Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Neurodegenerative diseases (NDDs) comprise a large number of disorders that affects the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination in neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses, which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered as a good source of biologically active molecules and hence phytochemical screening of plants will pave way for the discovering new drugs. Neurodegeneration has been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidative activity, making them a potential application in the management or prevention of neurodegenerative disorders. Further, it gives the insights to the future researchers about considering the peptide based therapeutics through various mechanisms for delaying or curing neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673272435231204072922
2024-02-06
2025-03-31
Loading full text...

Full text loading...

References

  1. KorovesisD. Rubio-TomásT. TavernarakisN. Oxidative stress in age-related neurodegenerative diseases: An overview of recent tools and findings.Antioxidants202312113110.3390/antiox12010131 36670993
    [Google Scholar]
  2. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.21667 32232985
    [Google Scholar]
  3. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.13144 31347707
    [Google Scholar]
  4. RajendranP. NandakumarN. RengarajanT. PalaniswamiR. GnanadhasE.N. LakshminarasaiahU. GopasJ. NishigakiI. Antioxidants and human diseases.Clin. Chim. Acta201443633234710.1016/j.cca.2014.06.004 24933428
    [Google Scholar]
  5. BeydemirŞ. DemirY. Antiepileptic drugs: Impacts on human serum paraoxonase-1.J. Biochem. Mol. Toxicol.2017316e2188910.1002/jbt.21889 28032682
    [Google Scholar]
  6. TürkeşC. DemirY. BeydemirŞ. Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I.J. Biomol. Struct. Dyn.2022401778510.1080/07391102.2020.1806927 32783605
    [Google Scholar]
  7. AlımZ. KılıçD. DemirY. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: In vitro inhibition and molecular modeling studies.Arch. Physiol. Biochem.2019125538739510.1080/13813455.2018.1470646 29741961
    [Google Scholar]
  8. WuA.G. WongV. XuS.W. ChanW.K. NgC.I. LiuL. LawB. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells.Int. J. Mol. Sci.20131411226182264110.3390/ijms141122618 24248062
    [Google Scholar]
  9. ScudamoreO. CiossekT. Increased oxidative stress exacerbates α-synuclein aggregation In vivo.J. Neuropathol. Exp. Neurol.201877644345310.1093/jnen/nly024 29718367
    [Google Scholar]
  10. MahmudovI. DemirY. SertY. AbdullayevY. SujayevA. AlwaselS.H. GulcinI. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study.Arab. J. Chem.202215310364510.1016/j.arabjc.2021.103645
    [Google Scholar]
  11. AzadI. AnandP. DwivediA.K. SahaS. AkhterY. Analyzing Indole-fused benzooxazepines as inhibitors of apoptosis pathway-related proteins using multifaceted computational medicinal chemistry.J. Mol. Struct.2023127413454110.1016/j.molstruc.2022.134541
    [Google Scholar]
  12. SeverB. TürkeşC. AltıntopM.D. DemirY. Akalın ÇiftçiG. BeydemirŞ. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds.Arch. Pharm.202135412210029410.1002/ardp.202100294 34569655
    [Google Scholar]
  13. LoftusJ.R. PuriS. MeyersS.P. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging.Insights Imaging2023141810.1186/s13244‑022‑01358‑6 36645560
    [Google Scholar]
  14. BeachT.G. MonsellS.E. PhillipsL.E. KukullW. Accuracy of the clinical diagnosis of Alzheimer disease at national institute on aging Alzheimer disease centers, 2005-2010.J. Neuropathol. Exp. Neurol.201271426627310.1097/NEN.0b013e31824b211b 22437338
    [Google Scholar]
  15. HreliaP. SitaG. ZicheM. RistoriE. MarinoA. CordaroM. MolteniR. SperoV. MalagutiM. MorroniF. HreliaS. Common protective strategies in neurodegenerative disease: focusing on risk factors to target the cellular redox system.Oxid. Med. Cell. Longev.2020202011810.1155/2020/8363245 32832006
    [Google Scholar]
  16. DiackA. AlibhaiJ. BarronR. BradfordB. PiccardoP. MansonJ. Insights into mechanisms of chronic neurodegeneration.Int. J. Mol. Sci.20161718210.3390/ijms17010082 26771599
    [Google Scholar]
  17. GroverA. ShandilyaA. AgrawalV. BisariaV.S. SundarD. Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment.J. Biomol. Struct. Dyn.201229465166210.1080/07391102.2012.10507408 22208270
    [Google Scholar]
  18. KosarajuJ. ChinniS. RoyP. KannanE. AntonyA.S. KumarM.N.S. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism.Indian J. Pharmacol.201446217618010.4103/0253‑7613.129312 24741189
    [Google Scholar]
  19. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.1967195 34424822
    [Google Scholar]
  20. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/0929866526666191002142301 31577197
    [Google Scholar]
  21. CeylanH. DemirY. BeydemirŞ. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: an In vitro study.Protein Pept. Lett.201926536437010.2174/0929866526666190301115122 30827223
    [Google Scholar]
  22. TürkeşC. DemirY. BeydemirŞ. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors.ChemistrySelect2022748e20220405010.1002/slct.202204050
    [Google Scholar]
  23. ÖzaslanM.S. SağlamtaşR. DemirY. GençY. Saraçoğluİ. Gülçinİ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity.Chem. Biodivers.2022198e20220028010.1002/cbdv.202200280 35796520
    [Google Scholar]
  24. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.3004 36537558
    [Google Scholar]
  25. AslanH.E. DemirY. ÖzaslanM.S. TürkanF. BeydemirŞ. KüfrevioğluÖ.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity.Drug Chem. Toxicol.201942663464010.1080/01480545.2018.1463242 29860891
    [Google Scholar]
  26. YamaliC. GulH.I. CakirT. DemirY. GulcinI. Aminoalkylated phenolic chalcones: investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors.Lett. Drug Des. Discov.202017101283129210.2174/1570180817999200520123510
    [Google Scholar]
  27. KiriciM. DemirY. BeydemirS. AtamanalpM. The effect of Al 3 and Hg 2 on glucose 6-phosphate dehydrogenase from capoeta umbla kidney.Appl. Ecol. Environ. Res.201614225326410.15666/aeer/1402_253264
    [Google Scholar]
  28. TokalıF.S. DemirY. Demircioğluİ.H. TürkeşC. KalayE. ŞendilK. BeydemirŞ. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors.Drug Dev. Res.202183358660410.1002/ddr.21887 34585414
    [Google Scholar]
  29. HalliwellB. Oxidative stress and neurodegeneration: Where are we now?J. Neurochem.20069761634165810.1111/j.1471‑4159.2006.03907.x 16805774
    [Google Scholar]
  30. ChenX. GuoC. KongJ. Oxidative stress in neurodegenerative diseases.Neural Regen. Res.20127537638510.3969/j.issn.1673‑5374.2012.05.009 25774178
    [Google Scholar]
  31. KimG.H. KimJ.E. RhieS.J. YoonS. The role of oxidative stress in neurodegenerative diseases.Exp. Neurobiol.201524432534010.5607/en.2015.24.4.325 26713080
