Skip to content
2000
Volume 32, Issue 9
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Triple-negative breast cancer (TNBC), an aggressive type of breast cancer, remains difficult to treat. Isoliquiritigenin (ISL) is a bioactive compound that is insoluble in water and exhibits significant anti-TNBC activity.

Methods

We previously prepared oral aqueous ISL@ZLH NPs; however, they were less stable in a freezing environment. Hence, the present study aimed to improve the stability of ISL@ZLH NPs using cryoprotectants that can withstand long storage times and are effective in TNBC treatment by creating an efficient oral drug delivery system. Freeze-dried ISL@ZLH NP powder was prepared by solvent evaporation, followed by the addition of trehalose and sucrose. The freeze-dried ISL@ZLH NP pow was optimized and characterized. The anti-TNBC efficacy and pharmacokinetics of the ISL@ZLH NP-pow were examined in plasma and organs, compared with those of aqueous ISL@ZLH NPs.

Results

The ideal particle size of the ISL@ZLH NP pow was 118 nm, which was not filtered out by the glomerulus and allowed the drug to be delivered to the lesions more effectively. Cellular uptake and biodistribution of the ISL@ZLH NP-pow and showed prolonged storage in the organs. In addition, cryopreserved ISL@ZLH NP-treated tumors showed significant anti-proliferative and anti-migratory effects through the downregulation of the PI3K-Akt-mToR and MMP2/9 signaling pathways.

Conclusion

These results suggest that oral ingestion of cryopreserved ISL@ZLH NP has the potential for long-term storage and can be employed as a clinical therapeutic approach to treat TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673259973231023110945
2023-11-01
2025-04-10
Loading full text...

Full text loading...

