Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The relationship between the cellular pro-inflammatory response and intracellular lipid accumulation in atherosclerosis is not sufficiently studied. Transcriptomic analysis is one way to establish such a relationship. Previously, we identified 10 potential key genes (IL-15, CXCL8, PERK, IL-7, IL-7R, DUSP1, TIGIT, F2RL1, TSPYL2, and ANXA1) involved in cholesterol accumulation in macrophages. It should be noted that all these genes do not directly participate in cholesterol metabolism, but encode molecules related to inflammation.

Methods

In this study, we conducted a knock-down of the 10 identified key genes using siRNA to determine their possible role in cholesterol accumulation in macrophages. To assess cholesterol accumulation, human monocyte-derived macrophages (MDM) were incubated with atherogenic LDL from patients with atherosclerosis. Cholesterol content was assessed by the enzymatic method. Differentially expressed genes were identified with DESeq2 analysis. Master genes were determined by the functional analysis.

Results

We found that only 5 out of 10 genes (IL-15, PERK, IL-7, IL-7R, ANXA1) can affect intracellular lipid accumulation. Knock-down of the IL-15, PERK, and ANXA1 genes prevented lipid accumulation, while knock-down of the IL-7 and IL-7R genes led to increased intracellular lipid accumulation during incubation of MDM with atherogenic LDL. Seventeen overexpressed genes and 189 underexpressed genes were obtained in the DGE analysis, which allowed us to discover 20 upregulated and 86 downregulated metabolic pathways, a number of which are associated with chronic inflammation and insulin signaling. We also elucidated 13 master regulators of cholesterol accumulation that are immune response-associated genes.

Conclusion

Thus, it was discovered that 5 inflammation-related master regulators may be involved in lipid accumulation in macrophages. Therefore, the pro-inflammatory response of macrophages may trigger foam cell formation rather than the other way around, where intracellular lipid accumulation causes an inflammatory response, as previously assumed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286400240206095814
2024-02-19
2025-04-10
Loading full text...

Full text loading...

