Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673276871231205043417
2024-01-23
2025-04-10
Loading full text...

Full text loading...

References

  1. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  2. Serrano-NovilloC. CaperaJ. Colomer-MoleraM. CondomE. FerreresJ. FelipeA. Implication of voltage-gated potassium channels in neoplastic cell proliferation.Cancers201911328710.3390/cancers1103028730823672
    [Google Scholar]
  3. ErenpreisaJ. SalminaK. AnatskayaO. CraggM.S. Paradoxes of cancer: Survival at the brink.Semin. Cancer Biol.20228111913110.1016/j.semcancer.2020.12.00933340646
    [Google Scholar]
  4. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑131723286
    [Google Scholar]
  5. StewartC. RalyeaC. LockwoodS. Ovarian cancer: An integrated review.Semin. Oncol. Nurs.201935215115610.1016/j.soncn.2019.02.00130867104
    [Google Scholar]
  6. DamiaG. BrogginiM. Platinum resistance in ovarian cancer: Role of DNA repair.Cancers201911111910.3390/cancers1101011930669514
    [Google Scholar]
  7. MomenimovahedZ. TiznobaikA. TaheriS. SalehiniyaH. Ovarian cancer in the world: Epidemiology and risk factors.Int. J. Womens Health20191128729910.2147/IJWH.S19760431118829
    [Google Scholar]
  8. ModugnoF. EdwardsR.P. Ovarian cancer: Prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report.Int. J. Gynecol. Cancer2012228S45S5710.1097/IGC.0b013e31826bd1f223013733
    [Google Scholar]
  9. LheureuxS. GourleyC. VergoteI. OzaA.M. Epithelial ovarian cancer.Lancet2019393101771240125310.1016/S0140‑6736(18)32552‑230910306
    [Google Scholar]
  10. TorreL.A. TrabertB. DeSantisC.E. MillerK.D. SamimiG. RunowiczC.D. GaudetM.M. JemalA. SiegelR.L. Ovarian cancer statistics, 2018.CA Cancer J. Clin.201868428429610.3322/caac.2145629809280
    [Google Scholar]
  11. FlaumN. CrosbieE.J. EdmondsonR.J. SmithM.J. EvansD.G. Epithelial ovarian cancer risk: A review of the current genetic landscape.Clin. Genet.2020971546310.1111/cge.1356631099061
    [Google Scholar]
  12. ShahS. CheungA. KutkaM. SheriffM. BoussiosS. Epithelial ovarian cancer: Providing evidence of predisposition genes.Int. J. Environ. Res. Public Health20221913811310.3390/ijerph1913811335805770
    [Google Scholar]
  13. PavlidisN. RassyE. VermorkenJ.B. AssiT. KattanJ. BoussiosS. Smith-GagenJ. The outcome of patients with serous papillary peritoneal cancer, fallopian tube cancer, and epithelial ovarian cancer by treatment eras: 27 years data from the SEER registry.Cancer Epidemiol.20217510204510.1016/j.canep.2021.10204534638085
    [Google Scholar]
  14. MoschettaM. BoussiosS. RassyE. SamartzisE.P. FuninganaG. UccelloM. Neoadjuvant treatment for newly diagnosed advanced ovarian cancer: Where do we stand and where are we going?Ann. Transl. Med.2020824171010.21037/atm‑20‑168333490222
    [Google Scholar]
  15. BoussiosS. MoschettaM. TatsiK. TsiourisA.K. PavlidisN. A review on pregnancy complicated by ovarian epithelial and non-epithelial malignant tumors: Diagnostic and therapeutic perspectives.J. Adv. Res.2018121910.1016/j.jare.2018.02.00629988841
    [Google Scholar]
  16. ZhaoL. GuoH. ChenX. ZhangW. HeQ. DingL. YangB. Tackling drug resistance in ovarian cancer with epigenetic targeted drugs.Eur. J. Pharmacol.202292717507110.1016/j.ejphar.2022.17507135636522
    [Google Scholar]
  17. AkterS. RahmanM.A. HasanM.N. AkhterH. NoorP. IslamR. ShinY. RahmanM.D.H. GaziM.S. HudaM.N. NamN.M. ChungJ. HanS. KimB. KangI. HaJ. ChoeW. ChoiT.G. KimS.S. Recent advances in ovarian cancer: Therapeutic strategies, potential biomarkers, and technological improvements.Cells202211465010.3390/cells1104065035203301
    [Google Scholar]
