Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Recent studies have shown that dysfunction in chromatin regulators (CRs) may be an important mechanism of myocardial infarction (MI). They are thus expected to become a new target in the diagnosis and treatment of MI. However, the diagnostic value of CRs in MI and the mechanisms are not clear.

Methods

CRs-related differentially expressed genes (DEGs) were screened between healthy controls and patients with MI GSE48060, GSE60993, and GSE66360 datasets. DEGs were further analyzed for enrichment analysis. Hub genes were screened by least absolute shrinkage and selection operator (LASSO) regression and weighted gene co-expression network analysis (WGCNA). GSE61144 datasets were further used to validate hub genes. RT-qPCR examined peripheral blood mononuclear cells (PBMCs) to verify expressions of hub genes. In addition, a correlation between hub genes and immune cell infiltration was identified by CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). Finally, we constructed a diagnostic nomogram and ceRNA network and found possible therapeutic medicines which were based on hub genes.

Results

Firstly, 16 CR-related DEGs were identified. Next, Dual-specificity phosphatase 1 (), growth arrest and DNA damage-inducible 45 (), and transcriptional regulator Jun dimerization protein 2 () were selected as hub genes by LASSO and WGCNA. Receiver operating characteristic curves in the training and test data sets verified the reliability of hub genes. Results of RT-qPCR confirmed the upregulation of hub genes in MI. Subsequently, the immune infiltration analysis indicated that , , and were correlated with plasmacytoid dendritic cells, natural killer cells, eosinophils, effector memory CD4 T cells, central memory CD4 T cells, activated dendritic cells, and activated CD8 T cells. Furthermore, a nomogram that included , , and was created. The calibration curve, decision curve analysis, and the clinical impact curve indicated that the nomogram could predict the occurrence of MI with high efficacy. The results of the ceRNA network suggest that hub genes may be cross-regulated by various lncRNAs and miRNAs. In addition, 10 drugs, including 2H-1-benzopyran, Nifuroxazide, and Bepridil, were predicted to be potential therapeutic agents for MI.

Conclusion

Our study identifies three promising genes associated with the progression of chromatin regulators (CRs)-related myocardial infarction (MI) and immune cell infiltration, including Dual-specificity phosphatase 1 (), growth arrest and DNA damage-inducible 45 (), and Jun dimerization protein 2 (), which might be worthy of further study.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673265089231117054348
2023-11-27
2024-12-25
Loading full text...

Full text loading...

References

  1. KadesjöE. RoosA. SiddiquiA.J. SartipyU. HolzmannM.J. Treatment with cardiovascular medications: Prognosis in patients with myocardial injury.J. Am. Heart Assoc.2021101e01723910.1161/JAHA.120.01723933372527
    [Google Scholar]
  2. NicholasM. TownsendN. ScarboroughP. RaynerM. Corrigendum to: Cardiovascular disease in europe 2014: Epidemiological update.Eur. Heart J.2015361379410.1093/eurheartj/ehu48925514929
    [Google Scholar]
  3. WeintraubW.S. DanielsS.R. BurkeL.E. FranklinB.A. GoffD.C.Jr HaymanL.L. Lloyd-JonesD. PandeyD.K. SanchezE.J. SchramA.P. WhitselL.P. Value of primordial and primary prevention for cardiovascular disease: A policy statement from the American heart association.Circulation2011124896799010.1161/CIR.0b013e3182285a8121788592
    [Google Scholar]