    [Google Scholar]
  32. AkdağM. ÖzçelikA.B. DemirY. BeydemirŞ. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety.J. Mol. Struct.2022125813267510.1016/j.molstruc.2022.132675
    [Google Scholar]
  33. SeverB. AltıntopM.D. DemirY. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.Bioorg. Chem.202010210411010.1016/j.bioorg.2020.104110 32739480
    [Google Scholar]
  34. BhandaryB. MarahattaA. KimH.R. ChaeH.J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases.Int. J. Mol. Sci.201214143445610.3390/ijms14010434 23263672
    [Google Scholar]
  35. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  36. Eisenberg-LernerA. BialikS. SimonH-U. KimchiA. Life and death partners: Apoptosis, autophagy and the cross-talk between them.Cell Death Differ.200916796697510.1038/cdd.2009.33 19325568
    [Google Scholar]
  37. MattsonM.P. Apoptosis in neurodegenerative disorders.Nat. Rev. Mol. Cell Biol.20001212013010.1038/35040009 11253364
    [Google Scholar]
  38. RadiE. FormichiP. BattistiC. FedericoA. Apoptosis and oxidative stress in neurodegenerative diseases.J. Alzheimers Dis.201442s3S125S15210.3233/JAD‑132738 25056458
    [Google Scholar]
  39. OnuchicJ.N. WolynesP.G. Theory of protein folding.Curr. Opin. Struct. Biol.2004141707510.1016/j.sbi.2004.01.009 15102452
    [Google Scholar]
  40. AnfinsenC.B. The formation and stabilization of protein structure.Biochem. J.1972128473774910.1042/bj12807374565129
    [Google Scholar]
  41. Demi̇rY. Beydemi̇rŞ. Purification, refolding, and characterization of recombinant human paraoxonase-1.Turk. J. Chem.201539476477610.3906/kim‑1501‑51
    [Google Scholar]
  42. NaeemA. FaziliN.A. Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins.Cell Biochem. Biophys.201161223725010.1007/s12013‑011‑9200‑x 21573992
    [Google Scholar]
  43. NaeemA. KhanK.A. KhanR.H. Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH.Arch. Biochem. Biophys.20044321798710.1016/j.abb.2004.08.019 15519299
    [Google Scholar]
  44. HartlF.U. Hayer-HartlM. Molecular chaperones in the cytosol: From nascent chain to folded protein.Science200229555611852185810.1126/science.1068408 11884745
    [Google Scholar]
  45. SzetoH.H. Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases.Ann. N. Y. Acad. Sci.20081147111212110.1196/annals.1427.013 19076436
    [Google Scholar]
  46. AgorogiannisE.I. AgorogiannisG.I. PapadimitriouA. HadjigeorgiouG.M. Protein misfolding in neurodegenerative diseases.Neuropathol. Appl. Neurobiol.200430321522410.1111/j.1365‑2990.2004.00558.x 15175075
    [Google Scholar]
  47. NakamuraT. LiptonS.A. Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases.Cell. Mol. Life Sci.200764131609162010.1007/s00018‑007‑6525‑0 17453143
    [Google Scholar]
  48. NakamuraT. LiptonS.A. Cell death: Protein misfolding and neurodegenerative diseases.Apoptosis200914445546810.1007/s10495‑008‑0301‑y 19130231
    [Google Scholar]
  49. LampronA. ElAliA. RivestS. Innate immunity in the CNS: Redefining the relationship between the CNS and Its environment.Neuron201378221423210.1016/j.neuron.2013.04.005 23622060
    [Google Scholar]
  50. VoetS. SrinivasanS. LamkanfiM. van LooG. Inflammasomes in neuroinflammatory and neurodegenerative diseases.EMBO Mol. Med.2019116e1024810.15252/emmm.201810248 31015277
    [Google Scholar]
  51. HalleA. HornungV. PetzoldG.C. StewartC.R. MonksB.G. ReinheckelT. FitzgeraldK.A. LatzE. MooreK.J. GolenbockD.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β.Nat. Immunol.20089885786510.1038/ni.1636 18604209
    [Google Scholar]
  52. LinT.W. ChangC.F. ChangY.J. LiaoY.H. YuH.M. ChenY.R. Alzheimer’s amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity.PLoS One2017123e017456110.1371/journal.pone.0174561 28362827
    [Google Scholar]
  53. AlbericioF. KrugerH.G. Therapeutic peptides.Future Med. Chem.20124121527153110.4155/fmc.12.94 22917241
    [Google Scholar]
  54. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  55. DeshayesS. MorrisM.C. DivitaG. HeitzF. Cell-penetrating peptides: Tools for intracellular delivery of therapeutics.Cell. Mol. Life Sci.200562161839184910.1007/s00018‑005‑5109‑0 15968462
    [Google Scholar]
  56. MeredithM.E. SalamehT.S. BanksW.A. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases.AAPS J.201517478078710.1208/s12248‑015‑9719‑7 25801717
    [Google Scholar]
  57. DingF. BaiY. ChengQ. YuS. ChengM. WuY. ZhangX. LiangX. GuX. Bidentatide, a novel plant peptide derived from Achyranthes bidentata Blume: Isolation, Characterization, and Neuroprotection through inhibition of NR2B-Containing NMDA Receptors.Int. J. Mol. Sci.20212215797710.3390/ijms22157977 34360755
    [Google Scholar]
  58. ManiS. BhattS.B. VasudevanV. PrabhuD. RajamanikandanS. VelusamyP. RamasamyP. RamanP. The Updated review on plant peptides and their applications in Human Health.Int. J. Pept. Res. Ther.202228513510.1007/s10989‑022‑10437‑7 35911180
    [Google Scholar]
  59. CourtesA.A. ArantesL.P. BarcelosR.P. da SilvaI.K. BoligonA.A. AthaydeM.L. PuntelR.L. SoaresF.A. Protective effects of aqueous extract of luehea divaricata against behavioral and oxidative changes induced by 3-nitropropionic acid in rats. Soares.Ecam.2015172343110.1155/2015/723431
    [Google Scholar]
  60. BerrocalR. VasudevarajuP. IndiS.S. Sambasiva RaoK.R.S. RaoK.S. In vitro evidence that an aqueous extract of Centella asiatica modulates α-synuclein aggregation dynamics.J. Alzheimers Dis.201439245746510.3233/JAD‑131187 24284367
    [Google Scholar]
  61. MuS. LiY. LiuB. WangW. ChenS. WuJ. OuYangL. ZhuY. LiK. ZhanM. LiuZ. JiaY. MaY. LeiW. Dihydromyricetin ameliorates 3NP-induced behavioral deficits and striatal injury in rats.J. Mol. Neurosci.201660226727510.1007/s12031‑016‑0801‑0 27501707
    [Google Scholar]
  62. PrasanthM. SivamaruthiB. ChaiyasutC. TencomnaoT. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy.Nutrients201911247410.3390/nu11020474 30813433
    [Google Scholar]
  63. OrlandoG. ChiavaroliA. LeoneS. BrunettiL. PolitiM. MenghiniL. RecinellaL. FerranteC. Inhibitory effects induced by Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra water extracts on oxidative stress biomarkers and dopamine turnover in HypoE22 cells and isolated rat striatum challenged with 6-Hydroxydopamine.Antioxidants201981260210.3390/antiox8120602 31795449
    [Google Scholar]
  64. MenzeE.T. EsmatA. TadrosM.G. Abdel-NaimA.B. KhalifaA.E. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties.PLoS One2015102e011722310.1371/journal.pone.0117223 25675218
    [Google Scholar]
  65. MahdyH.M. MohamedM.R. EmamM.A. KarimA.M. Abdel-NaimA.B. KhalifaA.E. Puerarin ameliorates 3-nitropropionic acid-induced neurotoxicity in rats: possible neuromodulation and antioxidant mechanisms.Neurochem. Res.201439232133210.1007/s11064‑013‑1225‑7 24346712
    [Google Scholar]
