Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Metformin, a biguanide on the WHO’s list of essential medicines has a long history of 50 years or more in treating hyperglycemia, and its therapeutic saga continues beyond diabetes treatment. Glucoregulatory actions are central to the physiological effects of metformin; surprisingly, the precise mechanism with which metformin regulates glucose metabolism is not thoroughly understood yet.

Methods

The main aim of this review is to explore the recent implications of metformin in hepatic gluconeogenesis, AMPKs, and SHIP2 and subsequently to elucidate the metformin action across intestine and gut microbiota. We have searched PubMed, Google scholar, Medline, eMedicine, National Library of Medicine (NLM), clinicaltrials.gov (registry), and ReleMed for the implications of metformin with its updated role in AMPKs, SHIP2, and hepatic gluoconeogenesis, and gut microbiota. In this review, we have described the efficacy of metformin as a drug repurposing strategy in modulating the role of AMPKs lysosomal-AMPKs, and also, the controversies associated with metformin.

Results

Research suggests that biguanide exhibits hormetic effects depending on the concentrations used (micromolar to millimolar). The primary mechanism attributed to metformin action is the inhibition of mitochondrial complex I, and subsequent reduction of cellular energy state, as observed with increased AMP or ADP ratio, thereby metformin can also activate the cellular energy sensor AMPK to inhibit hepatic gluconeogenesis. However, new mechanistic models have been proposed lately to explain the pleiotropic actions of metformin; at low dose, metformin can activate lysosomal-AMPK the AXIN-LKB1 pathway. Conversely, in an AMPK-independent mechanism, metformin-induced elevation of AMP suppresses adenylate cyclase and glucagon-activated cAMP production to inhibit hepatic glucose output by glucagon. Metformin inhibits mitochondrial glycerophosphate dehydrogenase; mGPDH, and increases the cytosolic NADH/NAD+, affecting the availability of lactate and glycerol for gluconeogenesis. Metformin can inhibit Src homology 2 domain-containing inositol 5-phosphatase 2; SHIP2 to increase the insulin sensitivity and glucose uptake by peripheral tissues. In addition, new exciting mechanisms suggest the role of metformin in promoting beneficial gut microbiome and gut health. Metformin regulates duodenal AMPK activation, incretin harmone secretion and bile acid homeostasis to improve intestinal glucose absorption and utilization.

Conclusion

The proper understanding of the key regulators of metformin actions is of utmost importance to enhance its pleotropic benefits on diabetes and beyond.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673289342240213040144
2024-02-21
2025-04-10
Loading full text...

Full text loading...

References

  1. MaleškićS. KusturicaJ. GušićE. Rakanović-TodićM. ŠečićD. Burnazović-RistićL. KuloA. Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes – observational study.Acta Med. Acad.201846211612310.5644/ama2006‑124.19629338275
    [Google Scholar]
  2. YerevanianA. SoukasA.A. Metformin: Mechanisms in human obesity and weight loss.Curr. Obes. Rep.20198215616410.1007/s13679‑019‑00335‑330874963
    [Google Scholar]
  3. PollakM.N. Investigating metformin for cancer prevention and treatment: The end of the beginning.Cancer Discov.20122977879010.1158/2159‑8290.CD‑12‑026322926251
    [Google Scholar]
  4. BakerC. Retzik-StahrC. SinghV. PlomondonR. AndersonV. RasouliN. Should metformin remain the first-line therapy for treatment of type 2 diabetes?Ther. Adv. Endocrinol. Metab.202112204201882098022510.1177/204201882098022533489086
    [Google Scholar]
  5. MarshallS.M. 60 years of metformin use: A glance at the past and a look to the future.Diabetologia20176091561156510.1007/s00125‑017‑4343‑y28776085
    [Google Scholar]
  6. RojasL.B.A. GomesM.B. Metformin: An old but still the best treatment for type 2 diabetes.Diabetol. Metab. Syndr.201351610.1186/1758‑5996‑5‑623415113
    [Google Scholar]
  7. ForetzM. GuigasB. ViolletB. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus.Nat. Rev. Endocrinol.2019151056958910.1038/s41574‑019‑0242‑231439934
    [Google Scholar]
  8. PernicovaI. KorbonitsM. Metformin-mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.201410314315610.1038/nrendo.2013.25624393785
    [Google Scholar]
  9. GuntonJ.E. DelhantyP.J.D. TakahashiS.I. BaxterR.C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2.J. Clin. Endocrinol. Metab.20038831323133210.1210/jc.2002‑02139412629126
    [Google Scholar]
  10. Polianskyte-PrauseZ. TolvanenT.A. LindforsS. DumontV. VanM. WangH. DashS.N. BergM. NaamsJ.B. HautalaL.C. NisenH. MirttiT. GroopP.H. WähäläK. TienariJ. LehtonenS. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity.FASEB J.20193322858286910.1096/fj.201800529RR30321069
    [Google Scholar]
  11. GormsenL.C. SøndergaardE. ChristensenN.L. BrøsenK. JessenN. NielsenS. Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes.Diabetologia20196271251125610.1007/s00125‑019‑4872‑730976851
    [Google Scholar]
  12. McCreightL.J. MariA. CoppinL. JacksonN. UmplebyA.M. PearsonE.R. Metformin increases fasting glucose clearance and endogenous glucose production in non-diabetic individuals.Diabetologia202063244444710.1007/s00125‑019‑05042‑131758212
    [Google Scholar]
  13. Szymczak-PajorI. WenclewskaS. ŚliwińskaA. Metabolic action of metformin.Pharmaceuticals202215781010.3390/ph1507081035890109
    [Google Scholar]
  14. HanT.K. ProctorW.R. CostalesC.L. CaiH. EverettR.S. ThakkerD.R. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers.J. Pharmacol. Exp. Ther.2015352351952810.1124/jpet.114.22035025563903
