Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Systemic multi-organ dysfunction resulting from dysregulated immune responses in the host triggered by microbial infection or other factors is a major cause of death in sepsis, and secretory pathways play an important role in it.

Methods

GSE57065, GSE65682, GSE145227, and GSE54514 from Gene Expression Omnibus (GEO) were derived for this study. Secretory pathways single sample gene set enrichment analysis (ssGSEA) scores in sepsis and normal samples were exposed. Gene modules associated with secretory pathways were selected by weighted gene co-expression network analysis (WGCNA) for Protein-Protein Interaction Networks (PPI) assessment, and crossover genes in both were evaluated by eXtreme Gradient Boosting (XGBoost) model in feature selection to identify hub genes in sepsis. In addition, we explored the immune cells and signaling pathways regulated by hub genes.

Results

Remarkable dysregulation of secretory pathways was demonstrated in sepsis. The secretory pathways-associated gene modules were intimately involved in cytokine and immune responses in infection. Four crossover genes (CD163, FCER1G, C3AR1, ARG1) were present in WGCNA and PPI, and training in the XGBoost model revealed the best diagnostic performance of these 4 genes, meaning that these genes were the hub genes for sepsis. The 4-hub genes showed a significant negative correlation with T cell activity and a significant positive correlation with inflammatory immune cells. In addition, we found that the 4-hub genes markedly positively regulated INFLAMMATORY RESPONSE, IL6 JAK STAT3 SIGNALING.

Conclusion

Based on WGCNA, PPI, and XGBoost models, we identified hub genes that play an important regulatory role in sepsis. We also developed novel molecular models for the diagnosis of sepsis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673273009231017061448
2023-10-27
2024-11-20
Loading full text...

Full text loading...

