Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

To explore the diagnostic biomarkers for diagnosing endometriosis.

Background

Endometriosis is a benign, progressive, estrogen-dependent gynecological disorder that has highly variant prevalence. Therefore, it is essential to develop reliable diagnostic biomarkers for endometriosis diagnosis.

Objective

To explore the diagnostic biomarkers for endometriosis diagnosis.

Methods

Based on transcriptome data from GSE145701, we identified potential therapeutic targets through the intersection of endometriosis-related genes from weighted gene correlation network analysis (WGCNA) and differential expression analysis. Aprotein-protein interaction (PPI) was constructed. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed for functional enrichment analysis. The intersection of hub genes from topological analysis and module genes from module-based network analysis were selected as core targets, which were used for diagnostic model construction. Its robustness was validated using GSE7305 and GSE134056. Associations of core targets with immune characteristics and pathways were further evaluated. Molecular docking was employed to evaluate the docking affinity between core targets and drugs. Additionally, western blot and quantitative real-time polymerase chain reaction were also carried out to validate molecular docking results.

Results

A diagnostic model was constructed using 7 core targets, which had a high diagnostic ability for endometriosis. CTSK was positively correlated with immune scores, while CDH was negatively correlated with immune scores. CTSK, HGF, and EPCAM were positively correlated with energy metabolism and inflammation-related pathways, while RUNX2, FN1, NCAM1, and CDH were positively correlated with epithelial-to-mesenchymal transition (EMT) and unfolded protein response (UPR). Moreover, FN1 had good docking affinity with Elagolix, Esmya, and Proellex. NCAM1 might be a promising target modulated by Elagolix. experiment revealed that the expression of FN1 in human normal endometrial cell lines (hEEC) gradually decreased with the increase of Esmya concentration, indicating that FN1 was a target for Esmya.

Conclusion

These results may facilitate the in-depth understanding of the development of endometriosis, and guide early diagnostic as well as clinical treatments for patients with endometriosis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283426231220100011
2024-01-03
2024-11-20
Loading full text...

Full text loading...