    [Google Scholar]
  15. LiangX. GiacominiK.M. Transporters involved in metformin pharmacokinetics and treatment response.J. Pharm. Sci.201710692245225010.1016/j.xphs.2017.04.07828495567
    [Google Scholar]
  16. LiangX. ChienH.C. YeeS.W. GiacominiM.M. ChenE.C. PiaoM. HaoJ. TwelvesJ. LepistE.I. RayA.S. GiacominiK.M. Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3).Mol. Pharm.201512124301431010.1021/acs.molpharmaceut.5b0050126528626
    [Google Scholar]
  17. KoepsellH. Update on drug-drug interaction at organic cation transporters: mechanisms, clinical impact, and proposal for advanced in vitro testing.Expert Opin. Drug Metab. Toxicol.202117663565310.1080/17425255.2021.191528433896325
    [Google Scholar]
  18. UmamaheswaranG. ArunkumarA.S. ShewadeD.G. PraveenR.G. DasA.K. AdithanC. Genetic analysis of OCT1 gene polymorphisms in an Indian population.Indian J. Hum. Genet.201117316416810.4103/0971‑6866.9209422345987
    [Google Scholar]
  19. ShuY. SheardownS.A. BrownC. OwenR.P. ZhangS. CastroR.A. IanculescuA.G. YueL. LoJ.C. BurchardE.G. BrettC.M. GiacominiK.M. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action.J. Clin. Invest.200711751422143110.1172/JCI3055817476361
    [Google Scholar]
  20. SundelinE.I.O. GormsenL.C. JensenJ.B. VendelboM.H. JakobsenS. MunkO.L. ChristensenM.M.H. BrøsenK. FrøkiærJ. JessenN. Genetic polymorphisms in organic cation transporter 1 attenuates hepatic metformin exposure in humans.Clin. Pharmacol. Ther.2017102584184810.1002/cpt.70128380657
    [Google Scholar]
  21. DujicT. ZhouK. DonnellyL.A. TavendaleR. PalmerC.N.A. PearsonE.R. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS study.Diabetes20156451786179310.2337/db14‑138825510240
    [Google Scholar]
  22. FontaineE. Metformin-induced mitochondrial complex i inhibition: Facts, uncertainties, and consequences.Front. Endocrinol.2018910.3389/fendo.2018.00753
    [Google Scholar]
  23. VialG. DetailleD. GuigasB. Role of mitochondria in the mechanism(s) of action of metformin.Front. Endocrinol.20191010.3389/fendo.2019.00294
    [Google Scholar]
  24. LaMoiaT.E. ButricoG.M. KalpageH.A. GoedekeL. HubbardB.T. VatnerD.F. GasparR.C. ZhangX.M. ClineG.W. NakaharaK. WooS. ShimadaA. HüttemannM. ShulmanG.I. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis.Proc. Natl. Acad. Sci.202211910e212228711910.1073/pnas.212228711935238637
    [Google Scholar]
  25. LogieL. HarthillJ. PatelK. BaconS. HamiltonD.L. MacraeK. McDougallG. WangH.H. XueL. JiangH. SakamotoK. PrescottA.R. RenaG. Cellular responses to the metal-binding properties of metformin.Diabetes20126161423143310.2337/db11‑096122492524
    [Google Scholar]
  26. El-MirM.Y. NogueiraV. FontaineE. AvéretN. RigouletM. LeverveX. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.J. Biol. Chem.2000275122322810.1074/jbc.275.1.22310617608
    [Google Scholar]
  27. HardieD.G. Keeping the home fires burning: AMP-activated protein kinase.J. R. Soc. Interface2018151382017077410.1098/rsif.2017.077429343628
    [Google Scholar]
  28. MadirajuA.K. ErionD.M. RahimiY. ZhangX.M. BraddockD.T. AlbrightR.A. PrigaroB.J. WoodJ.L. BhanotS. MacDonaldM.J. JurczakM.J. CamporezJ.P. LeeH.Y. ClineG.W. SamuelV.T. KibbeyR.G. ShulmanG.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.Nature2014510750654254610.1038/nature1327024847880
    [Google Scholar]
  29. StephenneX. ForetzM. TaleuxN. van der ZonG.C. SokalE. HueL. ViolletB. GuigasB. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status.Diabetologia201154123101311010.1007/s00125‑011‑2311‑521947382
    [Google Scholar]
  30. LongY.C. ZierathJ.R. AMP-activated protein kinase signaling in metabolic regulation.J. Clin. Invest.200611671776178310.1172/JCI2904416823475
    [Google Scholar]
  31. SzkudelskiT. SzkudelskaK. The relevance of AMP-activated protein kinase in insulin-secreting β cells: a potential target for improving β cell function?J. Physiol. Biochem.201975442343210.1007/s13105‑019‑00706‑331691163
    [Google Scholar]
  32. ShawR.J. LamiaK.A. VasquezD. KooS.H. BardeesyN. DePinhoR.A. MontminyM. CantleyL.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.Science200531057541642164610.1126/science.112078116308421
    [Google Scholar]
  33. HardieD.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy.Nat. Rev. Mol. Cell Biol.200781077478510.1038/nrm224917712357
    [Google Scholar]
  34. MihaylovaM.M. ShawR.J. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism.Nat. Cell Biol.20111391016102310.1038/ncb232921892142
    [Google Scholar]
  35. ShawR.J. KosmatkaM. BardeesyN. HurleyR.L. WittersL.A. DePinhoR.A. CantleyL.C. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.Proc. Natl. Acad. Sci.2004101103329333510.1073/pnas.030806110014985505
    [Google Scholar]
  36. WoodsA. JohnstoneS.R. DickersonK. LeiperF.C. FryerL.G.D. NeumannD. SchlattnerU. WallimannT. CarlsonM. CarlingD. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade.Curr. Biol.200313222004200810.1016/j.cub.2003.10.03114614828
    [Google Scholar]
  37. WoodsA. DickersonK. HeathR. HongS.P. MomcilovicM. JohnstoneS.R. CarlsonM. CarlingD. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells.Cell Metab.200521213310.1016/j.cmet.2005.06.00516054096
    [Google Scholar]
  38. MengS. CaoJ. HeQ. XiongL. ChangE. RadovickS. WondisfordF.E. HeL. Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex.J. Biol. Chem.201529063793380210.1074/jbc.M114.60442125538235
    [Google Scholar]
  39. LeeJ.M. SeoW.Y. SongK.H. ChandaD. KimY.D. KimD.K. LeeM.W. RyuD. KimY.H. NohJ.R. LeeC.H. ChiangJ.Y.L. KooS.H. ChoiH.S. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB. CRTC2 complex by orphan nuclear receptor small heterodimer partner.J. Biol. Chem.201028542321823219110.1074/jbc.M110.13489020688914
