Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Cardiac intrinsic autonomic nerve remodelling has been reported to play an important role in the recurrence of atrial fibrillation after radiofrequency ablation, which significantly affects the long-term efficacy of this procedure. lncRNAs have been shown to interact in the pathological processes underlying heart diseases. However, the roles and mechanisms of lncRNAs in cardiac intrinsic autonomic nerve remodelling during atrial fibrillation reduction after ganglionated plexus ablation remain unknown.

Objective

The aim of this study was to investigate the mechanism by which lncRNA-056298 modulates GAP43 to affect cardiac intrinsic autonomic nerve remodelling and facilitate the induction of atrial fibrillation after ganglionated plexus ablation.

Methods

A canine model of right atrial ganglionated plexus ablation was established. The atrial electrophysiological characteristics and neural markers were detected before and after 6 months of ganglionated plexus ablation. High-throughput sequencing was used to screen differentially expressed lncRNAs in target atrial tissues, and lncRNA-056298 was selected to further explore its effects and mechanisms on cardiac intrinsic autonomic nerve remodelling.

Results

The induction rate of atrial fibrillation increased in dogs after ganglionated plexus ablation. Overexpression of lncRNA-056298 by lentivirus can shorten the atrial effective refractory period and increase the induction of atrial fibrillation. lncRNA-056298 promoted cardiac intrinsic autonomic nerve remodelling endogenous competition with cfa-miR-185 to induce transcription of its target gene GAP43, thereby affecting the induction of atrial fibrillation.

Conclusion

lncRNA-056298 regulates GAP43 by sponging miR-185, which affects cardiac intrinsic autonomic nerve remodelling and mediates atrial fibrillation induction after ganglionated plexus ablation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673289298240129103537
2024-01-31
2025-01-30
Loading full text...

Full text loading...

References

  1. MarkD.B. AnstromK.J. ShengS. PicciniJ.P. BalochK.N. MonahanK.H. DanielsM.R. BahnsonT.D. PooleJ.E. RosenbergY. LeeK.L. PackerD.L. InvestigatorsC. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation.JAMA2019321131275128510.1001/jama.2019.069230874716
    [Google Scholar]
  2. PackerD.L. MarkD.B. RobbR.A. MonahanK.H. BahnsonT.D. PooleJ.E. NoseworthyP.A. RosenbergY.D. JeffriesN. MitchellL.B. FlakerG.C. PokushalovE. RomanovA. BunchT.J. NoelkerG. ArdashevA. RevishviliA. WilberD.J. CappatoR. KuckK.H. HindricksG. DaviesD.W. KoweyP.R. NaccarelliG.V. ReiffelJ.A. PicciniJ.P. SilversteinA.P. Al-KhalidiH.R. LeeK.L. InvestigatorsC. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation.JAMA2019321131261127410.1001/jama.2019.069330874766
    [Google Scholar]
  3. KuckK.H. LebedevD.S. MikhaylovE.N. RomanovA. GellérL. KalējsO. NeumannT. DavtyanK. OnY.K. PopovS. BongiorniM.G. SchlüterM. WillemsS. OuyangF. Catheter ablation or medical therapy to delay progression of atrial fibrillation: The randomized controlled atrial fibrillation progression trial (ATTEST).Europace2021233362369
    [Google Scholar]