References

  1. SmolarzB. SzyłłoK. RomanowiczH. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (review of literature).Int. J. Mol. Sci.202122191055410.3390/ijms22191055434638893
    [Google Scholar]
  2. FilipL. DuicăF. PrădatuA. CrețoiuD. SuciuN. CrețoiuS.M. PredescuD.V. VarlasV.N. VoineaS.C. Endometriosis associated infertility: A critical review and analysis on etiopathogenesis and therapeutic approaches.Medicina (Kaunas)202056946010.3390/medicina5609046032916976
    [Google Scholar]
  3. SolimanA.M. SurreyE. BonafedeM. NelsonJ.K. Castelli-HaleyJ. Real-world evaluation of direct and indirect economic burden among endometriosis patients in the United States.Adv. Ther.201835340842310.1007/s12325‑018‑0667‑329450864
    [Google Scholar]
  4. GhiasiM. KulkarniM.T. MissmerS.A. Is endometriosis more common and more severe than it was 30 years ago?J. Minim. Invasive Gynecol.202027245246110.1016/j.jmig.2019.11.01831816389
    [Google Scholar]
  5. TaylorH.S. AdamsonG.D. DiamondM.P. GoldsteinS.R. HorneA.W. MissmerS.A. SnabesM.C. SurreyE. TaylorR.N. An evidence-based approach to assessing surgical versus clinical diagnosis of symptomatic endometriosis.Int. J. Gynaecol. Obstet.2018142213114210.1002/ijgo.1252129729099
    [Google Scholar]
  6. KieselL. SourouniM. Diagnosis of endometriosis in the 21st century.Climacteric201922329630210.1080/13697137.2019.157874330905186
    [Google Scholar]
  7. AgarwalS.K. Clinical diagnosis of endometriosis: A call to action.Am J Obstet Gynecol20192204e1e1210.1016/j.ajog.2018.12.039
    [Google Scholar]
  8. WuY. QuB. ShenH. DengH. TangF. Serum level of tumor-specific growth factor in patients with cervical cancer and its potential prognostic role.Oncologie202224349951210.32604/oncologie.2022.024951
    [Google Scholar]
  9. ZhengY. WangY. ZouC. HuB. ZhaoM. WuX. Tumor-associated macrophages facilitate the proliferation and migration of cervical cancer cells.Oncologie202224114716110.32604/oncologie.2022.019236
    [Google Scholar]
  10. HuL. ChenM. DaiH. WangH. YangW. A metabolism-related gene signature predicts the prognosis of breast cancer patients: combined analysis of high-throughput sequencing and gene chip data sets.Oncologie202224480382210.32604/oncologie.2022.026419
    [Google Scholar]
  11. VanhieA. OD. PeterseD. BeckersA. CuéllarA. FassbenderA. MeulemanC. MestdaghP. D’HoogheT. Plasma miRNAs as biomarkers for endometriosis.Hum. Reprod.20193491650166010.1093/humrep/dez11631411334
    [Google Scholar]
  12. BendifallahS. SuisseS. PucharA. DelbosL. PoilblancM. DescampsP. GolfierF. JorneaL. BouteillerD. TouboulC. DabiY. DaraïE. Salivary microrna signature for diagnosis of endometriosis.J. Clin. Med.202211361210.3390/jcm1103061235160066
    [Google Scholar]
  13. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  14. FanZ. XueW. LiL. ZhangC. LuJ. ZhaiY. SuoZ. ZhaoJ. Identification of an early diagnostic biomarker of lung adenocarcinoma based on co-expression similarity and construction of a diagnostic model.J. Transl. Med.201816120510.1186/s12967‑018‑1577‑530029648
    [Google Scholar]
  15. JiangX. XieS. Construction and validation of a joint diagnosis model based on random forest and artificial intelligence network for hepatitis B-related hepatocellular carcinoma.Research Square2022
    [Google Scholar]
  16. LiB. DuanH. WangS. LiY. Ferroptosis resistance mechanisms in endometriosis for diagnostic model establishment.Reprod. Biomed. Online202143112713810.1016/j.rbmo.2021.04.00233992553
    [Google Scholar]
  17. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  18. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  19. LiaoY. WangJ. JaehnigE.J. ShiZ. ZhangB. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs.Nucleic Acids Res.201947W1W199W20510.1093/nar/gkz40131114916
    [Google Scholar]
  20. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Data mining in proteomics.Springer201129130310.1007/978‑1‑60761‑987‑1_18
    [Google Scholar]
  21. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  22. StelzerG. PlaschkesI. Oz-LeviD. AlkelaiA. OlenderT. ZimmermanS. TwikM. BelinkyF. FishilevichS. NudelR. Guan-GolanY. WarshawskyD. DaharyD. KohnA. MazorY. KaplanS. Iny SteinT. BarisH.N. RappaportN. SafranM. LancetD. VarElect: The phenotype-based variation prioritizer of the GeneCards suite.BMC Genomics201617S2Suppl. 244410.1186/s12864‑016‑2722‑227357693
    [Google Scholar]
  23. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  24. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  25. ŞenbabaoğluY. GejmanR.S. WinerA.G. LiuM. Van AllenE.M. de VelascoG. MiaoD. OstrovnayaI. DrillE. LunaA. WeinholdN. LeeW. ManleyB.J. KhalilD.N. KaffenbergerS.D. ChenY. DanilovaL. VossM.H. ColemanJ.A. RussoP. ReuterV.E. ChanT.A. ChengE.H. ScheinbergD.A. LiM.O. ChoueiriT.K. HsiehJ.J. SanderC. HakimiA.A. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures.Genome Biol.201617123110.1186/s13059‑016‑1092‑z27855702
    [Google Scholar]
  26. MeyerD. Package ‘e1071’.R J.2019 https://cran.r-project.org/web/packages/e1071/e1071.pdf
    [Google Scholar]
  27. RollaE. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment.F1000 Res.2019852910.12688/f1000research.14817.131069056
    [Google Scholar]