    [Google Scholar]
  40. HeL. SabetA. DjedjosS. MillerR. SunX. HussainM.A. RadovickS. WondisfordF.E. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein.Cell2009137463564610.1016/j.cell.2009.03.01619450513
    [Google Scholar]
  41. CatonP.W. NayuniN.K. KieswichJ. KhanN.Q. YaqoobM.M. CorderR. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5.J. Endocrinol.201020519710610.1677/JOE‑09‑034520093281
    [Google Scholar]
  42. HowellJ.J. HellbergK. TurnerM. TalbottG. KolarM.J. RossD.S. HoxhajG. SaghatelianA. ShawR.J. ManningB.D. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC Complex.Cell Metab.201725246347110.1016/j.cmet.2016.12.00928089566
    [Google Scholar]
  43. YangL. ZhangZ. WangD. JiangY. LiuY. Targeting mTOR signaling in type 2 diabetes mellitus and diabetes complications.Curr. Drug Targets202223769271010.2174/138945012366622011111552835021971
    [Google Scholar]
  44. DowlingR.J.O. ZakikhaniM. FantusI.G. PollakM. SonenbergN. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.Cancer Res.20076722108041081210.1158/0008‑5472.CAN‑07‑231018006825
    [Google Scholar]
  45. GwinnD.M. ShackelfordD.B. EganD.F. MihaylovaM.M. MeryA. VasquezD.S. TurkB.E. ShawR.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol. Cell200830221422610.1016/j.molcel.2008.03.00318439900
    [Google Scholar]
  46. KalenderA. SelvarajA. KimS.Y. GulatiP. BrûléS. ViolletB. KempB.E. BardeesyN. DennisP. SchlagerJ.J. MaretteA. KozmaS.C. ThomasG. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.Cell Metab.201011539040110.1016/j.cmet.2010.03.01420444419
    [Google Scholar]
  47. FullertonM.D. GalicS. MarcinkoK. SikkemaS. PulinilkunnilT. ChenZ.P. O’NeillH.M. FordR.J. PalanivelR. O’BrienM. HardieD.G. MacaulayS.L. SchertzerJ.D. DyckJ.R.B. van DenderenB.J. KempB.E. SteinbergG.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin.Nat. Med.201319121649165410.1038/nm.337224185692
    [Google Scholar]
  48. GaldieriL. GatlaH. VancurovaI. VancuraA. Activation of AMP-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells.J. Biol. Chem.201629148251542516610.1074/jbc.M116.74224727733682
    [Google Scholar]
  49. ZhangC.S. LiM. MaT. ZongY. CuiJ. FengJ.W. WuY.Q. LinS.Y. LinS.C. Metformin activates AMPK through the lysosomal pathway.Cell Metab.201624452152210.1016/j.cmet.2016.09.00327732831
    [Google Scholar]
  50. MaT. TianX. ZhangB. LiM. WangY. YangC. WuJ. WeiX. QuQ. YuY. LongS. FengJ.W. LiC. ZhangC. XieC. WuY. XuZ. ChenJ. YuY. HuangX. HeY. YaoL. ZhangL. ZhuM. WangW. WangZ.C. ZhangM. BaoY. JiaW. LinS.Y. YeZ. PiaoH.L. DengX. ZhangC.S. LinS.C. Low-dose metformin targets the lysosomal AMPK pathway through PEN2.Nature2022603789915916510.1038/s41586‑022‑04431‑835197629
    [Google Scholar]
  51. CameronA.R. LogieL. PatelK. ErhardtS. BaconS. MiddletonP. HarthillJ. ForteathC. CoatsJ.T. KerrC. CurryH. StewartD. SakamotoK. RepiščákP. PatersonM.J. HassinenI. McDougallG. RenaG. Metformin selectively targets redox control of complex I energy transduction.Redox Biol.20181418719710.1016/j.redox.2017.08.01828942196
    [Google Scholar]
  52. LaMoiaT.E. ShulmanG.I. Cellular and molecular mechanisms of metformin action.Endocr. Rev.2021421779610.1210/endrev/bnaa02332897388
    [Google Scholar]
  53. PanfoliI. PudduA. BertolaN. RaveraS. MaggiD. The hormetic effect of metformin: “Less is more”?Int. J. Mol. Sci.20212212629710.3390/ijms2212629734208371
    [Google Scholar]
  54. ForetzM. HébrardS. LeclercJ. ZarrinpashnehE. SotyM. MithieuxG. SakamotoK. AndreelliF. ViolletB. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.J. Clin. Invest.201012072355236910.1172/JCI4067120577053
    [Google Scholar]
  55. HunterR.W. HugheyC.C. LantierL. SundelinE.I. PeggieM. ZeqirajE. SicheriF. JessenN. WassermanD.H. SakamotoK. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.Nat. Med.20182491395140610.1038/s41591‑018‑0159‑730150719
    [Google Scholar]
  56. MillerR.A. ChuQ. XieJ. ForetzM. ViolletB. BirnbaumM.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.Nature2013494743625626010.1038/nature1180823292513
    [Google Scholar]
  57. ZhangX. YangS. ChenJ. SuZ. Unraveling the regulation of hepatic gluconeogenesis.Front. Endocrinol.2019980210.3389/fendo.2018.0080230733709
    [Google Scholar]
  58. Al-OanziZ.H. FountanaS. MooniraT. TudhopeS.J. PetrieJ.L. AlshawiA. PatmanG. ArdenC. ReevesH.L. AgiusL. Opposite effects of a glucokinase activator and metformin on glucose-regulated gene expression in hepatocytes.Diabetes Obes. Metab.20171981078108710.1111/dom.1291028206714
    [Google Scholar]
  59. Ben SahraI. RegazzettiC. RobertG. LaurentK. Le Marchand-BrustelY. AubergerP. TantiJ.F. Giorgetti-PeraldiS. BostF. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1.Cancer Res.201171134366437210.1158/0008‑5472.CAN‑10‑176921540236
    [Google Scholar]
  60. ZakikhaniM. DowlingR. FantusI.G. SonenbergN. PollakM. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.Cancer Res.20066621102691027310.1158/0008‑5472.CAN‑06‑150017062558
    [Google Scholar]
  61. McCreightL.J. BaileyC.J. PearsonE.R. Metformin and the gastrointestinal tract.Diabetologia201659342643510.1007/s00125‑015‑3844‑926780750
    [Google Scholar]
  62. JanahL. KjeldsenS. GalsgaardK.D. Winther-SørensenM. StojanovskaE. PedersenJ. KnopF.K. HolstJ.J. Wewer AlbrechtsenN.J. Glucagon receptor signaling and glucagon resistance.Int. J. Mol. Sci.20192013331410.3390/ijms2013331431284506
    [Google Scholar]
  63. Wewer AlbrechtsenN.J. KuhreR.E. PedersenJ. KnopF.K. HolstJ.J. The biology of glucagon and the consequences of hyperglucagonemia.Biomarkers Med.201610111141115110.2217/bmm‑2016‑009027611762
    [Google Scholar]