  4. ThygesenK. AlpertJ.S. JaffeA.S. SimoonsM.L. ChaitmanB.R. WhiteH.D. ThygesenK. AlpertJ.S. WhiteH.D. JaffeA.S. KatusH.A. AppleF.S. LindahlB. MorrowD.A. ChaitmanB.R. ClemmensenP.M. JohansonP. HodH. UnderwoodR. BaxJ.J. BonowR.O. PintoF. GibbonsR.J. FoxK.A. AtarD. NewbyL.K. GalvaniM. HammC.W. UretskyB.F. StegP.G. WijnsW. BassandJ.P. MenascheP. RavkildeJ. OhmanE.M. AntmanE.M. WallentinL.C. ArmstrongP.W. SimoonsM.L. JanuzziJ.L. NieminenM.S. GheorghiadeM. FilippatosG. LuepkerR.V. FortmannS.P. RosamondW.D. LevyD. WoodD. SmithS.C. HuD. Lopez-SendonJ.L. RobertsonR.M. WeaverD. TenderaM. BoveA.A. ParkhomenkoA.N. VasilievaE.J. MendisS. BaxJ.J. BaumgartnerH. CeconiC. DeanV. DeatonC. FagardR. Funck-BrentanoC. HasdaiD. HoesA. KirchhofP. KnuutiJ. KolhP. McDonaghT. MoulinC. PopescuB.A. ReinerZ. SechtemU. SirnesP.A. TenderaM. TorbickiA. VahanianA. WindeckerS. MoraisJ. AguiarC. AlmahmeedW. ArnarD.O. BariliF. BlochK.D. BolgerA.F. BotkerH.E. BozkurtB. BugiardiniR. CannonC. de LemosJ. EberliF.R. EscobarE. HlatkyM. JamesS. KernK.B. MoliternoD.J. MuellerC. NeskovicA.N. PieskeB.M. SchulmanS.P. StoreyR.F. TaubertK.A. VranckxP. WagnerD.R. Third universal definition of myocardial infarction.J. Am. Coll. Cardiol.201260161581159810.1016/j.jacc.2012.08.00122958960
    [Google Scholar]
  5. VogelB. ClaessenB.E. ArnoldS.V. ChanD. CohenD.J. GiannitsisE. GibsonC.M. GotoS. KatusH.A. KerneisM. KimuraT. KunadianV. PintoD.S. ShiomiH. SpertusJ.A. StegP.G. MehranR. ST-segment elevation myocardial infarction.Nat. Rev. Dis. Primers2019513910.1038/s41572‑019‑0090‑331171787
    [Google Scholar]
  6. MujalliA. BanaganapalliB. AlrayesN.M. ShaikN.A. ElangoR. Al-AamaJ.Y. Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis.Genomics202011265072508510.1016/j.ygeno.2020.09.00432920122
    [Google Scholar]
  7. RupareliaN. GodecJ. LeeR. ChaiJ.T. Dall’ArmellinaE. McAndrewD. DigbyJ.E. ForfarJ.C. PrendergastB.D. KharbandaR.K. BanningA.P. NeubauerS. LygateC.A. ChannonK.M. HainingN.W. ChoudhuryR.P. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans.Eur. Heart J.201536291923193410.1093/eurheartj/ehv19525982896
    [Google Scholar]
  8. FrangogiannisN.G. The inflammatory response in myocardial injury, repair, and remodelling.Nat. Rev. Cardiol.201411525526510.1038/nrcardio.2014.2824663091
    [Google Scholar]
  9. CahillT.J. ChoudhuryR.P. RileyP.R. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics.Nat. Rev. Drug Discov.2017161069971710.1038/nrd.2017.10628729726
    [Google Scholar]
  10. ZhaoE. XieH. ZhangY. Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction.Front. Cardiovasc. Med.2020758687110.3389/fcvm.2020.58687133195475
    [Google Scholar]
  11. BergerS.L. KouzaridesT. ShiekhattarR. ShilatifardA. An operational definition of epigenetics: Figure 1.Genes Dev.200923778178310.1101/gad.178760919339683
    [Google Scholar]
  12. PlacekK. SchultzeJ.L. AschenbrennerA.C. Epigenetic reprogramming of immune cells in injury, repair, and resolution.J. Clin. Invest.201912982994300510.1172/JCI12461931329166
    [Google Scholar]
  13. LuJ. XuJ. LiJ. PanT. BaiJ. WangL. JinX. LinX. ZhangY. LiY. SahniN. LiX. FACER: Comprehensive molecular and functional characterization of epigenetic chromatin regulators.Nucleic Acids Res.20184619100191003310.1093/nar/gky67930102398
    [Google Scholar]
  14. LiaoJ. HeQ. LiM. ChenY. LiuY. WangJ. LncRNA MIAT: Myocardial infarction associated and more.Gene2016578215816110.1016/j.gene.2015.12.03226707210
    [Google Scholar]
  15. GhoshA.K. p300 in cardiac development and accelerated cardiac aging.Aging Dis.202011491692610.14336/AD.2020.040132765954
    [Google Scholar]
  16. SureshR. LiX. ChiriacA. GoelK. TerzicA. Perez-TerzicC. NelsonT.J. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.J. Mol. Cell. Cardiol.201474132110.1016/j.yjmcc.2014.04.01724801707