  66. ShivasharanB.D. NagakannanP. ThippeswamyB.S. VeerapurV.P. BansalP. UnnikrishnanM.K. Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington’s disease in rats.Drug Chem. Toxicol.201336446647310.3109/01480545.2013.776583 23590827
    [Google Scholar]
  67. KumarP. KumarA. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease.J. Med. Food200912359160010.1089/jmf.2008.0028 19627208
    [Google Scholar]
  68. ParisD. GaneyN.J. LaporteV. PatelN.S. Beaulieu-AbdelahadD. BachmeierC. MarchA. Ait-GhezalaG. MullanM.J. Reduction of β-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease.J. Neuroinflammation2010711710.1186/1742‑2094‑7‑17 20211007
    [Google Scholar]
  69. MehanS. ParveenS. KalraS. Adenyl cyclase activator forskolin protects against Huntington’s disease-like neurodegenerative disorders.Neural Regen. Res.201712229030010.4103/1673‑5374.200812 28400813
    [Google Scholar]
  70. WangJ. GinesS. MacDonaldM.E. GusellaJ.F. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation.BMC Neurosci.200561110.1186/1471‑2202‑6‑1 15649316
    [Google Scholar]
  71. TakadaY. MurakamiA. AggarwalB.B. Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion.Oncogene200524466957696910.1038/sj.onc.1208845 16007145
    [Google Scholar]
  72. BonesiM. LoizzoM.R. ConfortiF. PassalacquaN.G. SaabA. MenichiniF. TundisR. Berberis aetnensis and B. libanotica: a comparative study on the chemical composition, inhibitory effect on key enzymes linked to Alzheimer’s disease and antioxidant activity.J. Pharm. Pharmacol.201365121726173510.1111/jphp.12172 24236982
    [Google Scholar]
  73. WongV. WuA. WangJ. LiuL. LawB. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy.Molecules20152033496351410.3390/molecules20033496 25699594
    [Google Scholar]
  74. RavikumarR. FugacciaI. ScheffS.W. GeddesJ.W. SrinivasanC. ToborekM. Nicotine attenuates morphological deficits in a contusion model of spinal cord injury.J. Neurotrauma200522224025110.1089/neu.2005.22.240 15716630
    [Google Scholar]
  75. WangB. GuanC. FuQ. The traditional uses, secondary metabolites, and pharmacology of Lycopodium species.Phytochem. Rev.2021117910.1007/s11101‑021‑09746‑4
    [Google Scholar]
  76. KrishnanN. MariappanadarV. DhanabalanA.K. DevadasanV. GopinathS.C.B. RamanP. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi - bioactive compounds for neurodegenerative diseases.Biomass Convers. Biorefin.202211210.1007/s13399‑022‑03237‑y
    [Google Scholar]
  77. AhujaA. KaurD. SharadaM. KumarA. SuriK. A. DuttP. Glycowithanolides accumulation in in vitro shoot cultures of Indian ginseng (Withania somnifera Dunal).Nat. Prod. Commun.2009441934578X0900400407
    [Google Scholar]
  78. SairamK. DorababuM. GoelR.K. BhattacharyaS.K. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats.Phytomedicine20029320721110.1078/0944‑7113‑00116 12046860
    [Google Scholar]
  79. DurgS. Withania somnifera (Ashwagandha) in neuro behavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis.J. Pharm. Pharmacol.201567787989910.1111/jphp.12398 25828061
    [Google Scholar]
  80. BhattacharyaS.K. SatyanK.S. GhosalS. Antioxidant activity of glycowithanolides from Withania somnifera.Indian J. Exp. Biol.1997353236239 9332168
    [Google Scholar]
  81. DarveshA.S. CarrollR.T. BishayeeA. NovotnyN.A. GeldenhuysW.J. Van der SchyfC.J. Curcumin and neurodegenerative diseases: A perspective.Expert Opin. Investig. Drugs20122181123114010.1517/13543784.2012.693479 22668065
    [Google Scholar]
  82. GoelA. KunnumakkaraA.B. AggarwalB.B. Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.200875478780910.1016/j.bcp.2007.08.016 17900536
    [Google Scholar]
  83. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M404751200 15590663
    [Google Scholar]
  84. SandurS.K. PandeyM.K. SungB. AhnK.S. MurakamiA. SethiG. LimtrakulP. BadmaevV. AggarwalB.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism.Carcinogenesis20072881765177310.1093/carcin/bgm123 17522064
    [Google Scholar]
  85. WrightJ.S. Predicting the antioxidant activity of curcumin and curcuminoids.J. Mol. Struct. Theochem20025911-320721710.1016/S0166‑1280(02)00242‑7
    [Google Scholar]
  86. AnthwalA. ThakurB.K. RawatM.S.M. RawatD.S. TyagiA.K. AggarwalB.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation.BioMed Res. Int.2014201452416110.1155/2014/524161 25157362
    [Google Scholar]
  87. GrundmanM. DelaneyP. DelaneyP. Antioxidant strategies for Alzheimer’s disease.Proc. Nutr. Soc.200261219120210.1079/PNS2002146 12133201
    [Google Scholar]
  88. KhatriD.K. JuvekarA.R. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease.Pharmacol. Biochem. Behav.2016150-151394710.1016/j.pbb.2016.09.002 27619637
    [Google Scholar]
  89. BagheriH. GhasemiF. BarretoG.E. RafieeR. SathyapalanT. SahebkarA. Effects of curcumin on mitochondria in neurodegenerative diseases.Biofactors202046152010.1002/biof.1566 31580521
    [Google Scholar]
  90. QureshiM. Al-SuhaimiE.A. WahidF. ShehzadO. ShehzadA. Therapeutic potential of curcumin for multiple sclerosis.Neurol. Sci.201839220721410.1007/s10072‑017‑3149‑5 29079885
    [Google Scholar]
  91. MauryaR. ManhasL.R. GuptaP. MishraP.K. SinghG. YadavP.P. AmritosidesA. AmritosidesA. B, C and D: Clerodane furano diterpene glucosides from Tinospora cordifolia.Phytochemistry200465142051205510.1016/j.phytochem.2004.05.017 15279971
    [Google Scholar]
  92. UpadhyayA. KumarK. KumarA. MishraH. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies.Int. J. Ayurveda Res.20101211212110.4103/0974‑7788.64405 20814526
    [Google Scholar]
  93. BairyK.L. RaoY. KumarK.L. Efficacy of Tinospora Cordifolia on learning and memory in healthy volunteers: A double-blind, randomized, placebo controlled study.Indian J. Pharmacol.200432576010.4103/0974‑7788.64405
    [Google Scholar]
  94. RawalA.K. MuddeshwarM.G. BiswasS.K. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation.BMC Complement. Altern. Med.2004411110.1186/1472‑6882‑4‑11 15310392
    [Google Scholar]
  95. SharmaA. KaurG. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective.BMC Complement. Altern. Med.201818126810.1186/s12906‑018‑2330‑6 29295712
    [Google Scholar]
  96. MutalikM. MutalikM. Tinospora cordifolia: Role in depression, cognition and memory.Aust. J. Herb. Med.2011234168173
    [Google Scholar]
  97. ChannaS. DarA. AnjumS. YaqoobM. Anti-inflammatory activity of Bacopa monniera in rodents.J. Ethnopharmacol.20061041-228628910.1016/j.jep.2005.10.009 16343831
    [Google Scholar]
  98. DeepakM. AmitA. ‘Bacoside B’ - the need remains for establishing identity.Fitoterapia20138771010.1016/j.fitote.2013.03.011 23506783
    [Google Scholar]
  99. GaraiS. MahatoS.B. OhtaniK. YamasakiK. Dammarane-type triterpenoid saponins from Bacopa monniera.Phytochemistry199642381582010.1016/0031‑9422(95)00936‑1 8768327
    [Google Scholar]
