Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673259466231031050437
2023-11-24
2025-07-08
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  2. RoyD. DorakM.T. Environmental factors, genes, and the development of human cancers.Springer201010.1007/978‑1‑4419‑6752‑7
    [Google Scholar]
  3. Baena RuizR. Salinas HernándezP. Diet and cancer: Risk factors and epidemiological evidence.Maturitas201477320220810.1016/j.maturitas.2013.11.01024374225
    [Google Scholar]
  4. DonaldsonM.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet.Nutr. J.2004311910.1186/1475‑2891‑3‑1915496224
    [Google Scholar]
  5. CirmiS. FerlazzoN. LombardoG. MaugeriA. CalapaiG. GangemiS. NavarraM. Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives?Nutrients201681169810.3390/nu811069827827912
    [Google Scholar]
  6. MaruG.B. HudlikarR.R. KumarG. GandhiK. MahimkarM.B. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials.World J. Biol. Chem.201671889910.4331/wjbc.v7.i1.8826981198
    [Google Scholar]
  7. BenetouV. LagiouA. LagiouP. Chemoprevention of cancer: Current evidence and future prospects.F1000 Res.2015491610.12688/f1000research.6684.127006756
    [Google Scholar]
  8. LamT.K. ShaoS. ZhaoY. MarincolaF. PesatoriA. BertazziP.A. CaporasoN.E. WangE. LandiM.T. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues.Cancer Epidemiol. Biomarkers Prev.201221122176218410.1158/1055‑9965.EPI‑12‑074523035181
    [Google Scholar]
  9. LamT.K. RotunnoM. LubinJ.H. WacholderS. ConsonniD. PesatoriA.C. BertazziP.A. ChanockS.J. BurdetteL. GoldsteinA.M. TuckerM.A. CaporasoN.E. SubarA.F. LandiM.T. Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk.Carcinogenesis201031463464210.1093/carcin/bgp33420044584
    [Google Scholar]
  10. SrivastavaS. SomasagaraR. HegdeM. NishanaM. TadiS. SrivastavaM. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis.Sci Rep.2016624049
    [Google Scholar]
  11. YoshidaM. SakaiT. HosokawaN. MaruiN. MatsumotoK. FujiokaA. NishinoH. AoikeA. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells.FEBS Lett.19902601101310.1016/0014‑5793(90)80053‑L2298289
    [Google Scholar]
  12. ChoiJ.A. KimJ.Y. LeeJ.Y. KangC.M. KwonH.J. YooY.D. KimT.W. LeeY.S. LeeS.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin.Int. J. Oncol.200119483784410.3892/ijo.19.4.83711562764
    [Google Scholar]
  13. RichterM. EbermannR. MarianB. Quercetin-induced apoptosis in colorectal tumor cells: Possible role of EGF receptor signaling.Nutr. Cancer1999341889910.1207/S15327914NC34011310453447
    [Google Scholar]
  14. ElAttarT.M.A. VirjiA.S. Modulating effect of resveratrol and quercetin on oral cancer cell growth and proliferation.Anticancer Drugs199910218719410.1097/00001813‑199902000‑0000710211549
    [Google Scholar]
  15. WangG. ZhangJ. LiuL. SharmaS. DongQ. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl.PLoS One2012712e5176410.1371/journal.pone.005176423240061
    [Google Scholar]
  16. NairH.K. RaoK.V. AalinkeelR. MahajanS. ChawdaR. SchwartzS.A. Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes.Clin. Diagn. Lab. Immunol.2004111636914715546
    [Google Scholar]
  17. Mutlu AltundağE. KasacıT. YılmazA.M. KarademirB. KoçtürkS. TagaY. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells.J. Thyroid Res.2016201619843675
    [Google Scholar]
  18. LeeT.J. KimO.H. KimY.H. LimJ.H. KimS. ParkJ.W. KwonT.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells.Cancer Lett.2006240223424210.1016/j.canlet.2005.09.01316274926
    [Google Scholar]
  19. AngstE. ParkJ.L. MoroA. LuQ.Y. LuX. LiG. KingJ. ChenM. ReberH.A. GoV.L.W. EiblG. HinesO.J. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo.Pancreas201342222322910.1097/MPA.0b013e318264ccae23000892
    [Google Scholar]
  20. ZhengS.Y. LiY. JiangD. ZhaoJ. GeJ.F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549.Mol. Med. Rep.20125382282622200874
    [Google Scholar]
  21. JonasS. IzaurraldeE. Towards a molecular understanding of microRNA-mediated gene silencing.Nat. Rev. Genet.201516742143310.1038/nrg396526077373