    [Google Scholar]
  17. ParkH.J. NohJ.H. EunJ.W. KohY.S. SeoS.M. ParkW.S. LeeJ.Y. ChangK. SeungK.B. KimP.J. NamS.W. Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction.Oncotarget2015615129701298310.18632/oncotarget.400126025919
    [Google Scholar]
  18. MuseE.D. KramerE.R. WangH. BarrettP. ParvizF. NovotnyM.A. LaskenR.S. JatkoeT.A. OliveiraG. PengH. LuJ. ConnellyM.C. SchillingK. RaoC. TorkamaniA. TopolE.J. A whole blood molecular signature for acute myocardial infarction.Sci. Rep.2017711226810.1038/s41598‑017‑12166‑028947747
    [Google Scholar]
  19. JinZ. ZhaoH. LuoY. LiX. CuiJ. YanJ. YangP. Identification of core genes associated with the anti-atherosclerotic effects of Salvianolic acid B and immune cell infiltration characteristics using bioinformatics analysis.BMC Complement. Med. Ther.202222119010.1186/s12906‑022‑03670‑635842645
    [Google Scholar]
  20. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The molecular signatures database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  21. WernlyB. PaarV. AignerA. PilzP.M. PodesserB.K. FörsterM. JungC. Pinon HofbauerJ. TocknerB. WimmerM. KrausT. MotlochL.J. HacklM. HoppeU.C. KissA. LichtenauerM. Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction.Cells20209229510.3390/cells902029531991811
    [Google Scholar]
  22. ThygesenK. AlpertJ.S. WhiteH.D. Universal definition of myocardial infarction.J. Am. Coll. Cardiol.200750222173219510.1016/j.jacc.2007.09.01118036459
    [Google Scholar]
  23. WangC. JingQ. Non-coding RNAs as biomarkers for acute myocardial infarction.Acta Pharmacol. Sin.20183971110111910.1038/aps.2017.20529698386
    [Google Scholar]
  24. JneidH. AndersonJ.L. WrightR.S. AdamsC.D. BridgesC.R. CaseyD.E.Jr EttingerS.M. FesmireF.M. GaniatsT.G. LincoffA.M. PetersonE.D. PhilippidesG.J. TherouxP. WengerN.K. ZidarJ.P. AndersonJ.L. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/Non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): A report of the american college of cardiology foundation/American heart association task force on practice guidelines.Circulation2012126787591010.1161/CIR.0b013e318256f1e022800849
    [Google Scholar]
  25. RoffiM. PatronoC. ColletJ.P. MuellerC. ValgimigliM. AndreottiF. BaxJ.J. BorgerM.A. BrotonsC. ChewD.P. GencerB. HasenfussG. KjeldsenK. LancellottiP. LandmesserU. MehilliJ. MukherjeeD. StoreyR.F. WindeckerS. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation.Eur. Heart J.201637326731510.1093/eurheartj/ehv32026320110
    [Google Scholar]
  26. ReedG.W. RossiJ.E. CannonC.P. Acute myocardial infarction.Lancet20173891006519721010.1016/S0140‑6736(16)30677‑827502078
    [Google Scholar]
  27. Garcia-ValdecasasS. Ruiz-AlvarezM.J. Garcia De TenaJ. De PabloR. HuertaI. BarrionuevoM. CocaC. ArribasI. Diagnostic and prognostic value of heart-type fatty acid-binding protein in the early hours of acute myocardial infarction.Acta Cardiol.201166331532110.1080/AC.66.3.211413121744701
    [Google Scholar]
  28. WangY. Immune-related biomarkers in myocardial infarction: Diagnostic/prognostic value and therapeutic potential.J. Biochem. Mol. Toxicol.20233712e2348910.1002/jbt.2348937574886
    [Google Scholar]
  29. ZhangJ. GunduA. StrahlB.D. Recognition of acetylated histone by Yaf9 regulates metabolic cycling of transcription initiation and chromatin regulatory factors.Genes Dev.20213523-241678169210.1101/gad.348904.12134819351
    [Google Scholar]
  30. ZannasA.S. JiaM. HafnerK. BaumertJ. WiechmannT. PapeJ.C. ArlothJ. KödelM. MartinelliS. RoitmanM. RöhS. HaehleA. EmenyR.T. IuratoS. Carrillo-RoaT. LahtiJ. RäikkönenK. ErikssonJ.G. DrakeA.J. WaldenbergerM. WahlS. KunzeS. LucaeS. BradleyB. GiegerC. HauschF. SmithA.K. ResslerK.J. Müller-MyhsokB. LadwigK.H. ReinT. GassenN.C. BinderE.B. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB–driven inflammation and cardiovascular risk.Proc. Natl. Acad. Sci. USA201911623113701137910.1073/pnas.181684711631113877