  4. PackerD.L. KowalR.C. WheelanK.R. IrwinJ.M. ChampagneJ. GuerraP.G. DubucM. ReddyV. NelsonL. HolcombR.G. LehmannJ.W. RuskinJ.N. Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: First results of the North American Arctic Front (STOP AF) pivotal trial.J. Am. Coll. Cardiol.201361161713172310.1016/j.jacc.2012.11.06423500312
    [Google Scholar]
  5. WilberD.J. PapponeC. NeuzilP. De PaolaA. MarchlinskiF. NataleA. MacleL. DaoudE.G. CalkinsH. HallB. ReddyV. AugelloG. ReynoldsM.R. VinekarC. LiuC.Y. BerryS.M. BerryD.A. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: A randomized controlled trial.JAMA2010303433334010.1001/jama.2009.202920103757
    [Google Scholar]
  6. JaïsP. CauchemezB. MacleL. DaoudE. KhairyP. SubbiahR. HociniM. ExtramianaF. SacherF. BordacharP. KleinG. WeerasooriyaR. ClémentyJ. HaïssaguerreM. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: The A4 study.Circulation2008118242498250510.1161/CIRCULATIONAHA.108.77258219029470
    [Google Scholar]
  7. SultanA. LükerJ. AndresenD. KuckK.H. HoffmannE. BrachmannJ. HochadelM. WillemsS. EckardtL. LewalterT. SengesJ. StevenD. Predictors of atrial fibrillation recurrence after catheter ablation: Data from the German ablation registry.Sci. Rep.2017711667810.1038/s41598‑017‑16938‑629192223
    [Google Scholar]
  8. BeyerC. TokarskaL. StühlingerM. FeuchtnerG. HintringerF. HonoldS. FiedlerL. SchönbauerM.S. SchönbauerR. PlankF. Structural cardiac remodeling in atrial fibrillation.JACC Cardiovasc. Imaging202114112199220810.1016/j.jcmg.2021.04.02734147453
    [Google Scholar]
  9. SotomiY. InoueK. TanakaK. ToyoshimaY. OkaT. TanakaN. NozatoY. OriharaY. KoyamaY. IwakuraK. SakataY. FujiiK. Persistent left atrial remodeling after catheter ablation for non-paroxysmal atrial fibrillation is associated with very late recurrence.J. Cardiol.201566537037610.1016/j.jjcc.2015.03.00725864144
    [Google Scholar]
  10. KimY.G. ChoiH.Y. ShimJ. MinK. ChoiY.Y. ChoiJ.I. KimY.H. Electrical remodeling of left atrium is a better predictor for recurrence than structural remodeling in atrial fibrillation patients undergoing radiofrequency catheter ablation.Korean Circ. J.202252536837810.4070/kcj.2021.032335129318
    [Google Scholar]
  11. HouQ. FengL. YangJ. LiuY. YouL. WangL. ZhangY. LiuQ. ZhaoY. XieR. The immediate trends in atrial electrical remodeling for paroxysmal atrial fibrillation across different modes of catheter ablation.Clin. Cardiol.202144793894510.1002/clc.2361734061373
    [Google Scholar]
  12. UraduA. WanJ. DoytchinovaA. WrightK.C. LinA.Y.T. ChenL.S. ShenC. LinS.F. EverettT.H.IV ChenP.S. Skin sympathetic nerve activity precedes the onset and termination of paroxysmal atrial tachycardia and fibrillation.Heart Rhythm201714796497110.1016/j.hrthm.2017.03.03028347833
    [Google Scholar]
  13. TanA.Y. ZhouS. OgawaM. SongJ. ChuM. LiH. FishbeinM.C. LinS.F. ChenL.S. ChenP.S. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines.Circulation2008118991692510.1161/CIRCULATIONAHA.108.77620318697820
    [Google Scholar]
  14. ChoiE.K. ShenM.J. HanS. KimD. HwangS. SayfoS. PiccirilloG. FrickK. FishbeinM.C. HwangC. LinS.F. ChenP.S. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs.Circulation2010121242615262310.1161/CIRCULATIONAHA.109.91982920529998
    [Google Scholar]