  64. PedersenC. KraftG. EdgertonD.S. ScottM. FarmerB. SmithM. LaneveD.C. WilliamsP.E. MooreL.M. CherringtonA.D. The kinetics of glucagon action on the liver during insulin-induced hypoglycemia.Am. J. Physiol. Endocrinol. Metab.20203185E779E79010.1152/ajpendo.00466.201932208001
    [Google Scholar]
  65. JamisonR.A. StarkR. DongJ. YonemitsuS. ZhangD. ShulmanG.I. KibbeyR.G. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats.Am. J. Physiol. Endocrinol. Metab.20113016E1174E118310.1152/ajpendo.00175.201121862723
    [Google Scholar]
  66. JiangG. ZhangB.B. Glucagon and regulation of glucose metabolism.Am. J. Physiol. Endocrinol. Metab.20032844E671E67810.1152/ajpendo.00492.200212626323
    [Google Scholar]
  67. RosS. SchulzeA. Balancing glycolytic flux: The role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism.Cancer Metab.201311810.1186/2049‑3002‑1‑824280138
    [Google Scholar]
  68. KishimotoA. TakaiY. NishizukaY. Activation of glycogen phosphorylase kinase by a calcium-activated, cyclic nucleotide-independent protein kinase system.J. Biol. Chem.1977252217449745210.1016/S0021‑9258(17)40987‑2914821
    [Google Scholar]
  69. KonopkaA.R. EspondaR.R. RobinsonM.M. JohnsonM.L. CarterR.E. SchiavonM. CobelliC. WondisfordF.E. LanzaI.R. NairK.S. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes.Cell Rep.20161571394140010.1016/j.celrep.2016.04.02427160898
    [Google Scholar]
  70. AlshawiA. AgiusL. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.J. Biol. Chem.201929482839569110.1074/jbc.RA118.00667030591586
    [Google Scholar]
  71. LizunovV.A. LeeJ.P. SkarulisM.C. ZimmerbergJ. CushmanS.W. StenkulaK.G. Impaired tethering and fusion of GLUT4 vesicles in insulin-resistant human adipose cells.Diabetes20136293114311910.2337/db12‑174123801575
    [Google Scholar]
  72. TremblayF. LavigneC. JacquesH. MaretteA. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (ζ/λ) activities.Diabetes20015081901191010.2337/diabetes.50.8.190111473054
    [Google Scholar]
  73. TsaoT.S. StenbitA.E. FactorS.M. ChenW. RossettiL. CharronM.J. Prevention of insulin resistance and diabetes in mice heterozygous for GLUT4 ablation by transgenic complementation of GLUT4 in skeletal muscle.Diabetes199948477578210.2337/diabetes.48.4.77510102694
    [Google Scholar]
  74. GabboujS. RyhänenS. MarttinenM. WittrahmR. TakaloM. KemppainenS. MartiskainenH. TanilaH. HaapasaloA. HiltunenM. NatunenT. Altered insulin signaling in Alzheimer’s disease brain – special emphasis on PI3K-Akt pathway.Front. Neurosci.20191362910.3389/fnins.2019.0062931275108
    [Google Scholar]
  75. SaltielA.R. KahnC.R. Insulin signalling and the regulation of glucose and lipid metabolism.Nature2001414686579980610.1038/414799a11742412
    [Google Scholar]
  76. ŚwiderskaE. StrycharzJ. WróblewskiA. SzemrajJ. DrzewoskiJ. ŚliwińskaA. Role of PI3K/AKT pathway in insulin-mediated glucose uptake.Blood Glucose Levels2018111810.5772/intechopen.80402
    [Google Scholar]
  77. MannaP. JainS.K. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes.Mol. Cell. Biochem.20133811-229129910.1007/s11010‑013‑1714‑723749168
    [Google Scholar]
  78. LienF. BerthierA. BouchaertE. GheeraertC. AlexandreJ. PorezG. PrawittJ. DehondtH. PlotonM. ColinS. LucasA. PatriceA. PattouF. DiemerH. Van DorsselaerA. RachezC. KamilicJ. GroenA.K. StaelsB. LefebvreP. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk.J. Clin. Invest.201412431037105110.1172/JCI6881524531544
    [Google Scholar]
  79. WaiseT.M.Z. RastiM. DucaF.A. ZhangS.Y. BauerP.V. RhodesC.J. LamT.K.T. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production.Nat. Commun.201910171410.1038/s41467‑019‑08582‑730755615
    [Google Scholar]
  80. ShinN.R. LeeJ.C. LeeH.Y. KimM.S. WhonT.W. LeeM.S. BaeJ.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.Gut201463572773510.1136/gutjnl‑2012‑30383923804561
    [Google Scholar]
  81. de la Cuesta-ZuluagaJ. MuellerN.T. Corrales-AgudeloV. Velásquez-MejíaE.P. CarmonaJ.A. AbadJ.M. EscobarJ.S. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut.Diabetes Care2017401546210.2337/dc16‑132427999002
    [Google Scholar]
  82. PryorR. NorvaisasP. MarinosG. BestL. ThingholmL.B. QuintaneiroL.M. De HaesW. EsserD. WaschinaS. LujanC. SmithR.L. ScottT.A. Martinez-MartinezD. WoodwardO. BrysonK. LaudesM. LiebW. HoutkooperR.H. FrankeA. TemmermanL. BjedovI. CocheméH.M. KaletaC. CabreiroF. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy.Cell2019178612991312.e2910.1016/j.cell.2019.08.00331474368
    [Google Scholar]
  83. BleroD. De SmedtF. PesesseX. PaternotteN. MoreauC. PayrastreB. ErneuxC. The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin.Biochem. Biophys. Res. Commun.2001282383984310.1006/bbrc.2001.463911401540
    [Google Scholar]
  84. ClémentS. KrauseU. DesmedtF. TantiJ.F. BehrendsJ. PesesseX. SasakiT. PenningerJ. DohertyM. MalaisseW. DumontJ.E. Le Marchand-BrustelY. ErneuxC. HueL. SchurmansS. The lipid phosphatase SHIP2 controls insulin sensitivity.Nature20014096816929710.1038/3505109411343120
    [Google Scholar]
  85. EramoM.J. MitchellC.A. Regulation of PtdIns(3,4,5) P 3/Akt signalling by inositol polyphosphate 5-phosphatases.Biochem. Soc. Trans.201644124025210.1042/BST2015021426862211
    [Google Scholar]
  86. WadaT. SasaokaT. FunakiM. HoriH. MurakamiS. IshikiM. HarutaT. AsanoT. OgawaW. IshiharaH. KobayashiM. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5′-phosphatase catalytic activity.Mol. Cell. Biol.20012151633164610.1128/MCB.21.5.1633‑1646.200111238900
    [Google Scholar]
  87. SasaokaT. HoriH. WadaT. IshikiM. HarutaT. IshiharaH. KobayashiM. SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes.Diabetologia200144101258126710.1007/s00125010064511692174
    [Google Scholar]
  88. LehtonenS. SHIPping out diabetes—Metformin, an old friend among new SHIP2 inhibitors.Acta Physiol.20202281e1334910.1111/apha.1334931342643