  18. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  19. AssarafY.G. BrozovicA. GonçalvesA.C. JurkovicovaD. LinēA. MachuqueiroM. SaponaraS. Sarmento-RibeiroA.B. XavierC.P.R. VasconcelosM.H. The multi-factorial nature of clinical multidrug resistance in cancer.Drug Resist. Updat.20194610064510.1016/j.drup.2019.10064531585396
    [Google Scholar]
  20. YangL. XieH.J. LiY.Y. WangX. LiuX.X. MaiJ. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review).Oncol. Rep.20224748210.3892/or.2022.829335211759
    [Google Scholar]
  21. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  22. FerlayJ. ErvikM. LamF. ColombetM. MeryL. PiñerosM. ZnaorA. SoerjomataramI. BrayF. Global cancer observatory: Cancer today.Lyon, FranceIARC2018
    [Google Scholar]
  23. OrtizM. WabelE. MitchellK. HoribataS. Mechanisms of chemotherapy resistance in ovarian cancer.Cancer Drug Resist.20225230431610.20517/cdr.2021.14735800369
    [Google Scholar]
  24. ChandraA. PiusC. NabeelM. NairM. VishwanathaJ.K. AhmadS. BashaR. Ovarian cancer: Current status and strategies for improving therapeutic outcomes.Cancer Med.20198167018703110.1002/cam4.256031560828
    [Google Scholar]
  25. KhanM.A. VikramdeoK.S. SudanS.K. SinghS. WilhiteA. DasguptaS. RocconiR.P. SinghA.P. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management.Semin. Cancer Biol.2021779910910.1016/j.semcancer.2021.08.00534418576
    [Google Scholar]
  26. MohammadI.S. HeW. YinL. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR.Biomed. Pharmacother.201810033534810.1016/j.biopha.2018.02.03829453043
    [Google Scholar]
  27. KarthikaC. SureshkumarR. ZehraviM. AkterR. AliF. RamproshadS. MondalB. TagdeP. AhmedZ. KhanF.S. RahmanM.H. CavaluS. Multidrug resistance of cancer cells and the vital role of p-glycoprotein.Life202212689710.3390/life1206089735743927
    [Google Scholar]
  28. WangZ. YinJ. LiM. ShenJ. XiaoZ. ZhaoY. HuangC. ZhangH. ZhangZ. ChoC.H. WuX. Combination of shikonin with paclitaxel overcomes multidrug resistance in human ovarian carcinoma cells in a P-gp-independent manner through enhanced ROS generation.Chin. Med.2019141710.1186/s13020‑019‑0231‑330911326
    [Google Scholar]
  29. ChungW.M. HoY.P. ChangW.C. DaiY.C. ChenL. HungY.C. MaW.L. Increase paclitaxel sensitivity to better suppress serous epithelial ovarian cancer via ablating androgen receptor/aryl hydrocarbon receptor-ABCG2 axis.Cancers201911446310.3390/cancers1104046330986993
    [Google Scholar]
  30. KalaydaG.V. WagnerC.H. JaehdeU. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells.J. Inorg. Biochem.201211611010.1016/j.jinorgbio.2012.07.01023010323
    [Google Scholar]
  31. KilariD. GuancialE. KimE.S. Role of copper transporters in platinum resistance.World J. Clin. Oncol.20167110611310.5306/wjco.v7.i1.10626862494
    [Google Scholar]
  32. WuY.H. HuangY.F. ChangT.H. ChouC.Y. Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression.Int. J. Cancer2017141112305231710.1002/ijc.3093228815582
    [Google Scholar]
  33. LiT. PengJ. ZengF. ZhangK. LiuJ. LiX. OuyangQ. WangG. WangL. LiuZ. LiuY. Association between polymorphisms in CTR1, CTR2, ATP7A, and ATP7B and platinum resistance in epithelial ovarian cancer.Int. J. Clin. Pharmacol. Ther.2017551077478010.5414/CP20290728737129
    [Google Scholar]
  34. ShaoF. LyuX. MiaoK. XieL. WangH. XiaoH. LiJ. ChenQ. DingR. ChenP. XingF. ZhangX. LuoG.H. ZhuW. ChengG. LonN.W. MartinS.E. WangG. ChenG. DaiY. DengC.X. Enhanced protein damage clearance induces broad drug resistance in multitype of cancers revealed by an evolution drug-resistant model and genome-wide siRNA screening.Adv. Sci.2020723200191410.1002/advs.20200191433304752
    [Google Scholar]
  35. LukanovićD. HerzogM. KobalB. ČerneK. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer.Biomed. Pharmacother.202012911040110.1016/j.biopha.2020.11040132570116