References

  1. XuC. GanesanK. LiuX. YeQ. CheungY. LiuD. ZhongS. ChenJ. Prognostic value of negative emotions on the incidence of breast cancer: A systematic review and meta-analysis of 129,621 patients with breast cancer.Cancers202214347510.3390/cancers1403047535158744
    [Google Scholar]
  2. ZhuH. YouJ. WenY. JiaL. GaoF. GanesanK. ChenJ. Tumorigenic risk of Angelica sinensis on ER-positive breast cancer growth through ER-induced stemness in vitro and in vivo.J. Ethnopharmacol.202128011441510.1016/j.jep.2021.11441534271113
    [Google Scholar]
  3. GongG. GanesanK. XiongQ. ZhengY. Antitumor effects of ononin by modulation of apoptosis in non-small-cell lung cancer through inhibiting PI3K/Akt/mTOR pathway.Oxid. Med. Cell. Longev.2022202211710.1155/2022/512244836605098
    [Google Scholar]
  4. ZhangF. LiuQ. GanesanK. KewuZ. ShenJ. GangF. LuoX. ChenJ. The antitriple negative breast cancer efficacy of Spatholobus suberectus Dunn on ROS-induced noncanonical inflammasome pyroptotic pathway.Oxid. Med. Cell. Longev.2021202111710.1155/2021/518756934659633
    [Google Scholar]
  5. ZhangF. GanesanK. LiuQ. ChenJ. A review of the pharmacological potential of Spatholobus suberectus dunn on cancer.Cells20221118288510.3390/cells1118288536139460
    [Google Scholar]
  6. PothongsrisitS. PongrakhananonV. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products.Molecules20212613
    [Google Scholar]
  7. WangY. LiC. lncRNA GHET1 promotes the progression of triple-negative breast cancer via regulation of miR-377-3p/GRSF1 signaling axis.Comput. Math. Methods Med.2022202211510.1155/2022/836656935509860
    [Google Scholar]
  8. CasaliB.C. GozzerL.T. BaptistaM.P. AlteiW.F. Selistre-de-AraújoH.S. The effects of αvβ3 integrin blockage in breast tumor and endothelial cells under hypoxia in vitro.Int. J. Mol. Sci.2022233174510.3390/ijms2303174535163668
    [Google Scholar]
  9. WuY. LiJ. ZhongX. ShiJ. ChengY. HeC. LiJ. ZouL. FuC. ChenM. ZhangJ. GaoH. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy.Asian J. Pharmaceut. Sci.202217220621810.1016/j.ajps.2021.12.00335582637
    [Google Scholar]
  10. ZhangC. LiJ. XiaoM. WangD. QuY. ZouL. ZhengC. ZhangJ. Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy.Chin. Chem. Lett.202233114924492910.1016/j.cclet.2022.03.110
    [Google Scholar]
  11. ChenZ. HaoW. GaoC. ZhouY. ZhangC. ZhangJ. WangR. WangY. WangS. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis.Acta Pharm. Sin. B20221283367338210.1016/j.apsb.2022.03.02535967288
    [Google Scholar]
  12. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  13. GanesanK. WangY. GaoF. LiuQ. ZhangC. LiP. ZhangJ. ChenJ. Targeting engineered nanoparticles for breast cancer therapy.Pharmaceutics20211311182910.3390/pharmaceutics1311182934834243
    [Google Scholar]
  14. GanesanK. DuB. ChenJ. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention.Pharmacol. Res.202217810597410.1016/j.phrs.2021.10597434818569
    [Google Scholar]
  15. GanesanK. XuB. Telomerase inhibitors from natural products and their anticancer potential.Int. J. Mol. Sci.20171911310.3390/ijms1901001329267203
    [Google Scholar]
  16. GanesanK. JayachandranM. XuB. Diet-derived phytochemicals targeting colon cancer stem cells and microbiota in colorectal cancer.Int. J. Mol. Sci.20202111397610.3390/ijms2111397632492917
    [Google Scholar]
  17. GanesanK. XuB. A critical review on polyphenols and health benefits of black soybeans.Nutrients20179545510.3390/nu905045528471393
    [Google Scholar]
  18. ZhangK. WangQ. YangQ. WeiQ. ManN. Adu-FrimpongM. ToreniyazovE. JiH. YuJ. XuX. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system.AAPS PharmSciTech201920521810.1208/s12249‑019‑1421‑031187334
    [Google Scholar]
  19. WangK.L. YuY.C. HsiaS.M. Perspectives on the role of isoliquiritigenin in cancer.Cancers202113111510.3390/cancers1301011533401375
    [Google Scholar]
  20. WangZ. WangN. HanS. WangD. MoS. YuL. HuangH. TsuiK. ShenJ. ChenJ. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway.PLoS One201387e6856610.1371/journal.pone.006856623861918
    [Google Scholar]