  28. HwangJ.R. ChoY.J. RyuJ.Y. ChoiJ.Y. ChoiJ.J. SaJ.K. KimH.S. LeeJ.W. Ulipristal acetate, a selective progesterone receptor modulator, induces cell death via inhibition of STAT3/CCL2 signaling pathway in uterine sarcoma.Biomed. Pharmacother.202316811579210.1016/j.biopha.2023.11579237924789
    [Google Scholar]
  29. IslamM.S. AfrinS. JonesS.I. SegarsJ. Selective progesterone receptor modulators—mechanisms and therapeutic utility.Endocr. Rev.2020415bnaa01210.1210/endrev/bnaa01232365199
    [Google Scholar]
  30. PorterK.M. WieserF.A. WilderC.L. SidellN. PlattM.O. Cathepsin protease inhibition reduces endometriosis lesion establishment.Reprod. Sci.201623562362910.1177/193371911561175226482207
    [Google Scholar]
  31. DelbandiA.A. MahmoudiM. ShervinA. HeidariS. Kolahdouz-MohammadiR. ZarnaniA.H. Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls.BMC Womens Health2020201310.1186/s12905‑019‑0865‑431906916
    [Google Scholar]
  32. YerlikayaG. BalendranS. PröstlingK. ReischerT. BirnerP. WenzlR. KuesselL. StreubelB. HussleinH. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.2016204889810.1016/j.ejogrb.2016.07.50027541444
    [Google Scholar]
  33. HuJ. YuA. OthmaneB. QiuD. LiH. LiC. LiuP. RenW. ChenM. GongG. GuoX. ZhangH. ChenJ. ZuX. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer.Theranostics20211173089310810.7150/thno.5364933537076
    [Google Scholar]
  34. LiuD. YangN. LiangY. ChenM. YangF. LiuL. YaoS. Increased expression of epithelial cell adhesion molecule and its possible role in epithelial–mesenchymal transition in endometriosis.J. Obstet. Gynaecol. Res.202046102066207510.1111/jog.1440132715572
    [Google Scholar]
  35. LanT. MuC. WangZ. WangY. LiY. MaiY. LiS. XuH. GuB. LuoL. MaP. Diagnostic and prognostic values of serum EpCAM, TGM2, and HE4 levels in endometrial cancer.Front. Oncol.202010169710.3389/fonc.2020.0169733014844
    [Google Scholar]
  36. CongS. GuoQ. ChengY. GaoJ. SunL. WangJ. WuH. LiangT. ZhangG. Identification and analyzation of differentially expressed transcription factors in endometriosis.Front. Mol. Biosci.2021761442710.3389/fmolb.2020.61442733490107
    [Google Scholar]
  37. HolzerI. Machado WeberA. MarshallA. FreisA. JauckusJ. StrowitzkiT. GermeyerA. GRN, NOTCH3, FN1, and PINK1 expression in eutopic endometrium – potential biomarkers in the detection of endometriosis – a pilot study.J. Assist. Reprod. Genet.202037112723273210.1007/s10815‑020‑01905‑433029756
    [Google Scholar]
  38. WangF. ShiX. QinX. WenZ. ZhaoX. LiC. Expression of CD56 in patients with adenomyosis and its correlation with dysmenorrhea.Eur. J. Obstet. Gynecol. Reprod. Biol.201519410110510.1016/j.ejogrb.2015.08.02726344352
    [Google Scholar]
  39. DruryJ.A. ParkinK.L. CoyneL. GiulianiE. FazleabasA.T. HapangamaD.K. The dynamic changes in the number of uterine natural killer cells are specific to the eutopic but not to the ectopic endometrium in women and in a baboon model of endometriosis.Reprod. Biol. Endocrinol.20181616710.1186/s12958‑018‑0385‑330021652
    [Google Scholar]
  40. SalamaE. EldeenG.N. Abdel RasheedM. Abdel AttiS. ElnouryA. TahaT. AzmyO. Differentially expressed genes: OCT -4, SOX 2, STAT 3, CDH 1 and CDH 2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis.J. Genet. Eng. Biotechnol.2018161636910.1016/j.jgeb.2017.10.00630647706
    [Google Scholar]
  41. WilsonD.F. Oxidative phosphorylation: Unique regulatory mechanism and role in metabolic homeostasis.J. Appl. Physiol.2017122361161910.1152/japplphysiol.00715.201627789771
    [Google Scholar]
  42. TurnerN. CooneyG.J. KraegenE.W. BruceC.R. Fatty acid metabolism, energy expenditure and insulin resistance in muscle.J. Endocrinol.20142202T61T7910.1530/JOE‑13‑039724323910
    [Google Scholar]
  43. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.829405201
    [Google Scholar]
  44. YangY.M. YangW.X. Epithelial-to-mesenchymal transition in the development of endometriosis.Oncotarget2017825416794168910.18632/oncotarget.1647228415639
    [Google Scholar]
  45. HetzC. ZhangK. KaufmanR.J. Mechanisms, regulation and functions of the unfolded protein response.Nat. Rev. Mol. Cell Biol.202021842143810.1038/s41580‑020‑0250‑z32457508
    [Google Scholar]
  46. TaylorH.S. GiudiceL.C. LesseyB.A. AbraoM.S. KotarskiJ. ArcherD.F. DiamondM.P. SurreyE. JohnsonN.P. WattsN.B. GallagherJ.C. SimonJ.A. CarrB.R. DmowskiW.P. LeylandN. RowanJ.P. DuanW.R. NgJ. SchwefelB. ThomasJ.W. JainR.I. ChwaliszK. Treatment of endometriosis-associated pain with elagolix, an oral GnRH antagonist.N. Engl. J. Med.20173771284010.1056/NEJMoa170008928525302
    [Google Scholar]
  47. LiangB. WuL. XuH. CheungC.W. FungW.Y. WongS.W. WangC.C. Efficacy, safety and recurrence of new progestins and selective progesterone receptor modulator for the treatment of endometriosis: A comparison study in mice.Reprod. Biol. Endocrinol.20181613210.1186/s12958‑018‑0347‑929615065
    [Google Scholar]
  48. SimpsonP. A study of the histopathological changes within ectopic endometrial tissue.Subjects with Known Pelvic Endometriosis Following Treatment with Ulipristal Acetate, a Selective Progesterone Receptor Modulator (SPRM).University of East Anglia2018
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283426231220100011
Loading
/content/journals/cmc/10.2174/0109298673283426231220100011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test