    [Google Scholar]
  36. PetruzzelliR. PolishchukR.S. Activity and trafficking of copper-transporting ATPases in tumor development and defense against platinum-based drugs.Cells201989108010.3390/cells809108031540259
    [Google Scholar]
  37. ElsnerovaK. Mohelnikova-DuchonovaB. CerovskaE. EhrlichovaM. GutI. RobL. SkapaP. HrudaM. BartakovaA. BoudaJ. VodickaP. SoucekP. VaclavikovaR. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma.Oncol. Rep.20163542159217010.3892/or.2016.459926820484
    [Google Scholar]
  38. ZhangY. SriramanS.K. KennyH.A. LutherE. TorchilinV. LengyelE. Reversal of chemoresistance in ovarian cancer by co-delivery of a p-glycoprotein inhibitor and paclitaxel in a liposomal platform.Mol. Cancer Ther.201615102282229310.1158/1535‑7163.MCT‑15‑098627466355
    [Google Scholar]
  39. FuL. ZhangD. YiN. CaoY. WeiY. WangW. LiL. Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression.Hum. Cell20223551560157610.1007/s13577‑022‑00748‑835907138
    [Google Scholar]
  40. Norouzi-BaroughL. SarookhaniM.R. SharifiM. MoghbelinejadS. JangjooS. SalehiR. Molecular mechanisms of drug resistance in ovarian cancer.J. Cell. Physiol.201823364546456210.1002/jcp.2628929152737
    [Google Scholar]
  41. ArnesanoF. NardellaM.I. NatileG. Platinum drugs, copper transporters and copper chelators.Coord. Chem. Rev.201837425426010.1016/j.ccr.2018.07.003
    [Google Scholar]
  42. PanH. KimE. RankinG. RojanasakulY. TuY. ChenY. Theaflavin-3, 3′-Digallate enhances the inhibitory effect of cisplatin by regulating the copper transporter 1 and glutathione in human ovarian cancer cells.Int. J. Mol. Sci.201819111710.3390/ijms1901011729301278
    [Google Scholar]
  43. LockleyM. StonehamS.J. OlsonT.A. Ovarian cancer in adolescents and young adults.Pediatr. Blood Cancer20196632751210.1002/pbc.27512
    [Google Scholar]
  44. SchwarzenbachH. GahanP.B. Resistance to cis- and carboplatin initiated by epigenetic changes in ovarian cancer patients.Cancer Drug Resist.20192227129610.20517/cdr.2019.01035582723
    [Google Scholar]
  45. PiliéP.G. TangC. MillsG.B. YapT.A. State-of-the-art strategies for targeting the DNA damage response in cancer.Nat. Rev. Clin. Oncol.20191628110410.1038/s41571‑018‑0114‑z30356138
    [Google Scholar]
  46. GralewskaP. GajekA. MarczakA. RogalskaA. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer.J. Hematol. Oncol.20201313910.1186/s13045‑020‑00874‑632316968
    [Google Scholar]
  47. NgoiN.Y.L. PhamM.M. TanD.S.P. YapT.A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine.Trends. Cancer202171093095710.1016/j.trecan.2021.06.00234215565
    [Google Scholar]
  48. AlemiF. Raei sadighA. MalakotiF. ElhaeiY. GhaffariS.H. MalekiM. AsemiZ. YousefiB. TarghazehN. MajidiniaM. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk.J. Cell. Physiol.2022237131332810.1002/jcp.3057334515349
    [Google Scholar]
  49. RochaC.R.R. SilvaM.M. QuinetA. Cabral-NetoJ.B. MenckC.F.M. DNA repair pathways and cisplatin resistance: An intimate relationship.Clinics2018731e47810.6061/clinics/2018/e478s
    [Google Scholar]
  50. DavalliP. MarvertiG. LauriolaA. D’ArcaD. Targeting oxidatively induced DNA damage response in cancer: Opportunities for novel cancer therapies.Oxid. Med. Cell. Longev.2018201812110.1155/2018/238952329770165
    [Google Scholar]
  51. CeccaldiR. RondinelliB. D’AndreaA.D. Repair pathway choices and consequences at the double-strand break.Trends Cell Biol.2016261526410.1016/j.tcb.2015.07.00926437586
    [Google Scholar]
  52. MaloneyS.M. HooverC.A. Morejon-LassoL.V. ProsperiJ.R. Mechanisms of taxane resistance.Cancers20201211332310.3390/cancers1211332333182737
    [Google Scholar]