    [Google Scholar]
  89. ViernesD.R. ChoiL.B. KerrW.G. ChisholmJ.D. Discovery and development of small molecule SHIP phosphatase modulators.Med. Res. Rev.201434479582410.1002/med.2130524302498
    [Google Scholar]
  90. SleemanM.W. WortleyK.E. LaiK.M.V. GowenL.C. KintnerJ. KlineW.O. GarciaK. StittT.N. YancopoulosG.D. WiegandS.J. GlassD.J. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity.Nat. Med.200511219920510.1038/nm117815654325
    [Google Scholar]
  91. JurynecM.J. GrunwaldD.J. SHIP2, a factor associated with diet-induced obesity and insulin sensitivity, attenuates FGF signaling in vivo.Dis. Model. Mech.2010311-1273374210.1242/dmm.00070320616095
    [Google Scholar]
  92. PrasadN.K. DeckerS.J. SH2-containing 5′-inositol phosphatase, SHIP2, regulates cytoskeleton organization and ligand-dependent down-regulation of the epidermal growth factor receptor.J. Biol. Chem.200528013131291313610.1074/jbc.M41028920015668240
    [Google Scholar]
  93. SuwaA. KuramaT. ShimokawaT. SHIP2 and its involvement in various diseases.Expert Opin. Ther. Targets201014772773710.1517/14728222.2010.49278020536411
    [Google Scholar]
  94. PrasadN.K. TandonM. HandaA. MooreG.E. BabbsC.F. SnyderP.W. BoseS. High expression of obesity-linked phosphatase SHIP2 in invasive breast cancer correlates with reduced disease-free survival.Tumour Biol.200829533034110.1159/00017297019065064
    [Google Scholar]
  95. GhoshS. ScozzaroS. RamosA.R. DelcambreS. ChevalierC. KrejciP. ErneuxC. Inhibition of SHIP2 activity inhibits cell migration and could prevent metastasis in breast cancer cells.J. Cell Sci.201813116jcs.21640810.1242/jcs.21640830012834
    [Google Scholar]
  96. YangJ. FuM. DingY. WengY. FanW. PuX. GeZ. ZhanF. NiH. ZhangW. JinF. XuN. LiJ. QiuL. WangJ. GuX. High SHIP2 expression indicates poor survival in colorectal cancer.Dis. Markers201420141710.1155/2014/21896825525286
    [Google Scholar]
  97. ZhouX. LiuY. TanG. Prognostic value of elevated SHIP2 expression in laryngeal squamous cell carcinoma.Arch. Med. Res.201142758959510.1016/j.arcmed.2011.10.01222079859
    [Google Scholar]
  98. FuM. FanW. PuX. NiH. ZhangW. ChangF. GongL. XiongL. WangJ. GuX. Elevated expression of SHIP2 correlates with poor prognosis in non-small cell lung cancer.Int. J. Clin. Exp. Pathol.20136102185219124133597
    [Google Scholar]
  99. HoekstraE. DasA.M. WillemsenM. SwetsM. KuppenP.J.K. van der WoudeC.J. BrunoM.J. ShahJ.P. HagenT.L.M. ChisholmJ.D. KerrW.G. PeppelenboschM.P. FuhlerG.M. Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation.Oncotarget2016745735257354010.18632/oncotarget.1232127716613
    [Google Scholar]
  100. YeY. GeY.M. XiaoM.M. GuoL.M. LiQ. HaoJ.Q. DaJ. HuW.L. ZhangX.D. XuJ. ZhangL.J. Suppression of SHIP2 contributes to tumorigenesis and proliferation of gastric cancer cells via activation of Akt.J. Gastroenterol.201651323024010.1007/s00535‑015‑1101‑026201869
    [Google Scholar]
  101. IchiharaY. FujimuraR. TsunekiH. WadaT. OkamotoK. GoudaH. HironoS. SugimotoK. MatsuyaY. SasaokaT. ToyookaN. Rational design and synthesis of 4-substituted 2-pyridin-2-ylamides with inhibitory effects on SH2 domain-containing inositol 5′-phosphatase 2 (SHIP2).Eur. J. Med. Chem.20136264966010.1016/j.ejmech.2013.01.01423434638
    [Google Scholar]
  102. Polianskyte-PrauseZ. TolvanenT.A. LindforsS. KonK. HautalaL.C. WangH. WadaT. TsunekiH. SasaokaT. LehtonenS. Ebselen enhances insulin sensitivity and decreases oxidative stress by inhibiting SHIP2 and protects from inflammation in diabetic mice.Int. J. Biol. Sci.20221851852186410.7150/ijbs.6631435342343
    [Google Scholar]
  103. SuwaA. KuramaT. YamamotoT. SawadaA. ShimokawaT. AramoriI. Glucose metabolism activation by SHIP2 inhibitors via up-regulation of GLUT1 gene in L6 myotubes.Eur. J. Pharmacol.20106421-317718210.1016/j.ejphar.2010.06.00220558154
    [Google Scholar]
  104. HyvönenM.E. SaurusP. WasikA. HeikkiläE. HavanaM. TrokovicR. SaleemM. HolthöferH. LehtonenS. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes.Mol. Cell. Endocrinol.20103281-2707910.1016/j.mce.2010.07.01620654688
    [Google Scholar]
  105. MacDonaldM.J. WarnerT.F. MertzR.J. High activity of mitochondrial glycerol phosphate dehydrogenase in insulinomas and carcinoid and other tumors of the amine precursor uptake decarboxylation system.Cancer Res.19905022720372051977516
    [Google Scholar]
  106. PecinováA. AlánL. BrázdováA. VrbackýM. PecinaP. DrahotaZ. HouštěkJ. MráčekT. Role of mitochondrial glycerol-3-phosphate dehydrogenase in metabolic adaptations of prostate cancer.Cells202098176410.3390/cells908176432717855
    [Google Scholar]
  107. QuinlanC.L. PerevoschikovaI.V. GoncalvesR.L.S. Hey-MogensenM. BrandM.D. Chapter twelve - The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. In: Methods in Enzymology in Hydrogen Peroxide and Cell Signaling CadenasE. PackerL. Academic Press201352618921710.1016/B978‑0‑12‑405883‑5.00012‑0
    [Google Scholar]
  108. LiuX. QuH. ZhengY. LiaoQ. ZhangL. LiaoX. XiongX. WangY. ZhangR. WangH. TongQ. LiuZ. DongH. YangG. ZhuZ. XuJ. ZhengH. Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration.EMBO Mol. Med.20181012e939010.15252/emmm.20180939030389681
    [Google Scholar]
  109. MráčekT. DrahotaZ. HouštěkJ. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues.Biochim. Biophys. Acta Bioenerg.20131827340141010.1016/j.bbabio.2012.11.01423220394
    [Google Scholar]
  110. MadirajuA.K. QiuY. PerryR.J. RahimiY. ZhangX.M. ZhangD. CamporezJ.P.G. ClineG.W. ButricoG.M. KempB.E. CasalsG. SteinbergG.R. VatnerD.F. PetersenK.F. ShulmanG.I. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo.Nat. Med.20182491384139410.1038/s41591‑018‑0125‑430038219
    [Google Scholar]