    [Google Scholar]
  31. TabasI. p53 and atherosclerosis.Circ. Res.200188874774910.1161/hh0801.09053611325863
    [Google Scholar]
  32. ZhuM. ZhangQ.J. WangL. LiH. LiuZ.P. FoxO4 inhibits atherosclerosis through its function in bone marrow derived cells.Atherosclerosis2011219249249810.1016/j.atherosclerosis.2011.09.03822005198
    [Google Scholar]
  33. ReustleA. TorzewskiM. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis.Int. J. Mol. Sci.20181912376110.3390/ijms1912376130486366
    [Google Scholar]
  34. HoppstädterJ. AmmitA.J. Role of dual-specificity phosphatase 1 in Glucocorticoid-driven anti-inflammatory responses.Front. Immunol.201910144610.3389/fimmu.2019.0144631316508
    [Google Scholar]
  35. KimH.S. AsmisR. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.Free Radic. Biol. Med.2017109758310.1016/j.freeradbiomed.2017.03.02028330703
    [Google Scholar]
  36. HeF. WuZ. WangY. YinL. LuS. DaiL. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1‐JNK1/2.Cell Biol. Int.202246114815710.1002/cbin.1171634694031
    [Google Scholar]
  37. AbrahamS.M. ClarkA.R. Dual-specificity phosphatase 1: a critical regulator of innate immune responses.Biochem. Soc. Trans.20063461018102310.1042/BST034101817073741
    [Google Scholar]
  38. SchmitzI. Gadd45 proteins in immunity.Adv. Exp. Med. Biol.2013793516810.1007/978‑1‑4614‑8289‑5_424104473
    [Google Scholar]
  39. LiF.H. HanN. WangY. XuQ. Gadd45a knockdown alleviates oxidative stress through suppressing the p38 MAPK signaling pathway in the pathogenesis of preeclampsia.Placenta201865202810.1016/j.placenta.2018.03.00729908638
    [Google Scholar]
  40. SenguptaA. MolkentinJ.D. PaikJ.H. DePinhoR.A. YutzeyK.E. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress.J. Biol. Chem.201128697468747810.1074/jbc.M110.17924221159781
    [Google Scholar]
  41. LiuC. LiuH. SunQ. ZhangP. MicroRNA 1283 alleviates cardiomyocyte damage caused by hypoxia/reoxygenation via targeting GADD45A and inactivating the JNK and p38 MAPK signaling pathways.Kardiol. Pol.202179214715510.33963/KP.1569633293495
    [Google Scholar]
  42. HegerJ. BornbaumJ. WürfelA. HillC. BrockmannN. GáspárR. PálócziJ. VargaZ.V. SárközyM. BencsikP. CsontT. TörökS. KojonazarovB. SchermulyR.T. BönglerK. ParahulevaM. FerdinandyP. SchulzR. EulerG. JDP2 overexpression provokes cardiac dysfunction in mice.Sci. Rep.201881764710.1038/s41598‑018‑26052‑w29769710
    [Google Scholar]
  43. WangS. CaoN. Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis.Mol. Med. Rep.20202254383439510.3892/mmr.2020.1151733000230
    [Google Scholar]
  44. EulerG. KockskämperJ. SchulzR. ParahulevaM.S. JDP2, A novel molecular key in heart failure and atrial fibrillation?Int. J. Mol. Sci.2021228411010.3390/ijms2208411033923401
    [Google Scholar]
  45. MaciejakA. KiliszekM. MichalakM. TulaczD. OpolskiG. MatlakK. DobrzyckiS. SegietA. GoraM. BurzynskaB. Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure.Genome Med.2015712610.1186/s13073‑015‑0149‑z25984239
    [Google Scholar]
  46. OngS.B. Hernández-ReséndizS. Crespo-AvilanG.E. MukhametshinaR.T. KwekX.Y. Cabrera-FuentesH.A. HausenloyD.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities.Pharmacol. Ther.2018186738710.1016/j.pharmthera.2018.01.00129330085
    [Google Scholar]
  47. SunY. ChuQ. ZhaoX. ZhouZ. BiD. XuT. microRNA-375 modulates the NF-κB pathway in miiuy croaker by targeting DUSP1 gene.Dev. Comp. Immunol.20188619620210.1016/j.dci.2018.05.01029746983