  53. ChirshevE. HojoN. BertucciA. SandermanL. NguyenA. WangH. SuzukiT. BritoE. MartinezS.R. CastañónC. MirshahidiS. VazquezM.E. WatP. ObergK.C. IoffeY.J. UnternaehrerJ.J. Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with miRNA let-7 levels and predicts tumor growth and metastasis.Mol. Oncol.202014112796281310.1002/1878‑0261.1276232652647
    [Google Scholar]
  54. SinghR. LetaiA. SarosiekK. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins.Nat. Rev. Mol. Cell Biol.201920317519310.1038/s41580‑018‑0089‑830655609
    [Google Scholar]
  55. PandyaV.K. Investigation of BCL-2 interacting killer (BIK) as a breast cancer biomarker and its role in failed apoptosis.PhD Thesis, University of Alberta.2019
    [Google Scholar]
  56. WuX. LuoQ. ZhaoP. ChangW. WangY. ShuT. DingF. LiB. LiuZ. MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer.Proc. Natl. Acad. Sci.201911682961296610.1073/pnas.181474211630718431
    [Google Scholar]
  57. WuX. LuoQ. LiuZ. Ubiquitination and deubiquitination of MCL1 in cancer: Deciphering chemoresistance mechanisms and providing potential therapeutic options.Cell Death Dis.202011755610.1038/s41419‑020‑02760‑y32699213
    [Google Scholar]
  58. WhitakerR.H. PlaczekW.J. Regulating the BCL2 family to improve sensitivity to microtubule targeting agents.Cells20198434610.3390/cells804034631013740
    [Google Scholar]
  59. YuanJ. LanH. JiangX. ZengD. XiaoS. Bcl-2 family: Novel insight into individualized therapy for ovarian cancer (Review).Int. J. Mol. Med.20204641255126510.3892/ijmm.2020.468932945348
    [Google Scholar]
  60. LiuC. JinY. FanZ. The mechanism of Warburg effect-induced chemoresistance in cancer.Front. Oncol.20211169802310.3389/fonc.2021.69802334540667
    [Google Scholar]
  61. TyagiK. MandalS. RoyA. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission.Biochim. Biophys. Acta Rev. Cancer20211876118856310.1016/j.bbcan.2021.18856333971276
    [Google Scholar]
  62. YangE. WangX. GongZ. YuM. WuH. ZhangD. Exosome-mediated metabolic reprogramming: The emerging role in tumor microenvironment remodeling and its influence on cancer progression.Signal Transduct. Target. Ther.20205124210.1038/s41392‑020‑00359‑533077737
    [Google Scholar]
  63. HuaW. ten DijkeP. KostidisS. GieraM. HornsveldM. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer.Cell. Mol. Life Sci.202077112103212310.1007/s00018‑019‑03398‑631822964
    [Google Scholar]
  64. LiZ. SunC. QinZ. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming.Theranostics202111178322833610.7150/thno.6237834373744
    [Google Scholar]
  65. Abdel-WahabA.F. MahmoudW. Al-HarizyR.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy.Pharmacol. Res.201915010451110.1016/j.phrs.2019.10451131678210
    [Google Scholar]
  66. BaoM.H.R. WongC.C.L. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer.Cells2021107171510.3390/cells1007171534359884
    [Google Scholar]
  67. FaubertB. SolmonsonA. DeBerardinisR.J. Metabolic reprogramming and cancer progression.Science20203686487eaaw547310.1126/science.aaw547332273439
    [Google Scholar]
  68. ZhangJ. ZhangJ. WeiY. LiQ. WangQ. ACTL6A regulates follicle-stimulating hormone-driven glycolysis in ovarian cancer cells via PGK1.Cell Death Dis.2019101181110.1038/s41419‑019‑2050‑y31649264
    [Google Scholar]
  69. MartincuksA. LiP.C. ZhaoQ. ZhangC. LiY.J. YuH. Rodriguez-RodriguezL. CD44 in ovarian cancer progression and therapy resistance-A critical role for STAT3.Front. Oncol.20201058960110.3389/fonc.2020.58960133335857
    [Google Scholar]
  70. ZhangR. TaoF. RuanS. HuM. HuY. FangZ. MeiL. GongC. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression.Am. J. Transl. Res.201911116860687631814893
    [Google Scholar]