  100. ChakravartyA.K. GaraiS. MasudaK. NakaneT. KawaharaN. Bacopasides III-V: Three new triterpenoid glycosides from Bacopa monniera.Chem. Pharm. Bull.200351221521710.1248/cpb.51.215 12576661
    [Google Scholar]
  101. KishoreK. SinghM. Effect of bacosides, alcoholic extract of Bacopa monniera Linn. (brahmi), on experimental amnesia in mice.Indian J. Exp. Biol.2005437640645 16053272
    [Google Scholar]
  102. KulkarniO. MukherjeeS. BhandareR. JagtapS. DugadS. PawarN. PawarP.K. Evaluation of comparative free-radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica).Ayu201132225826410.4103/0974‑8520.92549 22408313
    [Google Scholar]
  103. VijiV. HelenA. Inhibition of lipoxygenases and cyclooxygenase-2 enzymes by extracts isolated from Bacopa monniera (L.).Wettst. J. Ethnopharmacol.2008118230531110.1016/j.jep.2008.04.017 18534796
    [Google Scholar]
  104. JainP. KhannaN.K. TrehanN. PendseV.K. GodhwaniJ.L. Anti inflammatory effects of an Ayurvedic preparation, Brahmi Rasayan, in rodents.Indian J. Exp. Biol.1994329633636 7814042
    [Google Scholar]
  105. BhattacharyaS.K. BhattacharyaA. KumarA. GhosalS. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus.Phytother. Res.200014317417910.1002/(SICI)1099‑1573(200005)14:3<174::AID‑PTR624>3.0.CO;2‑O 10815010
    [Google Scholar]
  106. DimpfelW. SchombertL. BillerA. Psychophysiological effects of Sideritis and Bacopa extract and three combinations thereof—a quantitative EEG study in subjects suffering from mild cognitive impairment (MCI).Adv. Alzheimer Dis.20165112210.4236/aad.2016.51001
    [Google Scholar]
  107. GhajarbeygiP. HajhoseiniA. HosseiniM.S. SharifanA. An in vitro and in vivo Cholinesterase inhibitory activity of Pistacia khinjuk and Allium sativum essential oils.J. Pharmacopuncture201922423123810.3831/KPI.2019.22.031 31970020
    [Google Scholar]
  108. GuoY. ZhangK. WangQ. LiZ. YinY. XuQ. DuanW. LiC. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis.Brain Res.2011137411011510.1016/j.brainres.2010.12.014 21147075
    [Google Scholar]
  109. SinghB. PandeyS. RummanM. MahdiA.A. Neuroprotective effects of Bacopa monnieri in Parkinson’s disease model.Metab. Brain Dis.202035351752510.1007/s11011‑019‑00526‑w 31834548
    [Google Scholar]
  110. De RoseF. MarottaR. TalaniG. CatelaniT. SolariP. PoddigheS. BorgheroG. MarrosuF. SannaE. KastureS. AcquasE. LisciaA. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS.Sci. Rep.2017714105910.1038/srep41059 28102336
    [Google Scholar]
  111. KouX. LiuX. ChenX. LiJ. YangX. FanJ. YangY. ChenN. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway.Oncotarget2016746744847449510.18632/oncotarget.12811 27780933
    [Google Scholar]
  112. KouX. ChenN. Pharmacological potential of ampelopsin in Rattan tea.Food Sci. Hum. Wellness201211141810.1016/j.fshw.2012.08.001
    [Google Scholar]
  113. JiaL. WangY. SangJ. CuiW. ZhaoW. WeiW. ChenB. LuF. LiuF. Dihydromyricetin inhibits α-Synuclein aggregation, disrupts preformed fibrils, and protects neuronal cells in culture against amyloid-induced cytotoxicity.J. Agric. Food Chem.201967143946395510.1021/acs.jafc.9b00922 30900456
    [Google Scholar]
  114. ZhaoX. LiuC. QiY. FangL. LuoJ. BiK. JiaY. Timosaponin B-II ameliorates scopolamine- induced cognition deficits by attenuating acetylcholinesterase activity and brain oxidative damage in mice.Metab. Brain Dis.20163161455146110.1007/s11011‑016‑9877‑z
    [Google Scholar]
  115. PiwowarA. RembiałkowskaN. Rorbach-DolataA. GarbiecA. ŚlusarczykS. DoboszA. DługoszA. MarchewkaZ. MatkowskiA. SaczkoJ. Anemarrhenae asphodeloides rhizoma extract enriched in mangiferin protects PC12 cells against a neurotoxic agent-3-nitropropionic acid.Int. J. Mol. Sci.2020217251010.3390/ijms21072510 32260390
    [Google Scholar]
  116. ZhangY. SunH.M. HeX. WangY.Y. GaoY.S. WuH.X. XuH. GongX.G. GuoZ.Y. Da-Bu-Yin-Wan and Qian-Zheng-San, two traditional Chinese herbal formulas, up-regulate the expression of mitochondrial subunit NADH dehydrogenase 1 synergistically in the mice model of Parkinson’s disease.J. Ethnopharmacol.2013146136337110.1016/j.jep.2013.01.005 23347961
    [Google Scholar]
  117. MaitiR. RaghavendraM. KumarS. AcharyaS.B. Role of aqueous extract of Azadirachta indica leaves in an experimental model of Alzheimer′s disease in rats.Int. J. Appl. Basic Med. Res.201331374710.4103/2229‑516X.112239 23776838
    [Google Scholar]
  118. SinghB.K. VatsaN. NelsonV.K. KumarV. KumarS.S. MandalS.C. PalM. JanaN.R. Azadiradione restores protein quality control and ameliorates the disease pathogenesis in a mouse model of Huntington’s disease.Mol. Neurobiol.20185586337634610.1007/s12035‑017‑0853‑3 29294248
    [Google Scholar]
  119. NieS. XuY. ChenG. MaK. HanC. GuoZ. ZhangZ. YeK. CaoX. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.Neuropharmacology20159944845810.1016/j.neuropharm.2015.08.016 26282118
    [Google Scholar]
  120. HolcombL.A. DhanasekaranM. HittA.R. YoungK.A. RiggsM. ManyamB.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice.J. Alzheimers Dis.20069324325110.3233/JAD‑2006‑9303 16914834
    [Google Scholar]
  121. JadiyaP. KhanA. SammiS.R. KaurS. MirS.S. NazirA. Anti-Parkinsonian effects of Bacopa monnieri: Insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease.Biochem. Biophys. Res. Commun.2011413460561010.1016/j.bbrc.2011.09.010 21925152
    [Google Scholar]
  122. MishraA. MishraA.K. JhaS. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals.Epilepsy Behav.20188014415110.1016/j.yebeh.2017.12.040 29414544
    [Google Scholar]
  123. JiangW. WeiW. GaertigM.A. LiS. LiX.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model.PLoS One2015107e013414210.1371/journal.pone.0134142 26225560
    [Google Scholar]
  124. BaeJ. LeeD. KimY.K. GilM. LeeJ.Y. LeeK.J. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1.Mol. Cells201335215115710.1007/s10059‑013‑2298‑5 23329300
    [Google Scholar]
  125. TarragoT. KichikN. SeguíJ. GiraltE. The natural product berberine is a human prolyl oligopeptidase inhibitor.ChemMedChem20072335435910.1002/cmdc.200600303 17295371
    [Google Scholar]
  126. ErcetinT. SenolF.S. Erdogan OrhanI. TokerG. Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L.Ind. Crops Prod.201236120320810.1016/j.indcrop.2011.09.007
    [Google Scholar]
  127. KarandikarA. ThangarajanS. Protective activity of esculetin against 3-Nitropropionic acid induced neurotoxicity via scavenging reactive oxygen species in male wistar rats.Int. J. Pharmacogn. Phytochem. Res.20179572273210.25258/phyto.v9i5.8155
    [Google Scholar]
  128. EhrnhoeferD.E. BieschkeJ. BoeddrichA. HerbstM. MasinoL. LurzR. EngemannS. PastoreA. WankerE.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers.Nat. Struct. Mol. Biol.200815655856610.1038/nsmb.1437 18511942
    [Google Scholar]