  15. DoytchinovaA. HasselJ.L. YuanY. LinH. YinD. AdamsD. StrakaS. WrightK. SmithK. WagnerD. ShenC. SalanovaV. MeshbergerC. ChenL.S. KincaidJ.C. CoffeyA.C. WuG. LiY. KovacsR.J. EverettT.H.IV VictorR. ChaY.M. LinS.F. ChenP.S. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram.Heart Rhythm2017141253310.1016/j.hrthm.2016.09.01927670627
    [Google Scholar]
  16. ShenM.J. ZipesD.P. Role of the autonomic nervous system in modulating cardiac arrhythmias.Circ. Res.201411461004102110.1161/CIRCRESAHA.113.30254924625726
    [Google Scholar]
  17. ChenP.S. ChenL.S. FishbeinM.C. LinS.F. NattelS. Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy.Circ. Res.201411491500151510.1161/CIRCRESAHA.114.30377224763467
    [Google Scholar]
  18. OliveiraÍ.M. Silva JúniorE.L.D. MartinsY.O. RochaH.A.L. ScanavaccaM.I. GutierrezP.S. Cardiac autonomic nervous system remodeling may play a role in atrial fibrillation: A study of the autonomic nervous system and myocardial receptors.Arq. Bras. Cardiol.20211175999100734406322
    [Google Scholar]
  19. MaoJ. YinX. ZhangY. YanQ. DongJ. MaC. LiuX. Ablation of epicardial ganglionated plexi increases atrial vulnerability to arrhythmias in dogs.Circ. Arrhythm. Electrophysiol.20147471171710.1161/CIRCEP.113.00079924860179
    [Google Scholar]
  20. ZhaoQ.Y. HuangH. ZhangS.D. TangY.H. WangX. ZhangY.G. SalimM. OkelloE. DengH.P. YuS.B. HuangC.X. Atrial autonomic innervation remodelling and atrial fibrillation inducibility after epicardial ganglionic plexi ablation.Europace201012680581010.1093/europace/euq089
    [Google Scholar]
  21. WangX. ZhangM. ZhangY. XieX. WangW. LiZ. GaoM. WangZ. HouY. Long-term effects of ganglionated plexi ablation on electrophysiological characteristics and neuron remodeling in target atrial tissues in a canine model.Circ. Arrhythm. Electrophysiol.2015851276128310.1161/CIRCEP.114.00255426078277
    [Google Scholar]
  22. KimM.Y. LimP.B. CoyleC. SandlerB. Koa-WingM. KanagaratnamP. Single ectopy-triggering ganglionated plexus ablation without pulmonary vein isolation prevents atrial fibrillation.JACC. Case Rep.20202122004200910.1016/j.jaccas.2020.07.05834317098
    [Google Scholar]
  23. IedaM. KanazawaH. IedaY. KimuraK. MatsumuraK. TomitaY. YagiT. OnizukaT. ShimojiK. OgawaS. MakinoS. SanoM. FukudaK. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts.Circulation2006114222351236310.1161/CIRCULATIONAHA.106.62758817101855
    [Google Scholar]
  24. ZhouS. ChenL.S. MiyauchiY. MiyauchiM. KarS. KangavariS. FishbeinM.C. SharifiB. ChenP.S. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs.Circ. Res.2004951768310.1161/01.RES.0000133678.22968.e315166093
    [Google Scholar]
  25. WangZ. ZhangX.J. JiY.X. ZhangP. DengK.Q. GongJ. RenS. WangX. ChenI. WangH. GaoC. YokotaT. AngY.S. LiS. CassA. VondriskaT.M. LiG. DebA. SrivastavaD. YangH.T. XiaoX. LiH. WangY. The long noncoding RNA chaer defines an epigenetic checkpoint in cardiac hypertrophy.Nat. Med.201622101131113910.1038/nm.417927618650
    [Google Scholar]
  26. ØromU.A. DerrienT. BeringerM. GumireddyK. GardiniA. BussottiG. LaiF. ZytnickiM. NotredameC. HuangQ. GuigoR. ShiekhattarR. Long noncoding RNAs with enhancer-like function in human cells.Cell20101431465810.1016/j.cell.2010.09.00120887892