  21. LiuJ. WangQ. Adu-FrimpongM. WeiQ. XieY. ZhangK. WeiC. WengW. JiH. ToreniyazovE. XuX. YuJ. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes.Int. J. Pharm.2019563536210.1016/j.ijpharm.2019.03.03430890449
    [Google Scholar]
  22. CaoM. WangY. JingH. WangZ. MengY. GengY. MiaoM. LiX.M. Development of an Oral Isoliquiritigenin Self-Nano-Emulsifying Drug Delivery System (ILQ-SNEDDS) for effective treatment of eosinophilic esophagitis induced by food allergy.Pharmaceuticals20221512158710.3390/ph1512158736559038
    [Google Scholar]
  23. XieY.J. WangQ.L. Adu-FrimpongM. LiuJ. ZhangK.Y. XuX.M. YuJ.N. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles.Drug Dev. Ind. Pharm.20194581224123210.1080/03639045.2019.157481230681382
    [Google Scholar]
  24. ShiW. CaoX. LiuQ. ZhuQ. LiuK. DengT. YuQ. DengW. YuJ. WangQ. XuX. Hybrid membrane-derived nanoparticles for isoliquiritin enhanced glioma therapy.Pharmaceuticals2022159105910.3390/ph1509105936145280
    [Google Scholar]
  25. XiaoM. WuS. ChengY. MaJ. LuoX. ChangL. ZhangC. ChenJ. ZouL. YouY. ZhangJ. Colon-specific delivery of isoliquiritigenin by oral edible zein/caseate nanocomplex for ulcerative colitis treatment.Front Chem.20221098105510.3389/fchem.2022.98105536157029
    [Google Scholar]
  26. WangN. WangZ. PengC. YouJ. ShenJ. HanS. ChenJ. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling.Carcinogenesis201435112544255410.1093/carcin/bgu18725194164
    [Google Scholar]
  27. ThankiK. GangwalR.P. SangamwarA.T. JainS. Oral delivery of anticancer drugs: Challenges and opportunities.J. Control. Release20131701154010.1016/j.jconrel.2013.04.02023648832
    [Google Scholar]
  28. LuoC. SunJ. DuY. HeZ. Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy.J. Control. Release20141769410310.1016/j.jconrel.2013.12.03024389337
    [Google Scholar]
  29. LabibG. Overview on zein protein: A promising pharmaceutical excipient in drug delivery systems and tissue engineering.Expert Opin. Drug Deliv.2018151657510.1080/17425247.2017.134975228662354
    [Google Scholar]
  30. RehanF. AhemadN. GuptaM. Casein nanomicelle as an emerging biomaterial-a comprehensive review.Colloids Surf. B Biointerfaces201917928029210.1016/j.colsurfb.2019.03.05130981063
    [Google Scholar]
  31. WangY. ZhangC. XiaoM. GanesanK. GaoF. LiuQ. YeZ. SuiY. ZhangF. WeiK. WuY. WuJ. DuB. XuC. LiY. LiP. ZhangJ. ChenJ. A tumor-targeted delivery of oral isoliquiritigenin through encapsulated zein phosphatidylcholine hybrid nanoparticles prevents triple-negative breast cancer.J. Drug Deliv. Sci. Technol.20237910392210.1016/j.jddst.2022.103922
    [Google Scholar]
  32. GuzmánC. BaggaM. KaurA. WestermarckJ. AbankwaD. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays.PLoS One201493e9244410.1371/journal.pone.009244424647355
    [Google Scholar]
  33. LiuJ. JiangX. AshleyC. BrinkerC.J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery.J. Am. Chem. Soc.2009131227567756910.1021/ja902039y19445508
    [Google Scholar]
  34. QiaoH. ZhangX. WangT. LiangL. ChangW. XiaH. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration.Pharm. Biol.201452222823610.3109/13880209.2013.83233424102672
    [Google Scholar]
  35. FonteP. AraújoF. SeabraV. ReisS. van de WeertM. SarmentoB. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization.Int. J. Pharm.2015496285086210.1016/j.ijpharm.2015.10.03226474964
    [Google Scholar]
  36. AndreanaI. BincolettoV. ManzoliM. RodàF. GiarraputoV. MillaP. ArpiccoS. StellaB. Freeze drying of polymer nanoparticles and liposomes exploiting different saccharide-based approaches.Materials2023163121210.3390/ma1603121236770218
    [Google Scholar]
  37. GosselinE.A. NoshinM. BlackS.K. JewellC.M. Impact of excipients on stability of polymer microparticles for autoimmune therapy.Front. Bioeng. Biotechnol.2021860957710.3389/fbioe.2020.60957733644005
    [Google Scholar]
  38. BoafoG.F. MagarK.T. EkpoM.D. QianW. TanS. ChenC. The role of cryoprotective agents in liposome stabilization and preservation.Int. J. Mol. Sci.202223201248710.3390/ijms23201248736293340
    [Google Scholar]