  129. RitsnerM.S. MiodownikC. RatnerY. ShleiferT. MarM. PintovL. LernerV. L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: An 8-week, randomized, double-blind, placebo-controlled, 2-center study.J. Clin. Psychiatry2011721344210.4088/JCP.09m05324gre 21208586
    [Google Scholar]
  130. SankaramourthyD. SankaranarayananL. SubramanianK. SadrasS.R. Neuroprotective potential of Celastrus paniculatus seeds against common neurological ailments: A narrative review.J. Complement. Integr. Med.202320353053610.1515/jcim‑2021‑0448 35005853
    [Google Scholar]
  131. MalikJ. KaranM. DograR. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism.Pharm. Biol.201755198099010.1080/13880209.2017.1285945 28164735
    [Google Scholar]
  132. AnjaneyuluJ. R, V.; Godbole, A. Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson’s disease.J. Ayurveda Integr. Med.202011444044710.1016/j.jaim.2020.07.006 32978047
    [Google Scholar]
  133. ChiromaS.M. BaharuldinM.T.H. Mat TaibC.N. AmomZ. JagadeesanS. Ilham AdenanM. MahdiO. MoklasM.A.M. Centella asiatica protects D-galactose/AlCl3 mediated Alzheimer’s disease-like rats via PP2A/GSK-3β signaling pathway in their hippocampus.Int. J. Mol. Sci.2019208187110.3390/ijms20081871 31014012
    [Google Scholar]
  134. ShinomolG.K. Muralidhara. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice.Neurotoxicology200829694895710.1016/j.neuro.2008.09.009 18930762
    [Google Scholar]
  135. SaxenaG. SinghS.P. PalR. SinghS. PratapR. NathC. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice.Pharmacol. Biochem. Behav.200786479780510.1016/j.pbb.2007.03.010 17477963
    [Google Scholar]
  136. NiranjanR. N.R. NathC. ShuklaR. The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6.Chem. Biol. Interact.20122002-3738310.1016/j.cbi.2012.08.008 22940226
    [Google Scholar]
  137. BihaqiS. SinghA. TiwariM. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and Amyloid precursor protein (AβPP) expression in rat brain.Indian J. Pharmacol.201244559359810.4103/0253‑7613.100383 23112420
    [Google Scholar]
  138. KizhakkeP. A.; Olakkaran, S.; Antony, A.; Tilagul K, S.; Hunasanahally P, G. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model.J. Chem. Neuroanat.20199511512210.1016/j.jchemneu.2017.10.002 29051039
    [Google Scholar]
  139. PradhanP. MajhiO. BiswasA. JoshiV.K. SinhaD. Enhanced accumulation of reduced glutathione by scopoletin improves survivability of dopaminergic neurons in Parkinson’s model.Cell Death Dis.202011973910.1038/s41419‑020‑02942‑8
    [Google Scholar]
  140. KaurM. PrakashA. KaliaA.N. Neuroprotective potential of antioxidant potent fractions from Convolvulus pluricaulis Chois. in 3-nitropropionic acid challenged rats.Nutr. Neurosci.2016192707810.1179/1476830515Y.0000000022 25896328
    [Google Scholar]
  141. LiuQ.F. JeongH. LeeJ.H. HongY.K. OhY. KimY.M. SuhY.S. BangS. YunH.S. LeeK. ChoS.M. LeeS.B. JeonS. ChinY.W. KooB.S. ChoK.S. Coriandrum sativum suppresses Aβ42-induced ROS increases, glial cell proliferation, and ERK activation.Am. J. Chin. Med.20164471325134710.1142/S0192415X16500749 27776428
    [Google Scholar]
  142. ManivannanK. Karthikai devi, G.; Anantharaman, P.; Balasubramanian, T. Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters.Gulf of Mannar. Asian Pac. J. Trop. Biomed.20111211412010.1016/S2221‑1691(11)60007‑5 23569739
    [Google Scholar]
  143. AhmedT. EnamS.A. GilaniA.H. Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease.Neuroscience201016931296130610.1016/j.neuroscience.2010.05.078 20538041
    [Google Scholar]
  144. GagliardiS. FrancoV. SorrentinoS. ZuccaS. PandiniC. RotaP. BernuzziS. CostaA. SinforianiE. PansarasaO. CashmanJ.R. CeredaC. Curcumin and novel synthetic analogs in cell-based studies of Alzheimer’s Disease.Front. Pharmacol.20189140410.3389/fphar.2018.01404 30559668
    [Google Scholar]
  145. AditiK. SinghA. ShakaradM.N. AgrawalN. Management of altered metabolic activity in Drosophila model of Huntington’s disease by curcumin.Exp. Biol. Med.2022247215216410.1177/15353702211046927 34743577
    [Google Scholar]
  146. TripanichkulW. JaroensuppaperchE. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model.Int. J. Neurosci.2012122526327010.3109/00207454.2011.648760 22176529
    [Google Scholar]
  147. KaurH. PatroI. TikooK. SandhirR. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy.Neurochem. Int.201589405010.1016/j.neuint.2015.07.009 26190183
    [Google Scholar]
  148. MiodownikC. LernerV. KudkaevaN. LernerP.P. PashinianA. BersudskyY. EliyahuR. KreininA. BergmanJ. Curcumin as add-on to antipsychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study.Clin. Neuropharmacol.201942411712210.1097/WNF.0000000000000344 31045590
    [Google Scholar]
  149. ChicoL. IencoE.C. BisordiC. Lo GerfoA. PetrozziL. PetrucciA. MancusoM. SicilianoG. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation.CNS Neurol. Disord. Drug Targets2018171076777910.2174/1871527317666180720162029 30033879
    [Google Scholar]
  150. KimD.I. LeeS.H. HongJ.H. LillehojH.S. ParkH.J. RhieS.G. LeeG.S. The butanol fraction of Eclipta prostrata (Linn) increases the formation of brain acetylcholine and decreases oxidative stress in the brain and serum of cesarean-derived rats.Nutr. Res.201030857958410.1016/j.nutres.2010.08.001 20851313
    [Google Scholar]
  151. ChahalH.S. SharmaS. Effect of Eclipta alba and Ocimum sanctum on haloperidol induced parkinsonism.J. Drug Deliv. Ther.20188528829310.22270/jddt.v8i5.1871
    [Google Scholar]
  152. NuthakkiV.K. SharmaA. KumarA. BharateS.B. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent.Drug Dev. Res.201980565566510.1002/ddr.21544 31050027
    [Google Scholar]
  153. DhaddeS.B. NagakannanP. RoopeshM. Anand KumarS.R. ThippeswamyB.S. VeerapurV.P. BadamiS. Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats.Biomed. Pharmacother.201677525810.1016/j.biopha.2015.11.009 26796265
    [Google Scholar]
  154. HusainI. AkhtarM. MadaanT. VohoraD. AbdinM.Z. IslamuddinM. NajmiA.K. Tannins enriched fraction of Emblica officinalis Fruits alleviates high-Salt and cholesterol diet-induced cognitive impairment in Rats via Nrf2-ARE Pathway.Front. Pharmacol.201892310.3389/fphar.2018.00023 29441016
    [Google Scholar]
  155. DwivediV. LakhotiaS.C. Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster.J. Biosci.201641469771110.1007/s12038‑016‑9641‑x 27966490
    [Google Scholar]
  156. DwivediV. TripathiB.K. MutsuddiM. LakhotiaS.C. Ayurvedic amalaki rasayana and rasa-Sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases.Curr. Sci.20131711172310.1016/j.jaim.2022.100636
    [Google Scholar]
  157. PemminatiS. NairV. GopalakrishnaH.N. Effect of aqueous fruit extract of Emblica officinalis on haloperidol induced catalepsy in albino mice.J. Clin. Diagn. Res.20093416571662
    [Google Scholar]