  111. GlossmannH.H. LutzO.M.D. Commentary: Lactate-induced glucose output is unchanged by metformin at a therapeutic concentration-a mass spectrometry imaging study of the perfused rat liver.Front. Pharmacol.2019109010.3389/fphar.2019.0009030837871
    [Google Scholar]
  112. ThakurS. DaleyB. GaskinsK. VaskoV.V. BoufraqechM. PatelD. SourbierC. ReeceJ. ChengS.Y. KebebewE. AgarwalS. Klubo-GwiezdzinskaJ. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo.Clin. Cancer Res.201824164030404310.1158/1078‑0432.CCR‑17‑316729691295
    [Google Scholar]
  113. GuiD.Y. SullivanL.B. LuengoA. HosiosA.M. BushL.N. GitegoN. DavidsonS.M. FreinkmanE. ThomasC.J. Vander HeidenM.G. Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin.Cell Metab.201624571672710.1016/j.cmet.2016.09.00627746050
    [Google Scholar]
  114. PecinovaA. DrahotaZ. KovalcikovaJ. KovarovaN. PecinaP. AlanL. ZimaM. HoustekJ. MracekT. Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production.Oxid. Med. Cell. Longev.2017201711110.1155/2017/703860328874953
    [Google Scholar]
  115. CalzaG. NybergE. MäkinenM. SoliymaniR. CasconeA. LindholmD. BarboriniE. BaumannM. LalowskiM. ErikssonO. Lactate-induced glucose output is unchanged by metformin at a therapeutic concentration – a mass spectrometry imaging study of the perfused rat liver.Front. Pharmacol.2018914110.3389/fphar.2018.0014129520235
    [Google Scholar]
  116. BaurJ.A. BirnbaumM.J. Control of gluconeogenesis by metformin: Does redox trump energy charge?Cell Metab.201420219719910.1016/j.cmet.2014.07.01325100057
    [Google Scholar]
  117. BorstP. The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway.IUBMB Life202072112241225910.1002/iub.236732916028
    [Google Scholar]
  118. BaileyC.J. WilcockC. ScarpelloJ.H.B. Metformin and the intestine.Diabetologia20085181552155310.1007/s00125‑008‑1053‑518528677
    [Google Scholar]
  119. GormsenL.C. SundelinE.I. JensenJ.B. VendelboM.H. JakobsenS. MunkO.L. Hougaard ChristensenM.M. BrøsenK. FrøkiærJ. JessenN. In vivo imaging of human 11 c-metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses.J. Nucl. Med.201657121920192610.2967/jnumed.116.17777427469359
    [Google Scholar]
  120. van SteeM.F. de GraafA.A. GroenA.K. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy.Cardiovasc. Diabetol.20181719410.1186/s12933‑018‑0738‑429960584
    [Google Scholar]
  121. ProctorW.R. BourdetD.L. ThakkerD.R. Mechanisms underlying saturable intestinal absorption of metformin.Drug Metab. Dispos.20083681650165810.1124/dmd.107.02018018458049
    [Google Scholar]
  122. ZhouM. XiaL. WangJ. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine.Drug Metab. Dispos.200735101956196210.1124/dmd.107.01549517600084
    [Google Scholar]
  123. ShirasakaY. SekiM. HatakeyamaM. KurokawaY. UchiyamaH. TakemuraM. YasugiY. KishimotoH. TamaiI. WangJ. InoueK. Multiple transport mechanisms involved in the intestinal absorption of metformin: Impact on the nonlinear absorption kinetics.J. Pharm. Sci.202211151531154110.1016/j.xphs.2022.01.00835090865
    [Google Scholar]
  124. RuanY. LiX. YouL. ChenJ. ShenY. ZhangJ. YuanY. KangL. QinC. WuC. Effect of pharmaceutical excipients on intestinal absorption of metformin via organic cation-selective transporters.Mol. Pharm.20211862198220710.1021/acs.molpharmaceut.0c0110433956455
    [Google Scholar]
  125. BonoraE. CigoliniM. BoselloO. ZancanaroC. CaprettiL. ZavaroniI. CoscelliC. ButturiniU. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects.Curr. Med. Res. Opin.198491475110.1185/030079984091095586373159
    [Google Scholar]
  126. SumC.F. WebsterJ.M. JohnsonA.B. CatalanoC. CooperB.G. TaylorR. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes.Diabet. Med.199291616510.1111/j.1464‑5491.1992.tb01716.x1551312
    [Google Scholar]
  127. ForslundK. Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota.Nature2015528758126226610.1038/nature1576626633628
    [Google Scholar]
  128. WuH. EsteveE. TremaroliV. KhanM.T. CaesarR. Mannerås-HolmL. StåhlmanM. OlssonL.M. SerinoM. Planas-FèlixM. XifraG. MercaderJ.M. TorrentsD. BurcelinR. RicartW. PerkinsR. Fernàndez-RealJ.M. BäckhedF. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug.Nat. Med.201723785085810.1038/nm.434528530702
    [Google Scholar]
  129. BuseJ.B. DeFronzoR.A. RosenstockJ. KimT. BurnsC. SkareS. BaronA. FinemanM. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: Results from short-term pharmacokinetic and 12-week dose-ranging studies.Diabetes Care201639219820510.2337/dc15‑048826285584
    [Google Scholar]
  130. BahlerL. HollemanF. ChanM.W. BooijJ. HoekstraJ.B. VerberneH.J. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.PLoS One2017125e017624210.1371/journal.pone.017624228464031
    [Google Scholar]
  131. KoffertJ.P. MikkolaK. VirtanenK.A. AnderssonA.M.D. FaxiusL. HällstenK. HeglindM. GuiducciL. PhamT. SilvolaJ.M.U. VirtaJ. ErikssonO. KauhanenS.P. SarasteA. EnerbäckS. IozzoP. ParkkolaR. GomezM.F. NuutilaP. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial.Diabetes Res. Clin. Pract.201713120821610.1016/j.diabres.2017.07.01528778047
    [Google Scholar]
  132. ZhangX. OgiharaT. ZhuM. GantumurD. LiY. MizoiK. KamiokaH. TsushimaY. Effect of metformin on 18 F-fluorodeoxyglucose uptake and positron emission tomographic imaging.Br. J. Radiol.20229511302020081010.1259/bjr.2020081034705528
    [Google Scholar]
  133. BaileyC.J. MynettK.J. PageT. Importance of the intestine as a site of metformin-stimulated glucose utilization.Br. J. Pharmacol.1994112267167510.1111/j.1476‑5381.1994.tb13128.x8075887
    [Google Scholar]
  134. BaileyC.J. WilcockC. DayC. Effect of metformin on glucose metabolism in the splanchnic bed.Br. J. Pharmacol.199210541009101310.1111/j.1476‑5381.1992.tb09093.x1504710