References

  1. OrekhovA.N. LDL and foam cell formation as the basis of atherogenesis.Curr. Opin. Lipidol.201829427928410.1097/MOL.000000000000052529746302
    [Google Scholar]
  2. ZakievE.R. SukhorukovV.N. MelnichenkoA.A. SobeninI.A. IvanovaE.A. OrekhovA.N. Lipid composition of circulating multiple-modified low density lipoprotein.Lipids Health Dis.201615113410.1186/s12944‑016‑0308‑227558696
    [Google Scholar]
  3. SukhorukovV. GudeljI. Pučić-BakovićM. ZakievE. OrekhovA. KontushA. LaucG. Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864564365310.1016/j.bbalip.2019.01.00530641224
    [Google Scholar]
  4. LibbyP. Inflammation in atherosclerosis-no longer a theory.Clin. Chem.202167113114210.1093/clinchem/hvaa27533393629
    [Google Scholar]
  5. OrekhovA.N. SukhorukovV.N. NikiforovN.G. KubekinaM.V. SobeninI.A. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. PoznyakA.V. WuW.K. KasianovA.S. MakeevV.Y. ManabeI. OishiY. Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response-what is first?Int. J. Mol. Sci.2020218271610.3390/ijms2108271632295185
    [Google Scholar]
  6. OrekhovA.N. OishiY. NikiforovN.G. ZhelankinA.V. DubrovskyL. SobeninI.A. KelA. StelmashenkoD. MakeevV.J. FoxxK. JinX. KruthH.S. BukrinskyM. Modified LDL particles activate inflammatory pathways in monocyte-derived macrophages: Transcriptome analysis.Curr. Pharm. Des.201824263143315110.2174/138161282466618091112003930205792
    [Google Scholar]
  7. TertovV.V. SobeninI.A. GabbasovZ.A. PopovE.G. JaakkolaO. SolakiviT. NikkariT. SmirnovV.N. OrekhovA.N. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization.Lab. Invest.19926756656751434544
    [Google Scholar]
  8. GalindoC.L. KhanS. ZhangX. YehY.S. LiuZ. RazaniB. Lipid-laden foam cells in the pathology of atherosclerosis: Shedding light on new therapeutic targets.Expert Opin. Ther. Targets202327121231124510.1080/14728222.2023.228827238009300
    [Google Scholar]
  9. TertovV.V. KaplunV.V. SobeninI.A. OrekhovA.N. Low-density lipoprotein modification occurring in human plasma.Atherosclerosis1998138118319510.1016/S0021‑9150(98)00023‑99678784
    [Google Scholar]
  10. TertovV.V. OrekhovA.N. SobeninI.A. GabbasovZ.A. PopovE.G. YaroslavovA.A. SmirnovV.N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation.Circ. Res.199271121822810.1161/01.RES.71.1.2181606664
    [Google Scholar]
  11. OrekhovA.N. NikiforovN.G. SukhorukovV.N. KubekinaM.V. SobeninI.A. WuW.K. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. GratchevA.N. MelnichenkoA.A. WetzkerR. SummerhillV.I. ManabeI. OishiY. Role of phagocytosis in the pro-inflammatory response in LDL-induced foam cell formation; A transcriptome analysis.Int. J. Mol. Sci.202021381710.3390/ijms2103081732012706
    [Google Scholar]
  12. LowryO.H. RosebroughN.J. FarrA.L. RandallR.J. Protein measurement with the folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6
    [Google Scholar]
  13. HolmesK. WilliamsC.M. ChapmanE.A. CrossM.J. Detection of siRNA induced mRNA silencing by RT-qPCR: Considerations for experimental design.BMC Res. Notes2010315310.1186/1756‑0500‑3‑5320199660
    [Google Scholar]
  14. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  15. KelA.E. GösslingE. ReuterI. CheremushkinE. Kel-MargoulisO.V. WingenderE. MATCHTM: A tool for searching transcription factor binding sites in DNA sequences.Nucleic Acids Res.200331133576357910.1093/nar/gkg58512824369
    [Google Scholar]
  16. KoschmannJ. BharA. StegmaierP. KelA. WingenderE. “Upstream Analysis”: An integrated promoter-pathway analysis approach to causal interpretation of microarray data.Microarrays20154227028610.3390/microarrays402027027600225
    [Google Scholar]
  17. KelA.E. StegmaierP. ValeevT. KoschmannJ. PoroikovV. Kel-MargoulisO.V. WingenderE. Multi-omics “upstream analysis” of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer.EuPA Open Proteom.20161311310.1016/j.euprot.2016.09.00229900117
    [Google Scholar]
  18. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  19. MurphyJ.M. YoungI.G. IL-3, IL-5, and GM-CSF Signaling: Crystal structure of the human beta-common receptor.Vitam. Horm.200674130
    [Google Scholar]
  20. RichardsC.D. The enigmatic cytokine oncostatin m and roles in disease.ISRN Inflamm.2013201312310.1155/2013/51210324381786