  71. MeleL. la NoceM. PainoF. RegadT. WagnerS. LiccardoD. PapaccioG. LombardiA. CaragliaM. TirinoV. DesiderioV. PapaccioF. Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation.J. Exp. Clin. Cancer Res.201938116010.1186/s13046‑019‑1164‑530987650
    [Google Scholar]
  72. FengQ. LiX. SunW. SunM. LiZ. ShengH. XieF. ZhangS. ShanC. Targeting G6PD reverses paclitaxel resistance in ovarian cancer by suppressing GSTP1.Biochem. Pharmacol.202017811409210.1016/j.bcp.2020.11409232535103
    [Google Scholar]
  73. ChenY. ZhangH. ZhangY. Targeting receptor tyrosine kinase EphB4 in cancer therapy.Semin. Cancer Biol.201956374610.1016/j.semcancer.2017.10.00228993206
    [Google Scholar]
  74. QiaoC. RichterG.T. PanW. JinY. LinX. Extracranial arteriovenous malformations: from bedside to bench.Mutagenesis2019344gez02810.1093/mutage/gez02831613971
    [Google Scholar]
  75. LiL. NanF. GuoQ. GuanD. ZhouC. Resistance to bevacizumab in ovarian cancer SKOV3 xenograft due to EphB4 overexpression.J. Cancer Res. Ther.20191561282128710.4103/0973‑1482.20489631898661
    [Google Scholar]
  76. KuriyamaN. YoshiokaY. KikuchiS. AzumaN. OchiyaT. Extracellular vesicles are key regulators of tumor neovasculature.Front. Cell Dev. Biol.2020861103910.3389/fcell.2020.61103933363175
    [Google Scholar]
  77. MontemagnoC. PagèsG. Resistance to anti-angiogenic therapies: A mechanism depending on the time of exposure to the drugs.Front. Cell Dev. Biol.2020858410.3389/fcell.2020.0058432775327
    [Google Scholar]
  78. ZhaoL.J. XuH. QuJ.W. ZhaoW.Z. ZhaoY.B. WangJ.H. Modulation of drug resistance in ovarian cancer cells by inhibition of protein kinase C-alpha (PKC-α) with small interference RNA (siRNA) agents.Asian Pac. J. Cancer Prev.20121383631363610.7314/APJCP.2012.13.8.363123098446
    [Google Scholar]
  79. TyagiK. RoyA. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849610.1016/j.bbcan.2020.18849633383102
    [Google Scholar]
  80. WangN.N. ZhaoL.J. WuL.N. HeM.F. QuJ.W. ZhaoY.B. ZhaoW.Z. LiJ.S. WangJ.H. Mechanistic analysis of taxol-induced multidrug resistance in an ovarian cancer cell line.Asian Pac. J. Cancer Prev.20131494983498810.7314/APJCP.2013.14.9.498324175763
    [Google Scholar]
  81. TianW. LeiN. ZhouJ. ChenM. GuoR. QinB. LiY. ChangL. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion.Cell Death Dis.20221316410.1038/s41419‑022‑04510‑835042862
    [Google Scholar]
  82. PinkR.C. SamuelP. MassaD. CaleyD.P. BrooksS.A. CarterD.R.F. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells.Gynecol. Oncol.2015137114315110.1016/j.ygyno.2014.12.04225579119
    [Google Scholar]
  83. DorayappanK.D.P. WannerR. WallbillichJ.J. SainiU. ZingarelliR. SuarezA.A. CohnD.E. SelvendiranK. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins.Oncogene201837283806382110.1038/s41388‑018‑0189‑029636548
    [Google Scholar]
  84. AlharbiM. SharmaS. GuanzonD. LaiA. ZuñigaF. ShiddikyM.J.A. YamauchiY. Salas-BurgosA. HeY. PejovicT. WintersC. MorganT. PerrinL. HooperJ.D. SalomonC. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer.Nanomedicine20202810220710.1016/j.nano.2020.10220732334098
    [Google Scholar]
  85. Au YeungC.L. CoN.N. TsurugaT. YeungT.L. KwanS.Y. LeungC.S. LiY. LuE.S. KwanK. WongK.K. SchmandtR. LuK.H. MokS.C. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1.Nat. Commun.2016711115010.1038/ncomms1115027021436
    [Google Scholar]
  86. LiL. XuQ.H. DongY.H. LiG.X. YangL. WangL.W. LiH.Y. MiR-181a upregulation is associated with epithelial-to-mesenchymal transition (EMT) and multidrug resistance (MDR) of ovarian cancer cells.Eur. Rev. Med. Pharmacol. Sci.201620102004201027249598
    [Google Scholar]
  87. MarchettiS. BengalliR. FlorisP. ColomboA. ManteccaP. Combustion-derived particles from biomass sources differently promote epithelial-to-mesenchymal transition on A549 cells.Arch. Toxicol.20219541379139010.1007/s00204‑021‑02983‑833481051