    [Google Scholar]
  135. HorakovaO. KroupovaP. BardovaK. BuresovaJ. JanovskaP. KopeckyJ. RossmeislM. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport.Sci. Rep.201991615610.1038/s41598‑019‑42531‑030992489
    [Google Scholar]
  136. DucaF.A. Metformin activates duodenal AMPK and a neuronal network to lower glucose production.Nat. Med.201521550651110.1038/nm.378725849133
    [Google Scholar]
  137. WangP.Y.T. CaspiL. LamC.K.L. ChariM. LiX. LightP.E. Gutierrez-JuarezR. AngM. SchwartzG.J. LamT.K.T. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production.Nature200845271901012101610.1038/nature0685218401341
    [Google Scholar]
  138. SakarY. MeddahB. FaouziM.A. CherrahY. BadoA. DucrocR. Metformin-induced regulation of the intestinal D-glucose transporters.J. Physiol. Pharmacol.201061330130720610860
    [Google Scholar]
  139. YangM. DarwishT. LarraufieP. RimmingtonD. CiminoI. GoldspinkD.A. JenkinsB. KoulmanA. BrightonC.A. MaM. LamB.Y.H. CollA.P. O’RahillyS. ReimannF. GribbleF.M. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells.Sci. Rep.2021111252910.1038/s41598‑021‑81349‑733510216
    [Google Scholar]
  140. BauerP.V. DucaF.A. WaiseT.M.Z. RasmussenB.A. AbrahamM.A. DranseH.J. PuriA. O’BrienC.A. LamT.K.T. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway.Cell Metab.201827110111710.1016/j.cmet.2017.09.01929056513
    [Google Scholar]
  141. BahneE. SunE.W.L. YoungR.L. HansenM. SonneD.P. HansenJ.S. RohdeU. LiouA.P. JacksonM.L. de FontgallandD. RabbittP. HollingtonP. SposatoL. DueS. WattchowD.A. RehfeldJ.F. HolstJ.J. KeatingD.J. VilsbøllT. KnopF.K. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes.JCI Insight2018323e9393610.1172/jci.insight.9393630518693
    [Google Scholar]
  142. DeFronzoR.A. BuseJ.B. KimT. BurnsC. SkareS. BaronA. FinemanM. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials.Diabetologia20165981645165410.1007/s00125‑016‑3992‑627216492
    [Google Scholar]
  143. NadkarniP. ChepurnyO.G. HolzG.G. Regulation of glucose homeostasis by GLP-1.Prog. Mol. Biol. Transl. Sci.2014121236510.1016/B978‑0‑12‑800101‑1.00002‑824373234
    [Google Scholar]
  144. SunL. XieC. WangG. WuY. WuQ. WangX. LiuJ. DengY. XiaJ. ChenB. ZhangS. YunC. LianG. ZhangX. ZhangH. BissonW.H. ShiJ. GaoX. GeP. LiuC. KrauszK.W. NicholsR.G. CaiJ. RimalB. PattersonA.D. WangX. GonzalezF.J. JiangC. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.Nat. Med.201824121919192910.1038/s41591‑018‑0222‑430397356
    [Google Scholar]
  145. NapolitanoA. MillerS. NichollsA.W. BakerD. Van HornS. ThomasE. RajpalD. SpivakA. BrownJ.R. NunezD.J. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus.PLoS One201497e10077810.1371/journal.pone.010077824988476
    [Google Scholar]
  146. FadiniG.P. AlbieroM. MenegazzoL. de KreutzenbergS.V. AvogaroA. The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients.Diabetes Obes. Metab.201214651852210.1111/j.1463‑1326.2011.01550.x22171692
    [Google Scholar]
  147. WuT. ThazhathS.S. BoundM.J. JonesK.L. HorowitzM. RaynerC.K. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: Stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity?Diabetes Res. Clin. Pract.20141061e3e610.1016/j.diabres.2014.08.00425172519
    [Google Scholar]
  148. PudduA. SanguinetiR. MontecuccoF. VivianiG.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes.Mediators Inflamm.201420141910.1155/2014/16202125214711
    [Google Scholar]
  149. CollA.P. ChenM. TaskarP. RimmingtonD. PatelS. TadrossJ.A. CiminoI. YangM. WelshP. VirtueS. GoldspinkD.A. MiedzybrodzkaE.L. KonopkaA.R. EspondaR.R. HuangJ.T.J. TungY.C.L. Rodriguez-CuencaS. TomazR.A. HardingH.P. MelvinA. YeoG.S.H. PreissD. Vidal-PuigA. VallierL. NairK.S. WarehamN.J. RonD. GribbleF.M. ReimannF. SattarN. SavageD.B. AllanB.B. O’RahillyS. GDF15 mediates the effects of metformin on body weight and energy balance.Nature2020578779544444810.1038/s41586‑019‑1911‑y31875646
    [Google Scholar]
  150. DayE.A. FordR.J. SmithB.K. Mohammadi-ShemiraniP. MorrowM.R. GutgesellR.M. LuR. RaphenyaA.R. KabiriM. McArthurA.G. McInnesN. HessS. ParéG. GersteinH.C. SteinbergG.R. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss.Nat. Metab.20191121202120810.1038/s42255‑019‑0146‑432694673
    [Google Scholar]
  151. NataliA. NestiL. VenturiE. ShoreA.C. KhanF. GoodingK. GatesP.E. LookerH.C. DoveF. GoncalvesI. PerssonM. NilssonJ. SUMMIT consortium Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case-control study.Diabetes Obes. Metab.201921241241610.1111/dom.1351930178545
    [Google Scholar]
  152. AdelaR. BanerjeeS.K. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective.J. Diabetes Res.2015201511410.1155/2015/49084226273671
    [Google Scholar]
  153. YangL. ChangC.C. SunZ. MadsenD. ZhuH. PadkjærS.B. WuX. HuangT. HultmanK. PaulsenS.J. WangJ. BuggeA. FrantzenJ.B. NørgaardP. JeppesenJ.F. YangZ. SecherA. ChenH. LiX. JohnL.M. ShanB. HeZ. GaoX. SuJ. HansenK.T. YangW. JørgensenS.B. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand.Nat. Med.201723101158116610.1038/nm.439428846099
    [Google Scholar]
  154. SarkarS. MelchiorJ.T. HenryH.R. SyedF. MirmiraR.G. NakayasuE.S. MetzT.O. GDF15: A potential therapeutic target for type 1 diabetes.Expert Opin. Ther. Targets2022261576710.1080/14728222.2022.202941035138971
    [Google Scholar]
  155. KleinA.B. NicolaisenT.S. JohannK. FritzenA.M. MathiesenC.V. GilC. PilmarkN.S. KarstoftK. BlondM.B. QuistJ.S. SeeleyR.J. FærchK. LundJ. KleinertM. ClemmensenC. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance.Cell Rep.202240811125810.1016/j.celrep.2022.11125836001956
    [Google Scholar]
  156. RiccioP. RossanoR. The human gut microbiota is neither an organ nor a commensal.FEBS Lett.2020594203262327110.1002/1873‑3468.1394633011965