    [Google Scholar]
  27. AugoffK. McCueB. PlowE.F. Sossey-AlaouiK. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer.Mol. Cancer2012111510.1186/1476‑4598‑11‑522289355
    [Google Scholar]
  28. LiuY. ZhouD. LiG. MingX. TuY. TianJ. LuH. YuB. Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression.Cellu. Physiol. Biochem.201535519861998
    [Google Scholar]
  29. AlipertiV. SkoniecznaJ. CeraseA. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders.Noncoding RNA2021723610.3390/ncrna702003634204536
    [Google Scholar]
  30. UchidaS. DimmelerS. Long noncoding RNAs in cardiovascular diseases.Circ. Res.2015116473775010.1161/CIRCRESAHA.116.30252125677520
    [Google Scholar]
  31. SchmitzS.U. GroteP. HerrmannB.G. Mechanisms of long noncoding RNA function in development and disease.Cell. Mol. Life Sci.201673132491250910.1007/s00018‑016‑2174‑527007508
    [Google Scholar]
  32. QianC. LiH. ChangD. WeiB. WangY. Identification of functional lncRNAs in atrial fibrillation by integrative analysis of the lncRNA-mRNA network based on competing endogenous RNAs hypothesis.J. Cell. Physiol.20192347116201163010.1002/jcp.2781930478836
    [Google Scholar]
  33. FanZ. GaoS. ChenY. XuB. YuC. YueM. TanX. Integrative analysis of competing endogenous RNA networks reveals the functional lnc RNA s in heart failure.J. Cell. Mol. Med.201822104818482910.1111/jcmm.1373930019841
    [Google Scholar]
  34. HuangK. WuL. GaoY. LiQ. WuH. LiuX. HanL. Transcriptome sequencing data reveal LncRNA-miRNA-mRNA regulatory network in calcified aortic valve disease.Front. Cardiovasc. Med.2022988699510.3389/fcvm.2022.88699535722091
    [Google Scholar]
  35. Babapoor-FarrokhranS. GillD. RasekhiR.T. The role of long noncoding RNAs in atrial fibrillation.Heart Rhythm20201761043104910.1016/j.hrthm.2020.01.01531978594
    [Google Scholar]
  36. TanW. WangK. YangX. WangK. WangN. JiangT.B. LncRNA HOTAIR promotes myocardial fibrosis in atrial fibrillation through binding with PTBP1 to increase the stability of Wnt5a.Int. J. Cardiol.2022369212810.1016/j.ijcard.2022.06.07335787431
    [Google Scholar]
  37. DuJ. LiZ. WangX. LiJ. LiuD. WangX. WeiJ. MaS. ZhangY. HouY. Long noncoding RNA TCONS-00106987 promotes atrial electrical remodelling during atrial fibrillation by sponging miR-26 to regulate KCNJ2.J. Cell. Mol. Med.20202421127771278810.1111/jcmm.1586932954646
    [Google Scholar]
  38. ZhaoJ.B. ZhuN. LeiY.H. ZhangC.J. LiY.H. Modulative effects of lncRNA TCONS_00202959 on autonomic neural function and myocardial functions in atrial fibrillation rat model.Eur. Rev. Med. Pharmacol. Sci.201822248891889730575932
    [Google Scholar]
  39. WangW. WangX. ZhangY. LiZ. XieX. WangJ. GaoM. ZhangS. HouY. Transcriptome analysis of canine cardiac fat pads: involvement of two novel long non rcoding RNAs in atrial fibrillation neural remodeling.J. Cell. Biochem.2015116580982110.1002/jcb.2503725559442
    [Google Scholar]
  40. TrapnellC. PachterL. SalzbergS.L. TopHat: Discovering splice junctions with RNA-Seq.Bioinformatics20092591105111110.1093/bioinformatics/btp12019289445
    [Google Scholar]
  41. RobinsonM.D. McCarthyD.J. SmythG.K. edgeR : A Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics201026113914010.1093/bioinformatics/btp61619910308