  39. SimonaJ. DaniD. PetrS. MarcelaN. JakubT. BohuslavaT. Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity.Polymers202113333210.3390/polym1303033233494246
    [Google Scholar]
  40. XinR. QiS. ZengC. KhanF.I. YangB. WangY. A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties.Food Chem.201721756056710.1016/j.foodchem.2016.09.01227664672
    [Google Scholar]
  41. LeinenK.M. LabuzaT.P. Crystallization inhibition of an amorphous sucrose system using raffinose.J. Zhejiang Univ. Sci. B200672858910.1631/jzus.2006.B008516421962
    [Google Scholar]
  42. IkedaS. FurutaC. FujitaY. GohtaniS. Effects of D -psicose on gelatinization and retrogradation of rice flour.Stärke2014669-1077377910.1002/star.201300259
    [Google Scholar]
  43. AlvesC.L. DitzelH.J. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer.Int. J. Mol. Sci.2023245452210.3390/ijms2405452236901954
    [Google Scholar]
  44. CermaK. PiacentiniF. MoscettiL. BarboliniM. CaninoF. TornincasaA. CaggiaF. CerriS. MolinaroA. DominiciM. OmariniC. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges.Biomedicines202311110910.3390/biomedicines1101010936672617
    [Google Scholar]
  45. WangR. LiuW. ZhaoJ. LiuL. LiS. DuanY. HuoY. Overexpressed LAMC2 promotes trophoblast over-invasion through the PI3K /Akt/MMP2/9 pathway in placenta accreta spectrum.J. Obstet. Gynaecol. Res.202349254855910.1111/jog.1549336412218
    [Google Scholar]
  46. AkkocY. DalciK. KarakasH.E. Erbil-BilirS. YalavO. SakmanG. CelikF. ArikanS. ZeybekU. ErginM. AkkizH. DilegeE. DengjelJ. Dogan-EkiciA.I. GozuacikD. Tumor-derived CTF1 (cardiotrophin 1) is a critical mediator of stroma-assisted and autophagy-dependent breast cancer cell migration, invasion and metastasis.Autophagy202319130632310.1080/15548627.2022.209069335722965
    [Google Scholar]
  47. Sulekha SureshD. GuruvayoorappanC. Molecular principles of tissue invasion and metastasis.Am. J. Physiol. Cell Physiol.20233245C971C99110.1152/ajpcell.00348.202236939199
    [Google Scholar]
  48. SagaraA. MiuraS. KobinataA. NaganawaR. YaginumaS. SaitoS. SaitoR. KominatoH. YumotoT. SatoF. COL8A1 enhances the invasion/metastasis in MDA-MB-231 cells via the induction of IL1B and MMP1 expression.Biochem. Biophys. Res. Commun.202364214515310.1016/j.bbrc.2022.12.04636577251
    [Google Scholar]
  49. LiuW. HanY. Clinical outcomes and a nomogram for de novo metastatic breast cancer with lung metastasis: A population-based study.Sci. Rep.2022121359710.1038/s41598‑022‑07565‑x35246585
    [Google Scholar]
  50. BaoJ. ZhuL. ZhuQ. SuJ. LiuM. HuangW. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer.Oncol. Lett.20161242409241610.3892/ol.2016.498827703522
    [Google Scholar]
  51. HuangY. LiuC. ZengW.C. XuG.Y. WuJ.M. LiZ.W. HuangX.Y. LinR.J. ShiX. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway.Biosci. Rep.2020401BSR2019272710.1042/BSR2019272731840737
    [Google Scholar]
  52. PengF. TangH. DuJ. ChenJ. PengC. Isoliquiritigenin suppresses EMT-induced metastasis in triple-negative breast cancer through miR-200c/C-JUN/β-catenin.Am. J. Chin. Med.202149250552310.1142/S0192415X2150023333641651
    [Google Scholar]
  53. ChenC. HuangS. ChenC.L. SuS.B. FangD.D. Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition.Molecules20192420372510.3390/molecules2420372531623144
    [Google Scholar]
  54. XiangS. ZengH. XiaF. JiQ. XueJ. RenR. QueF. ZhouB. The dietary flavonoid isoliquiritigenin induced apoptosis and suppressed metastasis in melanoma cells: An in vitro and in vivo study.Life Sci.202126411859810.1016/j.lfs.2020.11859833189818
    [Google Scholar]
  55. ZhangX.R. WangS.Y. SunW. WeiC. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway.Mol. Med. Rep.20181833429343610.3892/mmr.2018.931830066879
    [Google Scholar]
  56. LeeY. ChinY.W. BaeJ.K. SeoJ. ChoiY. Pharmacokinetics of isoliquiritigenin and its metabolites in rats: Low bioavailability is primarily due to the hepatic and intestinal metabolism.Planta Med.201379171656166510.1055/s‑0033‑135092424108436
    [Google Scholar]
  57. CaoM. ZhanM. WangZ. WangZ. LiX.M. MiaoM. Development of an orally bioavailable isoliquiritigenin self-nanoemulsifying drug delivery system to effectively treat ovalbumin-induced asthma.Int. J. Nanomedicine2020158945896110.2147/IJN.S26998233223829