    [Google Scholar]
  157. SharonG. SampsonT.R. GeschwindD.H. MazmanianS.K. The central nervous system and the gut microbiome.Cell2016167491593210.1016/j.cell.2016.10.02727814521
    [Google Scholar]
  158. MadhogariaB. BhowmikP. KunduA. Correlation between human gut microbiome and diseases.Infect. Med.20221318019110.1016/j.imj.2022.08.00438077626
    [Google Scholar]
  159. WachsmuthH.R. WeningerS.N. DucaF.A. Role of the gut-brain axis in energy and glucose metabolism.Exp. Mol. Med.202254437739210.1038/s12276‑021‑00677‑w35474341
    [Google Scholar]
  160. CaniP.D. BibiloniR. KnaufC. WagetA. NeyrinckA.M. DelzenneN.M. BurcelinR. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes20085761470148110.2337/db07‑140318305141
    [Google Scholar]
  161. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑732433595
    [Google Scholar]
  162. VijayA. ValdesA.M. Role of the gut microbiome in chronic diseases: A narrative review.Eur. J. Clin. Nutr.202276448950110.1038/s41430‑021‑00991‑634584224
    [Google Scholar]
  163. JandhyalaS.M. TalukdarR. SubramanyamC. VuyyuruH. SasikalaM. Nageshwar ReddyD. Role of the normal gut microbiota.World J. Gastroenterol.201521298787880310.3748/wjg.v21.i29.878726269668
    [Google Scholar]
  164. PattersonE. RyanP.M. CryanJ.F. DinanT.G. RossR.P. FitzgeraldG.F. StantonC. Gut microbiota, obesity and diabetes.Postgrad. Med. J.201692108728630010.1136/postgradmedj‑2015‑13328526912499
    [Google Scholar]
  165. QinJ. LiY. CaiZ. LiS. ZhuJ. ZhangF. LiangS. ZhangW. GuanY. ShenD. PengY. ZhangD. JieZ. WuW. QinY. XueW. LiJ. HanL. LuD. WuP. DaiY. SunX. LiZ. TangA. ZhongS. LiX. ChenW. XuR. WangM. FengQ. GongM. YuJ. ZhangY. ZhangM. HansenT. SanchezG. RaesJ. FalonyG. OkudaS. AlmeidaM. LeChatelierE. RenaultP. PonsN. BattoJ.M. ZhangZ. ChenH. YangR. ZhengW. LiS. YangH. WangJ. EhrlichS.D. NielsenR. PedersenO. KristiansenK. WangJ. A metagenome-wide association study of gut microbiota in type 2 diabetes.Nature20124907418556010.1038/nature1145023023125
    [Google Scholar]
  166. Alarcón YempénR.E. VenzelR. Paulino CamposM.C. de OliveiraL.P. LinsR.V.D. PessoniA.M. FanaroG.B. de Oliveira SouzaA. CalazaK.C. de Brito AlvesJ.L. Cavalcanti-NetoM.P. Gut microbiota: A potential therapeutic target for management of diabetic retinopathy?Life Sci.202128612006010.1016/j.lfs.2021.12006034666038
    [Google Scholar]
  167. DasT. JayasudhaR. ChakravarthyS. PrashanthiG.S. BhargavaA. TyagiM. RaniP.K. PappuruR.R. SharmaS. ShivajiS. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy.Sci. Rep.2021111273810.1038/s41598‑021‑82538‑033531650
    [Google Scholar]
  168. CunninghamA.L. StephensJ.W. HarrisD.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM).Gut Pathog.20211315010.1186/s13099‑021‑00446‑034362432
    [Google Scholar]
  169. LarsenN. VogensenF.K. van den BergF.W.J. NielsenD.S. AndreasenA.S. PedersenB.K. Al-SoudW.A. SørensenS.J. HansenL.H. JakobsenM. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.PLoS One201052e908510.1371/journal.pone.000908520140211
    [Google Scholar]
  170. ZhangX. ZhaoY. XuJ. XueZ. ZhangM. PangX. ZhangX. ZhaoL. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.Sci. Rep.2015511440510.1038/srep1440526396057
    [Google Scholar]
  171. BryrupT. ThomsenC.W. KernT. AllinK.H. BrandslundI. JørgensenN.R. VestergaardH. HansenT. HansenT.H. PedersenO. NielsenT. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study.Diabetologia20196261024103510.1007/s00125‑019‑4848‑730904939
    [Google Scholar]
  172. MuellerN.T. DifferdingM.K. ZhangM. MaruthurN.M. JuraschekS.P. MillerE.R.III AppelL.J. YehH.C. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial.Diabetes Care20214471462147110.2337/dc20‑225734006565
    [Google Scholar]
  173. LeeH. LeeY. KimJ. AnJ. LeeS. KongH. SongY. LeeC.K. KimK. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice.Gut Microbes20189215516510.1080/19490976.2017.140520929157127
    [Google Scholar]
  174. SilvaY.P. BernardiA. FrozzaR.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication.Front. Endocrinol.20201110.3389/fendo.2020.00025
    [Google Scholar]
  175. ZhangJ.M. SunY.S. ZhaoL.Q. ChenT.T. FanM.N. JiaoH.C. ZhaoJ.P. WangX.J. LiF.C. LiH.F. LinH. SCFAs-Induced GLP-1 secretion links the regulation of gut microbiome on hepatic lipogenesis in chickens.Front. Microbiol.201910217610.3389/fmicb.2019.0217631616396
    [Google Scholar]
  176. ElbereI. KalninaI. SilamikelisI. KonradeI. ZaharenkoL. SekaceK. Radovica-SpalvinaI. FridmanisD. GudraD. PiragsV. KlovinsJ. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers.PLoS One2018139e020431710.1371/journal.pone.020431730261008
    [Google Scholar]
  177. EzzamouriB. RosarioD. BidkhoriG. LeeS. UhlenM. ShoaieS. Metabolic modelling of the human gut microbiome in type 2 diabetes patients in response to metformin treatment.NPJ Syst. Biol. Appl.2023910.1038/s41540‑022‑00261‑6
    [Google Scholar]
  178. SilamiķeleL. SilamiķelisI. UstinovaM. KalniņaZ. ElbereI. PetrovskaR. KalniņaI. KloviņšJ. Metformin strongly affects gut microbiome composition in high-fat diet-induced type 2 diabetes mouse model of both sexes.Front. Endocrinol.20211262635910.3389/fendo.2021.62635933815284
    [Google Scholar]
  179. Santos-MarcosJ.A. Mora-OrtizM. Tena-SempereM. Lopez-MirandaJ. CamargoA. Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases.Biol. Sex Differ.2023141410.1186/s13293‑023‑00490‑236750874
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673289342240213040144
Loading
/content/journals/cmc/10.2174/0109298673289342240213040144
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): AMPK; complex I; gut microbiota; hepatic gluconeogenesis; Metformin; redox; SHIP2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test