    [Google Scholar]
  42. MortazaviA. WilliamsB.A. McCueK. SchaefferL. WoldB. Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat. Methods20085762162810.1038/nmeth.122618516045
    [Google Scholar]
  43. TrapnellC. WilliamsB.A. PerteaG. MortazaviA. KwanG. van BarenM.J. SalzbergS.L. WoldB.J. PachterL. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nat. Biotechnol.201028551151510.1038/nbt.162120436464
    [Google Scholar]
  44. ParaskevopoulouM.D. HatzigeorgiouA.G. Analyzing MiRNA-LncRNA interactions.Methods Mol. Biol.2016140227128610.1007/978‑1‑4939‑3378‑5_2126721498
    [Google Scholar]
  45. ChenY. LiS. ZhangY. WangM. LiX. LiuS. XuD. BaoY. JiaP. WuN. LuY. JiaD. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics.Redox Biol.20214110191010.1016/j.redox.2021.10191033667993
    [Google Scholar]
  46. YangM. WangW. WangL. LiY. Circ_0001052 promotes cardiac hypertrophy via elevating Hipk3.Aging20231541025103810.18632/aging.20452136800233
    [Google Scholar]
  47. CalkinsH. ReynoldsM.R. SpectorP. SondhiM. XuY. MartinA. WilliamsC.J. SledgeI. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses.Circ. Arrhythm. Electrophysiol.20092434936110.1161/CIRCEP.108.82478919808490
    [Google Scholar]
  48. SandlerB. KimM.Y. SikkelM.B. Malcolme-LawesL. Koa-WingM. WhinnettZ.I. CoyleC. LintonN.W.F. LimP.B. KanagaratnamP. Targeting the ectopy-triggering ganglionated plexuses without pulmonary vein isolation prevents atrial fibrillation.J. Cardiovasc. Electrophysiol.202132223524410.1111/jce.1487033421265
    [Google Scholar]
  49. KatritsisD.G. PokushalovE. RomanovA. GiazitzoglouE. SiontisG.C.M. PoS.S. CammA.J. IoannidisJ.P.A. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: A randomized clinical trial.J. Am. Coll. Cardiol.201362242318232510.1016/j.jacc.2013.06.05323973694
    [Google Scholar]
  50. KimM.Y. CoyleC. TomlinsonD.R. SikkelM.B. SohaibA. LutherV. LeongK.M. Malcolme-LawesL. LowB. SandlerB. LimE. ToddM. FudgeM. WrightI.J. Koa-WingM. NgF.S. QureshiN.A. WhinnettZ.I. PetersN.S. NewcombD. WoodC. DhillonG. HunterR.J. LimP.B. LintonN.W.F. KanagaratnamP. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study.Heart Rhythm202219451652410.1016/j.hrthm.2021.12.01034915187
    [Google Scholar]
  51. OhS. ZhangY. BibevskiS. MarroucheN.F. NataleA. MazgalevT.N. Vagal denervation and atrial fibrillation inducibility: Epicardial fat pad ablation does not have long-term effects.Heart Rhythm20063670170810.1016/j.hrthm.2006.02.02016731474
    [Google Scholar]
  52. KurotobiT. ShimadaY. KinoN. ItoK. TonomuraD. YanoK. TanakaC. YoshidaM. TsuchidaT. FukumotoH. Features of intrinsic ganglionated plexi in both atria after extensive pulmonary isolation and their clinical significance after catheter ablation in patients with atrial fibrillation.Heart Rhythm201512347047610.1016/j.hrthm.2014.11.03325433142
    [Google Scholar]
  53. HouY. ScherlagB.J. LinJ. ZhangY. LuZ. TruongK. PattersonE. LazzaraR. JackmanW.M. PoS.S. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation.J. Am. Coll. Cardiol.2007501616810.1016/j.jacc.2007.02.06617601547
    [Google Scholar]