  158. VinuthaB. PrashanthD. SalmaK. SreejaS.L. PratitiD. PadmajaR. RadhikaS. AmitA. VenkateshwarluK. DeepakM. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity.J. Ethnopharmacol.2007109235936310.1016/j.jep.2006.06.014 16950584
    [Google Scholar]
  159. BhangaleJ.O. AcharyaS.R. Anti-parkinson activity of petroleum ether extract of ficus religiosa (L.) leaves.Adv. Pharmacol. Sci.201620161910.1155/2016/9436106 26884755
    [Google Scholar]
  160. LoyC. SchneiderL. Galantamine for Alzheimer’s disease and mild cognitive impairment.Cochrane Libr.200620091CD00174710.1002/14651858.CD001747.pub3 16437436
    [Google Scholar]
  161. AarslandD. HutchinsonM. LarsenJ.P. Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia.Int. J. Geriatr. Psychiatry2003181093794110.1002/gps.949 14533126
    [Google Scholar]
  162. PrvulovicD. HampelH. PantelJ. Galantamine for Alzheimer’s disease.Expert Opin. Drug Metab. Toxicol.20106334535410.1517/17425251003592137 20113148
    [Google Scholar]
  163. LotterJ. MöllerM. DeanO. BerkM. HarveyB.H. Studies on haloperidol and adjunctive α-mangostin or raw Garcinia mangostana Linn pericarp on bio-behavioral markers in an immune-inflammatory model of schizophrenia in male rats.Front. Psychiatry20201112110.3389/fpsyt.2020.00121 32296347
    [Google Scholar]
  164. LinY.E. LinC.H. HoE.P. KeY.C. PetridiS. ElliottC.J.H. SheenL.Y. ChienC.T. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson’s disease.eLife202110e7375310.7554/eLife.73753 34779396
    [Google Scholar]
  165. HuangJ. TaoG. LiuJ. CaiJ. HuangZ. ChenJ. Current prevention of COVID-19: Natural products and herbal medicine.Front. Pharmacol.20201158850810.3389/fphar.2020.588508 33178026
    [Google Scholar]
  166. LuX. ZhangY. LiH. JinY. ZhaoL. WangX. Nicotine prevents In vivo Aβ toxicity in Caenorhabditis elegansvia SKN-1.Neurosci. Lett.202176113611410.1016/j.neulet.2021.136114 34274434
    [Google Scholar]
  167. TingH.C. YangH.I. HarnH.J. ChiuI.M. SuH.L. LiX. ChenM.F. HoT.J. LiuC.A. TsaiY.J. ChiouT.W. LinS.Z. ChangC.Y. Coactivation of GSK3β and IGF-1 Attenuates amyotrophic lateral sclerosis nerve fiber cytopathies in SOD1 mutant patient-derived motor neurons.Cells20211010277310.3390/cells10102773 34685754
    [Google Scholar]
  168. DasA. ShankerG. NathC. PalR. SinghS. SinghH.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba.Pharmacol. Biochem. Behav.200273489390010.1016/S0091‑3057(02)00940‑1 12213536
    [Google Scholar]
  169. MahdyH.M. TadrosM.G. MohamedM.R. KarimA.M. KhalifaA.E. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats.Neurochem. Int.201159677077810.1016/j.neuint.2011.07.012 21827809
    [Google Scholar]
  170. KuangS. YangL. RaoZ. ZhongZ. LiJ. ZhongH. DaiL. TangX. Effects of Ginkgo Biloba extract on A53T α-Synuclein Transgenic mouse models of Parkinson’s Disease.Can. J. Neurol. Sci.201845218218710.1017/cjn.2017.268 29506601
    [Google Scholar]
  171. SinghV. SinghS.P. ChanK. Review and meta-analysis of usage of ginkgo as an adjunct therapy in chronic schizophrenia.Int. J. Neuropsychopharmacol.201013225727110.1017/S1461145709990654 19775502
    [Google Scholar]
  172. FerranteR.J. KleinA.M. DedeogluA. BealM.F. Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis.J. Mol. Neurosci.2001171899610.1385/JMN:17:1:89 11665866
    [Google Scholar]
  173. DhingraD. ParleM. KulkarniS.K. Memory enhancing activity of Glycyrrhiza glabra in mice.J. Ethnopharmacol.2004912-336136510.1016/j.jep.2004.01.016 15120462
    [Google Scholar]
  174. LeeS.H. CaiM. YangE.J. Anti-inflammatory effects of a novel herbal extract in the muscle and spinal cord of an amyotrophic lateral sclerosis animal model.Front. Neurosci.20211574370510.3389/fnins.2021.743705 34858128
    [Google Scholar]
  175. MaW. XiangL. YuH.L. YuanL.H. GuoA.M. XiaoY.X. LiL. XiaoR. Neuroprotection of soyabean isoflavone co-administration with folic acid against β-amyloid 1-40-induced neurotoxicity in rats.Br. J. Nutr.2009102450250510.1017/S0007114509274757 19534845
    [Google Scholar]
  176. SferrazzaG. CortiM. BrusottiG. PierimarchiP. TemporiniC. SerafinoA. CalleriE. Nature-derived compounds modulating Wnt/b-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases.Acta Pharm. Sin. B202010101814183410.1016/j.apsb.2019.12.019 33163337
    [Google Scholar]
  177. KunduA. MitraA. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities.Plant Foods Hum. Nutr.201368324725310.1007/s11130‑013‑0363‑z 23715789
    [Google Scholar]
  178. WuJ.Q. KostenT.R. ZhangX.Y. Free radicals, antioxidant defense systems, and schizophrenia.Prog. Neuropsychopharmacol. Biol. Psychiatry20134620020610.1016/j.pnpbp.2013.02.015
    [Google Scholar]
  179. LumP.T. SekarM. GanS.H. BonamS.R. ShaikhM.F. Protective effect of natural products against Huntington’s disease: An overview of scientific evidence and understanding their mechanism of action.ACS Chem. Neurosci.202112339141810.1021/acschemneuro.0c00824 33475334
    [Google Scholar]
  180. MichelH.E. TadrosM.G. EsmatA. KhalifaA.E. Abdel-TawabA.M. Tetramethylpyrazine ameliorates rotenone-induced Parkinson’s disease in Rats: Involvement of its anti-inflammatory and anti-apoptotic actions.Mol. Neurobiol.20175474866487810.1007/s12035‑016‑0028‑7 27514753
    [Google Scholar]
  181. ArantesL.P. ColleD. MachadoM.L. ZamberlanD.C. TassiC.L.C. da CruzR.C. ManfronM.P. AthaydeM.L. SoaresF.A.A. Luehea divaricata Mart. anticholinesterase and antioxidant activity in a Caenorhabditis elegans model system.Ind. Crops Prod.20146226527110.1016/j.indcrop.2014.08.038
    [Google Scholar]
  182. WangR. TangX.C. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease.Neurosignals2005141-2718210.1159/000085387 15956816
    [Google Scholar]
  183. TaoY. FangL. YangY. JiangH. YangH. ZhangH. ZhouH. Quantitative proteomic analysis reveals the neuroprotective effects of huperzine A for amyloid beta treated neuroblastoma N 2a cells.Proteomics20131381314132410.1002/pmic.201200437 23424162
    [Google Scholar]
  184. SoodiM. DashtiA. HajimehdipoorH. AkbariS. AtaeiN. Melissa officinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxidative stress.Cell J.201718455656410.22074/cellj.2016.4722 28042540
    [Google Scholar]
  185. MartinsE.N. PessanoN.T.C. LealL. RoosD.H. FolmerV. PuntelG.O. RochaJ.B.T. AschnerM. ÁvilaD.S. PuntelR.L. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice.Brain Res. Bull.2012871747910.1016/j.brainresbull.2011.10.003 22020131
    [Google Scholar]
  186. PathaniaR. ChawlaP. KhanH. KaushikR. KhanM. A. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: A natural food legume.3 Biot.202010611510.1007/s13205‑020‑02253‑x
    [Google Scholar]
  187. CiliaR. LagunaJ. CassaniE. CeredaE. PozziN.G. IsaiasI.U. ContinM. BarichellaM. PezzoliG. Mucuna pruriens in Parkinson disease.Neurology201789543243810.1212/WNL.0000000000004175 28679598
    [Google Scholar]