    [Google Scholar]
  21. KangH. LiX. XiongK. SongZ. TianJ. WenY. SunA. DengX. The entry and egress of monocytes in atherosclerosis: A biochemical and biomechanical driven process.Cardiovasc. Ther.2021202111710.1155/2021/664292734345249
    [Google Scholar]
  22. NagelkerkeS.Q. SchmidtD.E. de HaasM. KuijpersT.W. Genetic variation in low-to-medium-affinity fcγ receptors: Functional consequences, disease associations, and opportunities for personalized medicine.Front. Immunol.201910223710.3389/fimmu.2019.0223731632391
    [Google Scholar]
  23. ZhouY. DongB. KimK.H. ChoiS. SunZ. WuN. WuY. ScottJ. MooreD.D. VitaminD. Vitamin D receptor activation in liver macrophages protects against hepatic endoplasmic reticulum stress in mice.Hepatology20207141453146610.1002/hep.3088731381163
    [Google Scholar]
  24. ArmaniC. CatalaniE. BalbariniA. BagnoliP. CerviaD. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages.J. Leukoc. Biol.200781384585510.1189/jlb.060641717148691
    [Google Scholar]
  25. WangT. JingB. XuD. LiaoY. SongH. SunB. GuoW. XuJ. LiK. HuM. LiuS. LingJ. KuangY. ZhangT. ZhangS. YaoF. ZhouB.P. DengJ. PTGES/PGE2 signaling links immunosuppression and lung metastasis in Gprc5a-knockout mouse model.Oncogene202039153179319410.1038/s41388‑020‑1207‑632060421
    [Google Scholar]
  26. TurnerM.D. NedjaiB. HurstT. PenningtonD.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease.Biochim. Biophys. Acta Mol. Cell Res.20141843112563258210.1016/j.bbamcr.2014.05.01424892271
    [Google Scholar]
  27. MearesG.P. LiuY. RajbhandariR. QinH. NozellS.E. MobleyJ.A. CorbettJ.A. BenvenisteE.N. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation.Mol. Cell. Biol.201434203911392510.1128/MCB.00980‑1425113558
    [Google Scholar]
  28. MihailovicP.M. LioW.M. YanoJ. ZhouJ. ZhaoX. ChyuK.Y. ShahP.K. CercekB. DimayugaP.C. IL-7R blockade reduces post-myocardial infarction-induced atherosclerotic plaque inflammation in ApoE−/- mice.Biochem. Biophys. Rep.20191910064710.1016/j.bbrep.2019.10064731193072
    [Google Scholar]
  29. PereraP.Y. LichyJ.H. WaldmannT.A. PereraL.P. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use.Microbes Infect.201214324726110.1016/j.micinf.2011.10.00622064066
    [Google Scholar]
  30. GencerS. EvansB.R. van der VorstE.P.C. DöringY. WeberC. Inflammatory chemokines in atherosclerosis.Cells202110222610.3390/cells1002022633503867
    [Google Scholar]
  31. HanP.F. CheX.D. LiH.Z. GaoY.Y. WeiX.C. LiP.C. Annexin A1 involved in the regulation of inflammation and cell signaling pathways.Chin. J. Traumatol.20202329610110.1016/j.cjtee.2020.02.00232201231
    [Google Scholar]
  32. YuX. HardenK. C GonzalezL. FrancescoM. ChiangE. IrvingB. TomI. IveljaS. RefinoC.J. ClarkH. EatonD. GroganJ.L. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells.Nat. Immunol.2009101485710.1038/ni.167419011627
    [Google Scholar]
  33. ChenX. LuP.H. LiuL. FangZ.M. DuanW. LiuZ.L. WangC.Y. ZhouP. YuX.F. HeW.T. TIGIT negatively regulates inflammation by altering macrophage phenotype.Immunobiology20162211485510.1016/j.imbio.2015.08.00326307002
    [Google Scholar]
  34. ChenL. GaoB. ZhangY. LuH. LiX. PanL. YinL. ZhiX. PAR2 promotes M1 macrophage polarization and inflammation via FOXO1 pathway.J. Cell. Biochem.201912069799980910.1002/jcb.2826030552714
    [Google Scholar]
  35. HoppstädterJ. AmmitA.J. Role of dual-specificity phosphatase 1 in glucocorticoid-driven anti-inflammatory responses.Front. Immunol.201910144610.3389/fimmu.2019.0144631316508
    [Google Scholar]
  36. ParkY.J. LugerK. Structure and function of nucleosome assembly proteinsThis paper is one of a selection of papers published in this special issue, entitled 27th international west coast chromatin and chromosome conference, and has undergone the journal’s usual peer review process.Biochem. Cell Biol.200684454955810.1139/o06‑08816936827
    [Google Scholar]
  37. BekkeringS. QuintinJ. JoostenL.A.B. van der MeerJ.W.M. NeteaM.G. RiksenN.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes.Arterioscler. Thromb. Vasc. Biol.20143481731173810.1161/ATVBAHA.114.30388724903093
    [Google Scholar]
  38. TallA.R. Yvan-CharvetL. Cholesterol, inflammation and innate immunity.Nat. Rev. Immunol.201515210411610.1038/nri379325614320
    [Google Scholar]
