncol. Lett.202223413610.3892/ol.2022.1325635317024
    [Google Scholar]
  70. BhatiaS.N. ChenX. DobrovolskaiaM.A. LammersT. Cancer nanomedicine.Nat. Rev. Cancer2022221055055610.1038/s41568‑022‑00496‑935941223
    [Google Scholar]
  71. EftekhariA. HasanzadehA. KhalilovR. HosainzadeganH. AhmadianE. EghbalM.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat.Environ. Sci. Pollut. Res. Int.20202754969497510.1007/s11356‑019‑07232‑131845254
    [Google Scholar]
  72. BaranA. BaranM.F. KeskinC. KandemirS.I. ValiyevaM. MehraliyevaS. KhalilovR. EftekhariA. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities.J. Nanomater.2021202111010.1155/2021/2270472
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290101240223074545
Loading
/content/journals/cmc/10.2174/0109298673290101240223074545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test