    [Google Scholar]
  88. GuoH. HaC. DongH. YangZ. MaY. DingY. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A.Cancer Cell Int.201919134710.1186/s12935‑019‑1051‑331889899
    [Google Scholar]
  89. LiuR. ZhangY. SunP. WangC. DDP-resistant ovarian cancer cells-derived exosomal microRNA-30a-5p reduces the resistance of ovarian cancer cells to DDP.Open Biol.202010419017310.1098/rsob.19017332343928
    [Google Scholar]
  90. ZhuX. ShenH. YinX. YangM. WeiH. ChenQ. FengF. LiuY. XuW. LiY. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype.J. Exp. Clin. Cancer Res.20193818110.1186/s13046‑019‑1095‑130770776
    [Google Scholar]
  91. KanlikilicerP. BayraktarR. DenizliM. RashedM.H. IvanC. AslanB. MitraR. KaragozK. BayraktarE. ZhangX. Rodriguez-AguayoC. El-ArabeyA.A. KahramanN. BaydoganS. OzkayarO. GatzaM.L. OzpolatB. CalinG.A. SoodA.K. Lopez-BeresteinG. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer.E. Bio. Medicine20183810011210.1016/j.ebiom.2018.11.00430487062
    [Google Scholar]
  92. Weiner-GorzelK. DempseyE. MilewskaM. McGoldrickA. TohV. WalshA. LindsayS. GubbinsL. CannonA. SharpeD. O’SullivanJ. MurphyM. MaddenS.F. KellM. McCannA. FurlongF. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells.Cancer Med.20154574575810.1002/cam4.40925684390
    [Google Scholar]
  93. TaylorD.D. Gercel-TaylorC. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer.Gynecol. Oncol.20081101132110.1016/j.ygyno.2008.04.03318589210
    [Google Scholar]
  94. RupaimooleR. CalinG.A. Lopez-BeresteinG. SoodA.K. miRNA deregulation in cancer cells and the tumor microenvironment.Cancer Discov.20166323524610.1158/2159‑8290.CD‑15‑089326865249
    [Google Scholar]
  95. YangC. KimH.S. ParkS.J. LeeE.J. KimS.I. SongG. LimW. Inhibition of miR-214-3p aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHX6.Cancers20191112191710.3390/cancers1112191731810245
    [Google Scholar]
  96. KongF. SunC. WangZ. HanL. WengD. LuY. ChenG. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1.J. Huazhong Univ. Sci. Technolog. Med. Sci.201131454354910.1007/s11596‑011‑0487‑z21823019
    [Google Scholar]
  97. Al-DossaryA.A. TawfikE.A. IsicheiA.C. SunX. LiJ. AlshehriA.A. AlomariM. AlmughemF.A. AldossaryA.M. SabitH. AlmalikA.M. Engineered EV-mimetic nanoparticles as therapeutic delivery vehicles for high-grade serous ovarian cancer.Cancers20211312307510.3390/cancers1312307534203051
    [Google Scholar]
  98. PanC. StevicI. MüllerV. NiQ. Oliveira-FerrerL. PantelK. SchwarzenbachH. Exosomal micro RNA s as tumor markers in epithelial ovarian cancer.Mol. Oncol.201812111935194810.1002/1878‑0261.1237130107086
    [Google Scholar]
  99. LiZ. NiuH. QinQ. YangS. WangQ. YuC. WeiZ. JinZ. WangX. YangA. ChenX. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer.Mol. Ther. Nucleic Acids2019179210110.1016/j.omtn.2019.05.00731234009
    [Google Scholar]
  100. LvT. SongK. ZhangL. LiW. ChenY. DiaoY. YaoQ. LiuP. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1.Biochem. Cell Biol.201896566367110.1139/bcb‑2018‑003129561664
    [Google Scholar]
  101. ArrighettiN. CossaG. De CeccoL. StucchiS. CareniniN. CornaE. GandelliniP. ZaffaroniN. PeregoP. GattiL. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.Toxicol. Appl. Pharmacol.2016310919
    [Google Scholar]
  102. TangK. ZhangY. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.Nat. Commun.2012311282
    [Google Scholar]
  103. MengY. QiuL. ZhangS. HanJ. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance.Cancer Drug Resist.20214236538110.20517/cdr.2020.11535582023
    [Google Scholar]
  104. MacKayC. CarrollE. IbrahimA.F.M. GargA. InmanG.J. HayR.T. AlpiA.F. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin.Cancer Res.20147482246225710.1158/0008‑5472.CAN‑13‑213124686174