  39. OrekhovA.N. MarkinA.M. SukhorukovV.N. KhotinaV.A. IvanovaE. Pro-inflammatory molecules induce cholesterol accumulation in macrophages: Role of inflammatory response in foam cell formation.Atherosclerosis202132012913010.1016/j.atherosclerosis.2021.01.00733485634
    [Google Scholar]
  40. ReissA.B. SiegartN.M. De LeonJ. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective?Clin. Lipidol.201712142310.1080/17584299.2017.1319787
    [Google Scholar]
  41. LiuH. DengY. WuL. LiY. LinN. LiW. DongX. MaL. Interleukin-1β regulates lipid homeostasis in human glomerular mesangial cells.J. Nutr. Health Aging202024324625010.1007/s12603‑019‑1302‑y32115603
    [Google Scholar]
  42. LiuQ. FanJ. BaiJ. PengL. ZhangT. DengL. WangG. ZhaoY. NongJ. ZhangM. WangY. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway.Sci. Rep.2018811734710.1038/s41598‑018‑35485‑230478377
    [Google Scholar]
  43. HashizumeM. MiharaM. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors.Cytokine201258342443010.1016/j.cyto.2012.02.01022436638
    [Google Scholar]
  44. ShiotsuguS. OkinagaT. HabuM. YoshigaD. YoshiokaI. NishiharaT. AriyoshiW. The Biological effects of interleukin-17A on adhesion molecules expression and foam cell formation in atherosclerotic lesions.J. Interferon Cytokine Res.2019391169470210.1089/jir.2019.003431361541
    [Google Scholar]
  45. NaY.R. GuG.J. JungD. KimY.W. NaJ. WooJ.S. ChoJ.Y. YounH. SeokS.H. GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism.J. Immunol.2016197104101410910.4049/jimmunol.160074527742831
    [Google Scholar]
  46. ZhangX. LiJ. QinJ.J. ChengW.L. ZhuX. GongF.H. SheZ. HuangZ. XiaH. LiH. OncostatinM. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages.J. Lipid Res.201758589590610.1194/jlr.M07411228258089
    [Google Scholar]
  47. KomoriT. MorikawaY. Oncostatin M in the development of metabolic syndrome and its potential as a novel therapeutic target.Anat. Sci. Int.201893216917610.1007/s12565‑017‑0421‑y29103176
    [Google Scholar]
  48. BrandumE.P. JørgensenA.S. RosenkildeM.M. HjortøG.M. Dendritic cells and CCR7 expression: An important factor for autoimmune diseases, chronic inflammation, and cancer.Int. J. Mol. Sci.20212215834010.3390/ijms2215834034361107
    [Google Scholar]
  49. MaiW. LiaoY. Targeting IL-1β in the treatment of atherosclerosis.Front. Immunol.20201158965410.3389/fimmu.2020.58965433362770
    [Google Scholar]
  50. MaJ.H. WangJ.J. LiJ. PfefferB.A. ZhongY. ZhangS.X. The role of IRE-XBP1 pathway in regulation of retinal pigment epithelium tight junctions.Invest. Ophthalmol. Vis. Sci.201657135244525210.1167/iovs.16‑1923227701635
    [Google Scholar]
  51. YaoS. MiaoC. TianH. SangH. YangN. JiaoP. HanJ. ZongC. QinS. Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression.J. Biol. Chem.201428974032404210.1074/jbc.M113.52451224366867
    [Google Scholar]
  52. VolmerR. RonD. Lipid-dependent regulation of the unfolded protein response.Curr. Opin. Cell Biol.201533677310.1016/j.ceb.2014.12.00225543896
    [Google Scholar]
  53. GuoC. MaR. LiuX. ChenT. LiY. YuY. DuanJ. ZhouX. LiY. SunZ. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling.Sci. Total Environ.2018631-63257057910.1016/j.scitotenv.2018.02.31229533793
    [Google Scholar]
  54. EberhartT. EignerK. FilikY. FruhwürthS. StanglH. RöhrlC. The unfolded protein response is a negative regulator of scavenger receptor class B, type I (SR-BI) expression.Biochem. Biophys. Res. Commun.2016479355756210.1016/j.bbrc.2016.09.11027666478
    [Google Scholar]
  55. SozenE. OzerN.K. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review.Redox Biol.20171245646110.1016/j.redox.2017.02.02528319895
    [Google Scholar]
  56. SukhorukovV. KhotinaV. KalmykovV. ZhuravlevA. SinyovV. SobeninI. OrekhovA. Mitochondrial genome editing: A possible interplay of atherosclerosis-associated mutation m.15059g>a with defective mitophagy.J. Lipid Atheroscler.202413216618310.12997/jla.2024.13.2.16638826184
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286400240206095814
Loading
/content/journals/cmc/10.2174/0109298673286400240206095814
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Atherosclerosis; inflammation; LDL; lipid metabolism; macrophages; transcriptome analysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test