  54. BaykanerT. ZografosT.A. ZamanJ.A.B. PantosI. AlhusseiniM. NavaraR. KrummenD.E. NarayanS.M. KatritsisD.G. Spatial relationship of organized rotational and focal sources in human atrial fibrillation to autonomic ganglionated plexi.Int. J. Cardiol.201724023423910.1016/j.ijcard.2017.02.15228433558
    [Google Scholar]
  55. HannaP. BuchE. StavrakisS. MeyerC. TompkinsJ.D. ArdellJ.L. ShivkumarK. Neuroscientific therapies for atrial fibrillation.Cardiovasc. Res.202111771732174510.1093/cvr/cvab17233989382
    [Google Scholar]
  56. ScanavaccaM. PisaniC.F. HachulD. LaraS. HardyC. DarrieuxF. TrombettaI. NegrãoC.E. SosaE. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation.Circulation2006114987688510.1161/CIRCULATIONAHA.106.63356016923757
    [Google Scholar]
  57. PokushalovE. RomanovA. ShugayevP. ArtyomenkoS. ShirokovaN. TurovA. KatritsisD.G. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation.Heart Rhythm2009691257126410.1016/j.hrthm.2009.05.01819656736
    [Google Scholar]
  58. HolahanM.R. A shift from a pivotal to supporting role for the growth-associated protein (GAP-43) in the coordination of axonal structural and functional plasticity.Front. Cell. Neurosci.20171126610.3389/fncel.2017.0026628912688
    [Google Scholar]
  59. Allegra MascaroA.L. CesareP. SacconiL. GrasselliG. MandolesiG. MacoB. KnottG.W. HuangL. De PaolaV. StrataP. PavoneF.S. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex.Proc. Natl. Acad. Sci.201311026108241082910.1073/pnas.121925611023754371
    [Google Scholar]
  60. OkuyamaY. PakH.N. MiyauchiY. LiuY.B. ChouC.C. HayashiH. FuK.J. KerwinW.F. KarS. HataC. KaragueuzianH.S. FishbeinM.C. ChenP.S. ChenL.S. Nerve sprouting induced by radiofrequency catheter ablation in dogs.Heart Rhythm20041671271710.1016/j.hrthm.2004.09.01215851243
    [Google Scholar]
  61. HuangY. The novel regulatory role of lnc RNA -mi RNA - mRNA axis in cardiovascular diseases.J. Cell. Mol. Med.201822125768577510.1111/jcmm.1386630188595
    [Google Scholar]
  62. SuW. HuoQ. WuH. WangL. DingX. LiangL. ZhouL. ZhaoY. DanJ. ZhangH. The function of LncRNA-H19 in cardiac hypertrophy.Cell Biosci.202111115310.1186/s13578‑021‑00668‑434344446
    [Google Scholar]
  63. XiaoH. ZhangM. WuH. WuJ. HuX. PeiX. LiD. ZhaoL. HuaQ. MengB. ZhangX. PengL. ChengX. LiZ. YangW. ZhangQ. ZhangY. LuY. PanZ. CIRKIL exacerbates cardiac ischemia/reperfusion injury by interacting with Ku70.Circ. Res.20221305e3e1710.1161/CIRCRESAHA.121.31899235105170
    [Google Scholar]
  64. YangL. DengJ. MaW. QiaoA. XuS. YuY. BoribounC. KangX. HanD. ErnstP. ZhouL. ShiJ. ZhangE. LiT.S. QiuH. NakagawaS. BlackshawS. ZhangJ. QinG. Ablation of lncRNA Miat attenuates pathological hypertrophy and heart failure.Theranostics202111167995800710.7150/thno.5099034335976
    [Google Scholar]
  65. MichelettiR. PlaisanceI. AbrahamB.J. SarreA. TingC.C. AlexanianM. MaricD. MaisonD. NemirM. YoungR.A. SchroenB. GonzálezA. OunzainS. PedrazziniT. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling.Sci. Transl. Med.20179395eaai911810.1126/scitranslmed.aai911828637928
    [Google Scholar]
  66. García-PadillaC. DomínguezJ.N. LoddeV. MunkR. AbdelmohsenK. GorospeM. Jiménez-SábadoV. GinelA. Hove-MadsenL. AránegaA.E. FrancoD. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation.FASEB J.2022361e2205110.1096/fj.202100844RR34861058