    [Google Scholar]
  105. YangL. ChenJ. HuangX. ZhangE. HeJ. CaiZ. Novel insights into E3 ubiquitin ligase in cancer chemoresistance.Am. J. Med. Sci.2018355436837610.1016/j.amjms.2017.12.01229661351
    [Google Scholar]
  106. NiiroE. MoriokaS. IwaiK. YamadaY. OgawaK. KawaharaN. KobayashiH. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review).Biomed. Rep.20188321522310.3892/br.2018.104529564122
    [Google Scholar]
  107. FischerM.M. CancillaB. YeungV.P. CattaruzzaF. ChartierC. MurrielC.L. CainJ. TamR. ChengC.Y. EvansJ.W. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death.Sci. Adv.2017361700090201710.1126/sciadv.1700090
    [Google Scholar]
  108. KingT.D. ZhangW. SutoM.J. LiY. Frizzled7 as an emerging target for cancer therapy.Cell. Signal.201224484685110.1016/j.cellsig.2011.12.00922182510
    [Google Scholar]
  109. DuanH. YanZ. ChenW. WuY. HanJ. GuoH. QiaoJ. TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2.Gynecol. Oncol.2017147240841710.1016/j.ygyno.2017.08.01028851501
    [Google Scholar]
  110. WangJ. CaiJ. HanF. YangC. TongQ. CaoT. WuL. WangZ. Silencing of CXCR4 blocks progression of ovarian cancer and depresses canonical Wnt signaling pathway.Int. J. Gynecol. Cancer201121698198710.1097/IGC.0b013e31821d254321738044
    [Google Scholar]
  111. SpringB.Q. RizviI. XuN. HasanT. The role of photodynamic therapy in overcoming cancer drug resistance.Photochem. Photobiol. Sci.20151481476149110.1039/c4pp00495g25856800
    [Google Scholar]
  112. RickardB.P. OverchukM. ObaidG. RuhiM.K. DemirciU. FentonS.E. SantosJ.H. KesselD. RizviI. Photochemical targeting of mitochondria to overcome chemoresistance in ovarian cancer †.Photochem. Photobiol.202399244846810.1111/php.1372336117466
    [Google Scholar]
  113. XueL. ChiuS. OleinickN.L. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4.Oncogene200120263420342710.1038/sj.onc.120444111423992
    [Google Scholar]
  114. KesselD. ArroyoA.S. Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage.Photochem. Photobiol. Sci.20076121290129510.1039/b707953b18046484
    [Google Scholar]
  115. KesselD. Apoptosis, paraptosis and autophagy: Death and survival pathways associated with photodynamic therapy.Photochem. Photobiol.201995111912510.1111/php.1295229882356
    [Google Scholar]
  116. PogueB.W. ElliottJ.T. KanickS.C. DavisS.C. SamkoeK.S. MaytinE.V. PereiraS.P. HasanT. Revisiting photodynamic therapy dosimetry: Reductionist surrogate approaches to facilitate clinical success.Phys. Med. Biol.2016617R57R8910.1088/0031‑9155/61/7/R5726961864
    [Google Scholar]
  117. YangX. PalasuberniamP. KrausD. ChenB. Aminolevulinic acid-based tumor detection and therapy: Molecular mechanisms and strategies for enhancement.Int. J. Mol. Sci.20151610258652588010.3390/ijms16102586526516850
    [Google Scholar]
  118. AscencioM. DelemerM. FarineM.O. JouveE. CollinetP. MordonS. Evaluation of ALA-PDT of ovarian cancer in the Fisher 344 rat tumor model.Photodiagn. Photodyn. Ther.20074425426010.1016/j.pdpdt.2007.07.00325047562
    [Google Scholar]
  119. Pljesa-ErcegovacM. Savic-RadojevicA. MaticM. CoricV. DjukicT. RadicT. SimicT. Glutathione transferases: Potential targets to overcome chemoresistance in solid tumors.Int. J. Mol. Sci.20181912378510.3390/ijms1912378530487385
    [Google Scholar]
  120. SimicP. PljesaI. NejkovicL. JeroticD. CoricV. StulicJ. KokosarN. PopovD. Savic-RadojevicA. PazinV. Pljesa-ErcegovacM. Glutathione transferase P1: Potential therapeutic target in ovarian cancer.Medicina20225811166010.3390/medicina5811166036422199
    [Google Scholar]
  121. ZouH. LiH. Knockdown of long non-coding RNA LINC00152 increases cisplatin sensitivity in ovarian cancer cells.Exp. Ther. Med.20191864510451610.3892/etm.2019.806631777553