    [Google Scholar]
  58. ZhangY. CuiL. LiF. ShiN. LiC. YuX. ChenY. KongW. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems.Int. J. Pharm.20165131-219121010.1016/j.ijpharm.2016.09.02327615709
    [Google Scholar]
  59. PengF. TangH. LiuP. ShenJ. GuanX. XieX. GaoJ. XiongL. JiaL. ChenJ. PengC. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis.Sci. Rep.201771902210.1038/s41598‑017‑08422‑y28827662
    [Google Scholar]
  60. PengF. XiongL. XieX. TangH. HuangR. PengC. Isoliquiritigenin derivative regulates miR-374a/BAX axis to suppress triple-negative breast cancer tumorigenesis and development.Front. Pharmacol.20201137810.3389/fphar.2020.0037832296334
    [Google Scholar]
  61. MartinsL.M. de Melo Escorcio DouradoC.S. Campos-VerdesL.M. SampaioF.A. RevoredoC.M.S. Costa-SilvaD.R. da Conceição Barros-OliveiraM. de Jesus Nery JuniorE. do Rego-MedeirosL.M. GebrimL.H. Alves-RibeiroF.A. RodriguesG.P. ChagasD.C. do Nascimento MarreiroD. da SilvaB.B. Expression of matrix metalloproteinase 2 and 9 in breast cancer and breast fibroadenoma: A randomized, double-blind study.Oncotarget201910646879688410.18632/oncotarget.2734731839881
    [Google Scholar]
  62. SunY. ZhouQ.M. LuY.Y. ZhangH. ChenQ.L. ZhaoM. SuS.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition.Molecules2019246113110.3390/molecules2406113130901941
    [Google Scholar]
  63. ShayG. LynchC.C. FingletonB. Moving targets: Emerging roles for MMPs in cancer progression and metastasis.Matrix Biol.201544-4620020610.1016/j.matbio.2015.01.01925652204
    [Google Scholar]
  64. MajumderA. RayS. BanerjiA. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells.Mol. Cell. Biochem.20194521-211112110.1007/s11010‑018‑3417‑630074136
    [Google Scholar]
  65. AhmadA. BiersackB. LiY. KongD. BaoB. SchobertR. PadhyeS. SarkarF. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy.Anticancer. Agents Med. Chem.20131371002101310.2174/1871520611313999007823272910
    [Google Scholar]
  66. LiX. YangZ. SongW. ZhouL. LiQ. TaoK. ZhouJ. WangX. ZhengZ. YouN. DouK. LiH. Overexpression of Bmi-1 contributes to the invasion and metastasis of hepatocellular carcinoma by increasing the expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor via the PTEN/PI3K/Akt pathway.Int. J. Oncol.201343379380210.3892/ijo.2013.199223807724
    [Google Scholar]
  67. YeB. JiangL-L. XuH-T. ZhouD-W. LiZ-S. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis.Int. J. Immunopathol. Pharmacol.201225362763610.1177/03946320120250030923058013
    [Google Scholar]
  68. JungC.H. KimE.M. ParkJ.K. HwangS.G. MoonS.K. KimW.J. UmH.D. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway.Oncol. Rep.20132962109211310.3892/or.2013.238123563360
    [Google Scholar]
  69. ChenJ. LanT. HouJ. ZhangJ. AnY. TieL. PanY. LiuJ. LiX. Atorvastatin sensitizes human non-small cell lung carcinomas to carboplatin via suppression of AKT activation and upregulation of TIMP-1.Int. J. Biochem. Cell Biol.201244575976910.1016/j.biocel.2012.01.01522305890
    [Google Scholar]
  70. KoH.S. LeeH.J. KimS.H. LeeE.O. Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9: involvement of PI3K/AKT and NF-κB pathways.J. Agric. Food Chem.201260164083408910.1021/jf205171g22480333
    [Google Scholar]
  71. NingL. MaH. JiangZ. ChenL. LiL. ChenQ. QiH. Curcumol suppresses breast cancer cell metastasis by inhibiting MMP-9 via JNK1/2 and Akt-dependent NF-κB signaling pathways.Integr. Cancer Ther.201615221622510.1177/153473541664286527125675
    [Google Scholar]
  72. TianT. SunJ. WangJ. LiuY. LiuH. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells.Oncol. Lett.20181656133613910.3892/ol.2018.934430344755
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673259973231023110945
Loading
/content/journals/cmc/10.2174/0109298673259973231023110945
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cryopreservation; estrogen receptor; ISL@ZLH NP; MMP2/9 signaling; PI3K-Akt-mToR; TNBC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test