    [Google Scholar]
  48. LiY. XuS. XuQ. ChenY. RETRACTED ARTICLE: Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway.Artif. Cells Nanomed. Biotechnol.202048145246210.1080/21691401.2019.170985631918570
    [Google Scholar]
  49. SchneiderG. WeberA. ZechnerU. OswaldF. FriessH.M. SchmidR.M. LiptayS. GADD45α is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability.Int. J. Cancer2006118102405241110.1002/ijc.2163716353139
    [Google Scholar]
  50. IlatovskayaD.V. PittsC. ClaytonJ. DomondonM. TroncosoM. PippinS. DeLeon-PennellK.Y. CD8 + T-cells negatively regulate inflammation post-myocardial infarction.Am. J. Physiol. Heart Circ. Physiol.20193173H581H59610.1152/ajpheart.00112.201931322426
    [Google Scholar]
  51. LiY. QinL. BaiQ. ZhangJ. ChenR. SongK. CD100 modulates cytotoxicity of CD8+ T cells in patients with acute myocardial infarction.BMC Immunol.20212211310.1186/s12865‑021‑00406‑y33593275
    [Google Scholar]
  52. ZaidiY. CorkerA. VasilevaV.Y. OviedoK. GrahamC. WilsonK. MartinoJ. TroncosoM. BroughtonP. IlatovskayaD.V. LindseyM.L. DeLeon-PennellK.Y. Chronic Porphyromonas gingivalis lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8 + T cells.Am. J. Physiol. Heart Circ. Physiol.20213215H948H96210.1152/ajpheart.00082.202134597184
    [Google Scholar]
  53. ZhangZ. DingS. YangX. GeJ. Analysis of immune associated co-expression networks reveals immune-related long non-coding RNAs during MI in the presence and absence of HDC.Int. J. Mol. Sci.20212214740110.3390/ijms2214740134299019
    [Google Scholar]
  54. PeetC. IveticA. BromageD.I. ShahA.M. Cardiac monocytes and macrophages after myocardial infarction.Cardiovasc. Res.202011661101111210.1093/cvr/cvz33631841135
    [Google Scholar]
  55. WangY. LiC. ZhaoR. QiuZ. ShenC. WangZ. LiuW. ZhangW. GeJ. ShiB. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction.Theranostics202111136315633310.7150/thno.5284333995660
    [Google Scholar]
  56. HermansM. LennepJ.R.V. van DaeleP. BotI. Mast cells in cardiovascular disease: From bench to bedside.Int. J. Mol. Sci.20192014339510.3390/ijms2014339531295950
    [Google Scholar]
  57. LegereS.A. Mast cells in cardiac fibrosis: New insights suggest opportunities for intervention.Front. Immunol.201910580Mast cells in cardiac fibrosis: New insights suggest opportunities for intervention10.3389/fimmu.2019.00580
    [Google Scholar]
  58. MesnilC. RaulierS. PaulissenG. XiaoX. BirrellM.A. PirottinD. JanssT. StarklP. RameryE. HenketM. SchleichF.N. RadermeckerM. ThielemansK. GilletL. ThiryM. BelvisiM.G. LouisR. DesmetC. MarichalT. BureauF. Lung-resident eosinophils represent a distinct regulatory eosinophil subset.J. Clin. Invest.201612693279329510.1172/JCI8566427548519
    [Google Scholar]
  59. MaY. YabluchanskiyA. LindseyM.L. Neutrophil roles in left ventricular remodeling following myocardial infarction.Fibrogenesis Tissue Repair2013611110.1186/1755‑1536‑6‑1123731794
    [Google Scholar]
  60. TourkiB. HaladeG. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.FASEB J.201731104226423910.1096/fj.201700109R28642328
    [Google Scholar]
  61. PaulS. Shilpi; Lal, G. Role of gamma-delta (γδ) T cells in autoimmunity.J. Leukoc. Biol.201597225927110.1189/jlb.3RU0914‑443R25502468
    [Google Scholar]
  62. WangS. YanJ. WangX. YangZ. LinF. ZhangT. Synthesis and evaluation of the α-glucosidase inhibitory activity of 3-[4-(phenylsulfonamido)benzoyl]-2H-1-benzopyran-2-one derivatives.Eur. J. Med. Chem.20104531250125510.1016/j.ejmech.2009.12.03120045223
    [Google Scholar]
  63. KhodirA.E. SamraY.A. SaidE. A novel role of nifuroxazide in attenuation of sepsis-associated acute lung and myocardial injuries; role of TLR4/NLPR3/IL-1β signaling interruption.Life Sci.202025611790710.1016/j.lfs.2020.11790732504751