  188. LiuQ.F. JeonY. SungY. LeeJ.H. JeongH. KimY.M. YunH.S. ChinY.W. JeonS. ChoK.S. KooB.S. Nardostachys jatamansi ethanol extract ameliorates Aβ42 Cytotoxicity.Biol. Pharm. Bull.201841447047710.1248/bpb.b17‑00750 29398668
    [Google Scholar]
  189. BianL. YaoZ. ZhaoC. LiQ. ShiJ. GuoJ. Nardosinone alleviates Parkinson’s disease symptoms in mice by regulating dopamine D2 receptor.Evid. Based Complement. Alternat. Med.2021202111410.1155/2021/6686965 34426745
    [Google Scholar]
  190. JanardhananA. SadanandA. VanisreeA.J. Nardostachys jatamansi targets BDNF-TrkB to alleviate ketamine-induced Schizophrenia-like symptoms in Rats.Neuropsychobiology201674210411410.1159/000454985 28241130
    [Google Scholar]
  191. KumaranA. HoC.C. HwangL.S. Protective effect of Nelumbo nucifera extracts on beta amyloid protein induced apoptosis in PC12 cells, in vitro model of Alzheimer’s disease.J. Food Drug Anal.201826117218110.1016/j.jfda.2017.01.007 29389553
    [Google Scholar]
  192. ZhaoX. ZhaoR. YangX. SunL. BaoY. Shuai LiuY. Blennow, A.; Liu, X. Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera.Food Chem.202341213558110.1016/j.foodchem.2023.135581 36731239
    [Google Scholar]
  193. Carvajal-OliverosA. Domínguez-BaleónC. ZárateR.V. CampusanoJ.M. Narváez-PadillaV. ReynaudE. Nicotine suppresses Parkinson’s disease like phenotypes induced by Synphilin-1 overexpression in Drosophila melanogaster by increasing tyrosine hydroxylase and dopamine levels.Sci. Rep.2021111957910.1038/s41598‑021‑88910‑4 33953275
    [Google Scholar]
  194. KoukouliF. RooyM. TziotisD. SailorK.A. O’NeillH.C. LevengaJ. WitteM. NilgesM. ChangeuxJ.P. HoefferC.A. StitzelJ.A. GutkinB.S. DiGregorioD.A. MaskosU. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia.Nat. Med.201723334735410.1038/nm.4274 28112735
    [Google Scholar]
  195. CorsiniS. TortoraM. RautiR. NistriA. Nicotine protects rat hypoglossal motoneurons from excitotoxic death via downregulation of connexin 36.Cell Death Dis.201786e288110.1038/cddis.2017.232 28617431
    [Google Scholar]
  196. MataramM.B.A. HeningP. HarjantiF.N. KarnatiS. WasityastutiW. NugrahaningsihD.A.A. KusindartaD.L. WihadmadyatamiH. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer’s disease.J. Chem. Neuroanat.202111110188510.1016/j.jchemneu.2020.101885 33188864
    [Google Scholar]
  197. SiddiqueY.H. FaisalM. NazF. JyotiS. Rahul, Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson’s disease.Chin. J. Nat. Med.2014121077778110.1016/S1875‑5364(14)60118‑7 25443371
    [Google Scholar]
  198. OmarS. KerrP. ScottC. HamlinA. ObiedH. Olive (Olea europaea L.) Biophenols: A Nutriceutical against oxidative stress in SH-SY5Y Cells.Molecules20172211185810.3390/molecules22111858 29109370
    [Google Scholar]
  199. BigdeliM.R. Effect of Olive Leaf extract on the behavioral signs of huntington’s disease and antioxidant enzymatic activity in the rat brain.J. Physiol. Pharmacol.2013173328338
    [Google Scholar]
  200. SarbishegiM. Charkhat GorgichE.A. KhajaviO. KomeiliG. SalimiS. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat.Metab. Brain Dis.2018331798810.1007/s11011‑017‑0131‑0 29039078
    [Google Scholar]
  201. YuS.E. MwesigeB. YiY.S. YooB.C. Ginsenosides: the need to move forward from bench to clinical trials.J. Ginseng Res.201943336136710.1016/j.jgr.2018.09.001 31308807
    [Google Scholar]
  202. JangM. ChoiJ.H. ChangY. LeeS.J. NahS.Y. ChoI.H. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington’s disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors.Brain Behav. Immun.20198014616210.1016/j.bbi.2019.03.001 30853569
    [Google Scholar]
  203. Van KampenJ.M. BaranowskiD.B. ShawC.A. KayD.G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease.Exp. Gerontol.20145019510510.1016/j.exger.2013.11.012 24316034
    [Google Scholar]
  204. WangL. WangJ. YangL. ZhouS. Effect of praeruptorin C on 3-nitropropionic acid induced Huntington’s disease-like symptoms in mice.Biomed. Pharmacother.201786818710.1016/j.biopha.2016.11.111 27939523
    [Google Scholar]
  205. SinghA. BhattG. GujreN. MitraS. SwaminathanR. LimayeA.M. RanganL. Karanjin.Phytochemistry202118311264110.1016/j.phytochem.2020.112641 33421890
    [Google Scholar]
  206. ChenZ.J. YangY.F. ZhangY.T. YangD.H. Dietary total prenylflavonoids from the fruits of Psoralea corylifolia L. Prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice.Molecules201823119610.3390/molecules23010196 29346315
    [Google Scholar]
  207. ImA.R. ChaeS.W. ZhangG. LeeM.Y. Neuroprotective effects of Psoralea corylifolia Linn seed extracts on mitochondrial dysfunction induced by 3-nitropropionic acid.BMC Complement. Altern. Med.201414137010.1186/1472‑6882‑14‑370 25277760
    [Google Scholar]
  208. ZhaoG. ZhengX.W. QinG.W. GaiY. JiangZ.H. GuoL.H. In vitro dopaminergic neuroprotective and In vivo antiparkinsonian-like effects of Δ3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.).Cell. Mol. Life Sci.20096691617162910.1007/s00018‑009‑9030‑9 19322517
    [Google Scholar]
  209. KumarS. MaheshwariK. SinghV. Protective effects of Punica granatum seeds extract against aging and scopolamine induced cognitive impairments in mice.Afr. J. Tradit. Complement. Altern. Med.201061495610.4314/ajtcam.v6i1.57073 20162041
    [Google Scholar]
  210. Al-SabahiB.N. FatopeM.O. EssaM.M. SubashS. Al-BusafiS.N. Al-KusaibiF.S.M. ManivasagamT. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.Nutr. Neurosci.2017201404810.1179/1476830514Y.0000000155 25238165
    [Google Scholar]
  211. FathyS.M. El-DashH.A. SaidN.I. Neuroprotective effects of pomegranate (Punica granatum L.) juice and seed extract in paraquat-induced mouse model of Parkinson’s disease.BMC Complement. Med. Ther.202121113010.1186/s12906‑021‑03298‑y 33902532
    [Google Scholar]
  212. ZhaoH. WangZ.C. WangK.F. ChenX.Y. Aβ peptide secretion is reduced by Radix Polygalae-induced autophagy via activation of the AMPK/mTOR pathway.Mol. Med. Rep.20151222771277610.3892/mmr.2015.3781 25976650
    [Google Scholar]
  213. WuW. YuX. LuoX.P. YangS.H. ZhengD. Tetramethylpyrazine protects against scopolamine-induced memory impairments in rats by reversing the cAMP/PKA/CREB pathway.Behav. Brain Res.201325321221610.1016/j.bbr.2013.07.052 23916742
    [Google Scholar]
  214. ChoiJ.G. KimH.G. KimM.C. YangW.M. HuhY. KimS.Y. OhM.S. Polygalae radix inhibits toxin-induced neuronal death in the Parkinson’s disease models.J. Ethnopharmacol.2011134241442110.1016/j.jep.2010.12.030 21195155
    [Google Scholar]
  215. HuangC.L. YangJ.M. WangK.C. LeeY.C. LinY.L. YangY.C. HuangN.K. Gastrodia elata prevents huntingtin aggregations through activation of the adenosine A2A receptor and ubiquitin proteasome system.J. Ethnopharmacol.2011138116216810.1016/j.jep.2011.08.075 21924340
    [Google Scholar]
  216. ZhuG. WangX. ChenY. YangS. ChengH. WangN. LiQ. Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease.Planta Med.201076161820182610.1055/s‑0030‑1249976 20509103