    [Google Scholar]
  67. CaoF. LiZ. DingW. YanL. ZhaoQ. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation.Mol. Med.2019251710.1186/s10020‑019‑0074‑530894138
    [Google Scholar]
  68. LiZ. WangX. WangW. DuJ. WeiJ. ZhangY. WangJ. HouY. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C.J. Mol. Cell. Cardiol.2017108738510.1016/j.yjmcc.2017.05.00928546098
    [Google Scholar]
  69. JiangW. XuM. QinM. ZhangD. WuS. LiuX. ZhangY. Role and mechanism of lncRNA under magnetic nanoparticles in atrial autonomic nerve remodeling during radiofrequency ablation of recurrent atrial fibrillation.Bioengineered20221324173418410.1080/21655979.2021.202432435114881
    [Google Scholar]
  70. LaiY.J. TsaiF.C. ChangG.J. ChangS.H. HuangC.C. ChenW.J. YehY.H. miR-181b targets semaphorin 3A to mediate TGF-β–induced endothelial-mesenchymal transition related to atrial fibrillation.J. Clin. Invest.202213213e14254810.1172/JCI14254835775491
    [Google Scholar]
  71. CañónS. CaballeroR. Herraiz-MartínezA. Pérez-HernándezM. LópezB. AtienzaF. JalifeJ. Hove-MadsenL. DelpónE. BernadA. miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: Implications in human chronic atrial fibrillation.J. Mol. Cell. Cardiol.20169916217310.1016/j.yjmcc.2016.08.01227545043
    [Google Scholar]
  72. LinR. Rahtu-KorpelaL. SzaboZ. KemppiA. SkarpS. KiviniemiA.M. LepojärviE.S. HalmetojaE. KilpiöT. PorvariK. PakanenL. TolvaJ. PaakkanenR. SegersvärdH. TikkanenI. LaineM. SinisaloJ. LakkistoP. HuikuriH. MaggaJ. JunttilaJ. KerkeläR. MiR-185-5p regulates the development of myocardial fibrosis.J. Mol. Cell. Cardiol.202216513014010.1016/j.yjmcc.2021.12.01134973276
    [Google Scholar]
  73. KimJ.O. SongD.W. KwonE.J. HongS.E. SongH.K. MinC.K. KimD.H. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways.PLoS One2015103e012250910.1371/journal.pone.012250925767890
    [Google Scholar]
  74. KimJ.O. KwonE.J. SongD.W. LeeJ.S. KimD.H. miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na + /H + exchanger-1 in the heart.BMB Rep.201649420821310.5483/BMBRep.2016.49.4.19326521941
    [Google Scholar]
  75. NguyenM.A. KarunakaranD. GeoffrionM. ChengH.S. TandocK. Perisic MaticL. HedinU. MaegdefesselL. FishJ.E. RaynerK.J. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration.Arterioscler. Thromb. Vasc. Biol.2018381496310.1161/ATVBAHA.117.30979528882869
    [Google Scholar]
  76. LiC.C. QiuX.T. SunQ. ZhouJ.P. YangH.J. WuW.Z. HeL.F. TangC.E. ZhangG.G. BaiY.P. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K.J. Cell. Mol. Med.20192321164117310.1111/jcmm.1401630450725
    [Google Scholar]
  77. LeisegangM.S. LET’s sponge: How the lncRNA PFL promotes cardiac fibrosis.Theranostics20188487487710.7150/thno.2336429463987
    [Google Scholar]
  78. ZhangX. YuanS. LiuJ. TangY. WangY. ZhanJ. FanJ. NieX. ZhaoY. WenZ. LiH. ChenC. WangD.W. Overexpression of cytosolic long noncoding RNA cytb protects against pressure-overload-induced heart failure via sponging microRNA-103-3p.Mol. Ther. Nucleic Acids2022271127114510.1016/j.omtn.2022.02.00235251768
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673289298240129103537
Loading
/content/journals/cmc/10.2174/0109298673289298240129103537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test