References

  1. FarrahK. McIntyreL. DoigC.J. TalaricoR. TaljaardM. KrahnM. FergussonD. ForsterA.J. CoyleD. ThavornK. Sepsis-associated mortality, resource use, and healthcare costs: A propensity-matched cohort study.Crit. Care Med.202149221522710.1097/CCM.0000000000004777 33372748
    [Google Scholar]
  2. AroraJ. MendelsonA.A. Fox-RobichaudA. Sepsis: Network pathophysiology and implications for early diagnosis.Am. J. Physiol. Regul. Integr. Comp. Physiol.20233245R613R62410.1152/ajpregu.00003.2023 36878489
    [Google Scholar]
  3. DongJ. ChenR. SongX. GuoZ. SunW. Quality of life and mortality in older adults with sepsis after one-year follow up: A prospective cohort study demonstrating the significant impact of frailty.Heart Lung202360748010.1016/j.hrtlng.2023.03.002 36931009
    [Google Scholar]
  4. SingerM. DeutschmanC.S. SeymourC.W. Shankar-HariM. AnnaneD. BauerM. BellomoR. BernardG.R. ChicheJ.D. CoopersmithC.M. HotchkissR.S. LevyM.M. MarshallJ.C. MartinG.S. OpalS.M. RubenfeldG.D. van der PollT. VincentJ.L. AngusD.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).JAMA2016315880181010.1001/jama.2016.0287 26903338
    [Google Scholar]
  5. LeligdowiczA. MatthayM.A. Heterogeneity in sepsis: New biological evidence with clinical applications.Crit. Care20192318010.1186/s13054‑019‑2372‑2 30850013
    [Google Scholar]
  6. PóvoaP. CoelhoL. Dal-PizzolF. FerrerR. HuttnerA. Conway MorrisA. NobreV. RamirezP. RouzeA. SalluhJ. SingerM. SweeneyD.A. TorresA. WatererG. KalilA.C. How to use biomarkers of infection or sepsis at the bedside: Guide to clinicians.Intensive Care Med.202349214215310.1007/s00134‑022‑06956‑y 36592205
    [Google Scholar]
  7. TorresM. HussainH. DicksonA.J. The secretory pathway – the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins.Crit. Rev. Biotechnol.202343462864510.1080/07388551.2022.2047004 35465810
    [Google Scholar]
  8. JiaoY. ZhangT. ZhangC. JiH. TongX. XiaR. WangW. MaZ. ShiX. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury.Crit. Care202125135610.1186/s13054‑021‑03775‑3 34641966
    [Google Scholar]
  9. RodriguezA.E. DuckerG.S. BillinghamL.K. MartinezC.A. MainolfiN. SuriV. FriedmanA. ManfrediM.G. WeinbergS.E. RabinowitzJ.D. ChandelN.S. Serine metabolism supports macrophage IL-1β production.Cell Metab.201929410031011.e410.1016/j.cmet.2019.01.014 30773464
    [Google Scholar]
  10. HuangM. CaiS. SuJ. The pathogenesis of sepsis and potential therapeutic targets.Int. J. Mol. Sci.20192021537610.3390/ijms20215376 31671729
    [Google Scholar]
  11. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction‐friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.36
    [Google Scholar]
  12. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature08460 19847166
    [Google Scholar]
  13. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  14. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  15. LiaoY. WangJ. JaehnigE.J. ShiZ. ZhangB. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs.Nucleic Acids Res.201947W1W199W20510.1093/nar/gkz401 31114916
    [Google Scholar]
  16. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  17. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measrement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  18. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  19. ChenT. HeT. BenestyM. KhotilovichV. Bayesian additive main effects and multiplicative interaction models using tensor regression for multi-environmental trials.2019
    [Google Scholar]
  20. ChenT. GuestrinC. XGBoost: A scalable tree boosting system.Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining201678579410.1145/2939672.2939785
    [Google Scholar]
  21. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms3612 24113773
    [Google Scholar]
  22. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  23. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑5 27765066
    [Google Scholar]
  24. PierrakosC. VelissarisD. BisdorffM. MarshallJ.C. VincentJ.L. Biomarkers of sepsis: Time for a reappraisal.Crit. Care202024128710.1186/s13054‑020‑02993‑5 32503670
    [Google Scholar]
  25. WangD. YuS. ZhangY. HuangL. LuoR. TangY. ZhaoK. LuB. Caspse-11-GSDMD pathway is required for serum ferritin secretion in sepsis.Clin. Immunol.201920514815210.1016/j.clim.2018.11.005 30731209
    [Google Scholar]
  26. LiH. QiuD. YangH. YuanY. WuL. ChuL. ZhanB. WangX. SunY. XuW. YangX. Therapeutic efficacy of excretory-secretory products of Trichinella spiralis adult worms on sepsis-induced acute lung injury in a mouse model.Front. Cell. Infect. Microbiol.20211165384310.3389/fcimb.2021.653843 33842398
    [Google Scholar]
  27. KarakikeE. Giamarellos-BourboulisE.J. Macrophage activation-like syndrome: A distinct entity leading to early death in sepsis.Front. Immunol.2019105510.3389/fimmu.2019.00055 30766533
    [Google Scholar]
  28. NapierB.A. BrubakerS.W. SweeneyT.E. MonetteP. RothmeierG.H. GertsvolfN.A. PuschnikA. CaretteJ.E. KhatriP. MonackD.M. Complement pathway amplifies caspase-11–dependent cell death and endotoxin-induced sepsis severity.J. Exp. Med.2016213112365238210.1084/jem.20160027 27697835
    [Google Scholar]
  29. ZhangJ.X. XuW.H. XingX.H. ChenL.L. ZhaoQ.J. WangY. ARG1 as a promising biomarker for sepsis diagnosis and prognosis: Evidence from WGCNA and PPI network.Hereditas202215912710.1186/s41065‑022‑00240‑1 35739592
    [Google Scholar]
  30. PodgórskaD. CieślaM. KolarzB. FCER1G gene hypomethylation in patients with rheumatoid arthritis.J. Clin. Med.20221116466410.3390/jcm11164664 36012903
    [Google Scholar]
  31. MikhaylenkoD.S. NemtsovaM.V. BureI.V. KuznetsovaE.B. AlekseevaE.A. TarasovV.V. LukashevA.N. BeloukhovaM.I. DeviatkinA.A. ZamyatninA.A.Jr Genetic polymorphisms associated with rheumatoid arthritis development and antirheumatic therapy response.Int. J. Mol. Sci.20202114491110.3390/ijms21144911 32664585
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673273009231017061448
Loading
/content/journals/cmc/10.2174/0109298673273009231017061448
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): diagnosis; PPI; secretory pathways; Sepsis; WGCNA; XGBoost
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test