    [Google Scholar]
  64. FlammangD. WaynbergerM. PailletR. PruvotC. CossonG. ChassingA. Myocardial infarction: Is bepridil, a new calcium antagonist, able to improve the course of the acute phase?Cardiovasc. Drugs Ther.19892677178110.1007/BF001332072488091
    [Google Scholar]
  65. Orta-SalazarG. BouchardR.A. Morales-SalgadoF. Salinas-StefanonE.M. Inhibition of cardiac Na + current by primaquine.Br. J. Pharmacol.2002135375176310.1038/sj.bjp.070446011834623
    [Google Scholar]
  66. DeGrayJ.A. RaoD.N.R. MasonR.P. Reduction of paraquat and related bipyridylium compounds to free radical metabolites by rat hepatocytes.Arch. Biochem. Biophys.1991289114515210.1016/0003‑9861(91)90454‑Q1654843
    [Google Scholar]
  67. VillegasS.N. GombosR. García-LópezL. Gutiérrez-PérezI. García-CastilloJ. VallejoD.M. Da RosV.G. Ballesta-IllánE. MihályJ. DominguezM. PI3K/Akt cooperates with oncogenic notch by inducing nitric oxide-dependent inflammation.Cell Rep.201822102541254910.1016/j.celrep.2018.02.04929514083
    [Google Scholar]
  68. SaraswatiS. AlfaroM.P. ThorneC.A. AtkinsonJ. LeeE. YoungP.P. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling.PLoS One2010511e1552110.1371/journal.pone.001552121170416
    [Google Scholar]
  69. SenP. GuptaK. KumariA. SinghG. PandeyS. SinghR. Wnt/β-catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction.Cardiovasc. Toxicol.202121751753210.1007/s12012‑021‑09643‑433723718
    [Google Scholar]
  70. LinJ.H. YangK.T. TingP.C. LuoY.P. LinD.J. WangY.S. ChangJ.C. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism.Biomolecules20211111166710.3390/biom1111166734827665
    [Google Scholar]
  71. LiS. YokotaT. WangP. ten HoeveJ. MaF. LeT.M. AbtE.R. ZhouY. WuR. NanthavongdouangsyM. RodriguezA. WangY. LinY.J. MuranakaH. SharpleyM. BraddockD.T. MacRaeV.E. BanerjeeU. ChiouP.Y. SeldinM. HuangD. TeitellM. GertsmanI. JungM. BensingerS.J. DamoiseauxR. FaullK. PellegriniM. LusisA.J. GraeberT.G. RaduC.G. DebA. Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair.J. Clin. Invest.20221322e14971110.1172/JCI14971134813507
    [Google Scholar]
  72. HegerJ. SzabadosT. BrosinskyP. BencsikP. FerdinandyP. SchulzR. Sex difference in cardioprotection against acute myocardial infarction in MAO-B knockout mice in vivo.Int. J. Mol. Sci.2023247644310.3390/ijms2407644337047416
    [Google Scholar]
  73. ShenY. ShenZ. MiaoL. XinX. LinS. ZhuY. GuoW. ZhuY.Z. miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression.Antioxid. Redox Signal.201522322424010.1089/ars.2014.590925203395
    [Google Scholar]
  74. WangX. TianL. SunQ. Diagnostic and prognostic value of circulating miRNA‐499 and miRNA‐22 in acute myocardial infarction.J. Clin. Lab. Anal.20203482410241710.1002/jcla.2333232529742
    [Google Scholar]
  75. WangA.D. DaiL.F. YangL. WangY.S. HaoX.H. LiuZ.C. ChenP.L. Upregulation of miR-335 reduces myocardial injury following myocardial infarction via targeting MAP3K2.Eur. Rev. Med. Pharmacol. Sci.202125134435210.26355/eurrev_202101_2440133506923
    [Google Scholar]
  76. HuangS. TaoW. GuoZ. CaoJ. HuangX. Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-455-5p.Gene20197011810.1016/j.gene.2019.02.09830898696
    [Google Scholar]
  77. DaiY. YanT. GaoY. Silence of miR-32-5p promotes endothelial cell viability by targeting KLF2 and serves as a diagnostic biomarker of acute myocardial infarction.Diagn. Pathol.20201511910.1186/s13000‑020‑00942‑y32127011
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673265089231117054348
Loading
/content/journals/cmc/10.2174/0109298673265089231117054348
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test