    [Google Scholar]
  122. ChenS. JiaoJ-W. SunK-X. ZongZ-H. ZhaoY. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs.Drug Des. Devel. Ther.201595225523526396496
    [Google Scholar]
  123. ZhangX. ZhuJ. XingR. TieY. FuH. ZhengX. YuB. miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1.Lung Cancer201277348849410.1016/j.lungcan.2012.05.10722749944
    [Google Scholar]
  124. WangX. JiangP. WangP. YangC.S. WangX. FengQ. EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer.PLoS One2015104e012540210.1371/journal.pone.012540225927922
    [Google Scholar]
  125. ZhuH. GaoJ. WangL. QianK.J. CaiL.P. In�vitro study on reversal of ovarian cancer cell resistance to cisplatin by naringin via the nuclear factor-κB signaling pathway.Exp. Ther. Med.20181532643264810.3892/etm.2018.569529456667
    [Google Scholar]
  126. WangY. HanA. ChenE. SinghR.K. ChichesterC.O. MooreR.G. SinghA.P. VorsaN. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells.Int. J. Oncol.20154651924193410.3892/ijo.2015.293125776829
    [Google Scholar]
  127. HussainI. WaheedS. AhmadK.A. PirogJ.E. SyedV. Scutellaria baicalensis targets the hypoxia-inducible factor-1α and enhances cisplatin efficacy in ovarian cancer.J. Cell. Biochem.201811997515752410.1002/jcb.2706329797601
    [Google Scholar]
  128. YallapuM.M. MaherD.M. SundramV. BellM.C. JaggiM. ChauhanS.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth.J. Ovarian Res.2010311110.1186/1757‑2215‑3‑1120429876
    [Google Scholar]
  129. WangH. LuoY. QiaoT. WuZ. HuangZ. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion.J. Ovarian Res.20181119310.1186/s13048‑018‑0468‑y30454003
    [Google Scholar]
  130. ZhangY. WangC. WangH. WangK. DuY. ZhangJ. Combination of Tetrandrine with cisplatin enhances cytotoxicity through growth suppression and apoptosis in ovarian cancer in vitro and in vivo.Cancer Lett.20113041213210.1016/j.canlet.2011.01.02221333438
    [Google Scholar]
  131. ChenQ. QinR. FangY. LiH. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway.Cell. Physiol. Biochem.201536395696510.1159/00043027026087719
    [Google Scholar]
  132. NiuP. ShiD. ZhangS. ZhuY. ZhouJ. Cardamonin enhances the anti-proliferative effect of cisplatin on ovarian cancer.Oncol. Lett.20181533991399710.3892/ol.2018.774329456744
    [Google Scholar]
  133. LiD. HongX. ZhaoF. CiX. ZhangS. Targeting Nrf2 may reverse the drug resistance in ovarian cancer.Cancer Cell Int.202121111610.1186/s12935‑021‑01822‑133596893
    [Google Scholar]
  134. CucciM.A. GrattarolaM. DianzaniC. DamiaG. RicciF. RoettoA. TrottaF. BarreraG. PizzimentiS. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism.Free Radic. Biol. Med.202015012513510.1016/j.freeradbiomed.2020.02.02132101771
    [Google Scholar]
  135. HarderB. TianW. La ClairJ.J. TanA.C. OoiA. ChapmanE. ZhangD.D. Brusatol overcomes chemoresistance through inhibition of protein translation.Mol. Carcinog.20175651493150010.1002/mc.2260928019675
    [Google Scholar]
  136. ChenX. YinT. ZhangB. SunB. ChenJ. XiaoT. WangB. LiM. YangJ. FanX. Inhibitory effects of brusatol delivered using glycosaminoglycan-placental chondroitin sulfate A-modified nanoparticles on the proliferation, migration and invasion of cancer cells.Int. J. Mol. Med.202046281782710.3892/ijmm.2020.462732626948
    [Google Scholar]
  137. KlotzD.M. WimbergerP. Overcoming PARP inhibitor resistance in ovarian cancer: what are the most promising strategies?Arch. Gynecol. Obstet.202030251087110210.1007/s00404‑020‑05677‑132833070
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673276871231205043417
Loading
/content/journals/cmc/10.2174/0109298673276871231205043417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test