    [Google Scholar]
  217. OzarowskiM. MikolajczakP.L. BogaczA. GryszczynskaA. KujawskaM. Jodynis-LiebertJ. PiaseckaA. NapieczynskaH. SzulcM. KujawskiR. Bartkowiak-WieczorekJ. CichockaJ. Bobkiewicz-KozlowskaT. CzernyB. MrozikiewiczP.M. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain.Fitoterapia20139126127110.1016/j.fitote.2013.09.012 24080468
    [Google Scholar]
  218. RasoulA. MaryamH.G. TaghiG.M. TaghiL. dehghan, R. Antioxidant activity of oral administration of Rosmarinus officinalis leaves extract on rat’s hippocampus which exposed to 6-hydroxydopamine.Braz. Arch. Biol. Technol.201659010.1590/1678‑4324‑2016150354
    [Google Scholar]
  219. ShimojoY. KosakaK. NodaY. ShimizuT. ShirasawaT. Effect of rosmarinic acid in motor dysfunction and life span in a mouse model of familial amyotrophic lateral sclerosis.J. Neurosci. Res.2009884NA10.1002/jnr.2224219798750
    [Google Scholar]
  220. KashyapP. KalaiselvanV. KumarR. KumarS. Ajmalicine and Reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in alzheimer’s disease.Molecules2020257160910.3390/molecules25071609 32244635
    [Google Scholar]
  221. SmachM.A. HafsaJ. CharfeddineB. DridiH. LimemK. Effects of sage extract on memory performance in mice and acetylcholinesterase activity.Ann. Pharm. Fr.201573428128810.1016/j.pharma.2015.03.005 25934446
    [Google Scholar]
  222. MohankumarA. ShanmugamG. KalaiselviD. LevensonC. NivithaS. ThiruppathiG. SundararajP. East Indian sandalwood (Santalum album L.) oil confers neuroprotection and geroprotection in Caenorhabditis elegans via activating SKN-1/Nrf2 signaling pathway.RSC Advances2018859337533377410.1039/C8RA05195J 30319772
    [Google Scholar]
  223. K, P.; Shashikumara, S.; S, N.; C, P. Investigation on learning and memory-enhancing activity of Saraca asoca flower (Roxb.) Wilde in experimental mice.Natl. J. Physiol. Pharm. Pharmacol.2018891250125510.5455/njppp.2018.8.0413307052018
    [Google Scholar]
  224. AdhamiH.R. LinderT. KaehligH. SchusterD. ZehlM. KrennL. Catechol alkenyls from Semecarpus anacardium: Acetylcholinesterase inhibition and binding mode predictions.J. Ethnopharmacol.2012139114214810.1016/j.jep.2011.10.032 22075454
    [Google Scholar]
  225. MohamedE.A. AhmedH.I. ZakyH.S. BadrA.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways.J. Ethnopharmacol.202126711346810.1016/j.jep.2020.113468 33049345
    [Google Scholar]
  226. ZhaoL. DuanZ. WangY. WangM. LiuY. WangX. LiH. Protective effect of Terminalia chebula Retz. extract against Aβ aggregation and Aβ-induced toxicity in Caenorhabditis elegans.J. Ethnopharmacol.202126811364010.1016/j.jep.2020.113640 33307058
    [Google Scholar]
  227. KimH.J. KimJ. KangK.S. LeeK.T. YangH.O. Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells.Biomol. Ther.201422427528110.4062/biomolther.2014.068 25143804
    [Google Scholar]
  228. BanazadehM. MehrabaniM. BanazadehN. DabaghzadehF. ShahabiF. Evaluating the effect of black myrobalan on cognitive, positive, and negative symptoms in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled trial.Phytother. Res.202236154355010.1002/ptr.7340 34814232
    [Google Scholar]
  229. OnojaO.J. ElufioyeT.O. SherwaniZ.A. Ul-HaqZ. Molecular docking studies and anti- Alzheimer’s potential of isolated compounds from Tinospora cordifolia.J. Biol. Active Prod. Nat.202010210012110.1080/22311866.2020.1726813
    [Google Scholar]
  230. RehmanM.U. WaliA.F. AhmadA. ShakeelS. RasoolS. AliR. RashidS.M. MadkhaliH. GanaieM.A. KhanR. Neuroprotective strategies for neurological disorders by natural products: an update.Curr. Neuropharmacol.201917324726710.2174/1570159X16666180911124605 30207234
    [Google Scholar]
  231. BirlaH. RaiS.N. SinghS.S. ZahraW. RawatA. TiwariN. SinghR.K. PathakA. SinghS.P. Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model.Neuromolecular Med.2019211425310.1007/s12017‑018‑08521‑7 30644041
    [Google Scholar]
  232. RameshV. JayaprakashR. SridharM.P. SasikalaC. Antioxidant activity of ethanolic extract of Tinospora cordifolia on N-nitrosodiethylamine (diethylnitrosamine) induced liver cancer in male Wister albino rats.J. Pharm. Bioallied Sci.2015754010.4103/0975‑7406.155791 26015745
    [Google Scholar]
  233. LinM.W. LinC.C. ChenY.H. YangH.B. HungS.Y. Celastrol inhibits dopaminergic neuronal death of parkinson’s disease through activating mitophagy.Antioxidants2019913710.3390/antiox9010037 31906147
    [Google Scholar]
  234. ClerenC. CalingasanN.Y. ChenJ. BealM.F. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity.J. Neurochem.2005944995100410.1111/j.1471‑4159.2005.03253.x 16092942
    [Google Scholar]
  235. BaiX. FuR.J. ZhangS. YueS.J. ChenY.Y. XuD.Q. TangY.P. Potential medicinal value of celastrol and its synthesized analogues for central nervous system diseases.Biomed. Pharmacother.202113911155110.1016/j.biopha.2021.111551 33865016
    [Google Scholar]
  236. KuboyamaT. TohdaC. KomatsuK. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.Biol. Pharm. Bull.201437689289710.1248/bpb.b14‑00022 24882401
    [Google Scholar]
  237. AfewerkyH.K. LiH. ZhangT. LiX. MahamanY.A.R. DuanL. QinP. ZhengJ. PeiL. LuY. Sodium–calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer’s disease.Sci. Rep.2022121153710.1038/s41598‑022‑05568‑2 35087161
    [Google Scholar]
  238. JoshiT. KumarV. KaznacheyevaE.V. JanaN.R. Withaferin A induces heat shock response and ameliorates disease progression in a mouse model of Huntington’s Disease.Mol. Neurobiol.20215883992400610.1007/s12035‑021‑02397‑8 33904021
    [Google Scholar]
  239. PrakashJ. ChouhanS. YadavS.K. WestfallS. RaiS.N. SinghS.P. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.Neurochem. Res.201439122527253610.1007/s11064‑014‑1443‑7 25403619
    [Google Scholar]
  240. KumarG. PatnaikR. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.Med. Hypotheses201692354310.1016/j.mehy.2016.04.034 27241252
    [Google Scholar]
  241. DuttaK. PatelP. JulienJ.P. Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis.Exp. Neurol.201830919320410.1016/j.expneurol.2018.08.008 30134145
    [Google Scholar]
  242. KimM.J. JungJ.E. LeeS. ChoE.J. KimH.Y. Effects of the fermented Zizyphus jujuba in the amyloid β25-35-induced Alzheimer’s disease mouse model.Nutr. Res. Pract.202115217318610.4162/nrp.2021.15.2.173 33841722
    [Google Scholar]
  243. VillegasC. PerezR. PetizL.L. GlaserT. UlrichH. PazC. Ginkgolides and Huperzine A for complementary treatment of Alzheimer’s disease.IUBMB Life202274876377910.1002/iub.2613 35384262
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673272435231204072922
Loading
/content/journals/cmc/10.2174/0109298673272435231204072922
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): metabolites; Neuro degenerative diseases; neurons; phytomedicines; plant extracts; toxins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test