    [Google Scholar]
  22. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  23. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: from microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky114130423142
    [Google Scholar]
  24. ZhongX. CoukosG. ZhangL. miRNAs in human cancer.Methods Mol. Biol.201282229530610.1007/978‑1‑61779‑427‑8_2122144208
    [Google Scholar]
  25. LuT.X. RothenbergM.E. MicroRNA.J. Allergy Clin. Immunol.201814141202120710.1016/j.jaci.2017.08.03429074454
    [Google Scholar]
  26. SunZ. ShiK. YangS. LiuJ. ZhouQ. WangG. SongJ. LiZ. ZhangZ. YuanW. Effect of exosomal miRNA on cancer biology and clinical applications.Mol. Cancer201817114710.1186/s12943‑018‑0897‑730309355
    [Google Scholar]
  27. StavricB. Quercetin in our diet: From potent mutagen to probable anticarcinogen.Clin. Biochem.199427424524810.1016/0009‑9120(94)90025‑68001284
    [Google Scholar]
  28. Pérez-JiménezJ. FezeuL. TouvierM. ArnaultN. ManachC. HercbergS. GalanP. ScalbertA. Dietary intake of 337 polyphenols in French adults.Am. J. Clin. Nutr.20119361220122810.3945/ajcn.110.00709621490142
    [Google Scholar]
  29. OvaskainenM.L. TörrönenR. KoponenJ.M. SinkkoH. HellströmJ. ReinivuoH. MattilaP. Dietary intake and major food sources of polyphenols in Finnish adults.J. Nutr.2008138356256610.1093/jn/138.3.56218287367
    [Google Scholar]
  30. HertogM.G. HollmanP.C. Potential health effects of the dietary flavonol quercetin.Eur. J. Clin. Nutr.199650263718641249
    [Google Scholar]
  31. Carrasco-PozoC. TanK.N. Reyes-FariasM. De La JaraN. NgoS.T. Garcia-DiazD.F. LlanosP. CiresM.J. BorgesK. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies.Redox Biol.2016922924310.1016/j.redox.2016.08.00727591402
    [Google Scholar]
  32. BadolatoM. CarulloG. PerriM. CioneE. ManettiF. Di GioiaM.L. BrizziA. CaroleoM.C. AielloF. Quercetin/oleic acid-based G-protein-coupled receptor 40 ligands as new insulin secretion modulators.Future Med. Chem.20179161873188510.4155/fmc‑2017‑011329064290
    [Google Scholar]
  33. SaponaraS. SgaragliG. FusiF. Quercetin as a novel activator of L-type Ca 2+ channels in rat tail artery smooth muscle cells.Br. J. Pharmacol.200213571819182710.1038/sj.bjp.070463111934824
    [Google Scholar]
  34. KawabataK. MukaiR. IshisakaA. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability.Food Funct.2015651399141710.1039/C4FO01178C25761771
    [Google Scholar]
  35. GuoY. BrunoR.S. Endogenous and exogenous mediators of quercetin bioavailability.J. Nutr. Biochem.201526320121010.1016/j.jnutbio.2014.10.00825468612
    [Google Scholar]
  36. JanaN. BřetislavG. PavelS. PavlaU. Potential of the flavonoid quercetin to prevent and treat cancer - current status of research.Klin. Onkol.2018313184190
    [Google Scholar]
  37. KellyGS Quercetin.Monograph. Altern Med Rev201116172194
    [Google Scholar]
  38. BritoA. RibeiroM. AbrantesA. PiresA. TeixoR. TralhãoJ. BotelhoM. Quercetin in cancer treatment, alone or in combination with conventional therapeutics?Curr. Med. Chem.201522263025303910.2174/092986732266615081214543526264923
    [Google Scholar]
  39. FerryD.R. SmithA. MalkhandiJ. FyfeD.W. deTakatsP.G. AndersonD. BakerJ. KerrD.J. Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition.Clin. Cancer Res.1996246596689816216
    [Google Scholar]
  40. BegumA.N. TeraoJ. Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability.J. Nutr. Biochem.200213526527210.1016/S0955‑2863(01)00219‑412015156
    [Google Scholar]
  41. PratheeshkumarP. BudhrajaA. SonY.O. WangX. ZhangZ. DingS. WangL. HitronA. LeeJ.C. XuM. ChenG. LuoJ. ShiX. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.PLoS One2012710e4751610.1371/journal.pone.004751623094058
    [Google Scholar]
  42. WarrenC.A. PaulhillK.J. DavidsonL.A. LuptonJ.R. TaddeoS.S. HongM.Y. CarrollR.J. ChapkinR.S. TurnerN.D. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis.J. Nutr.2009139110110510.3945/jn.108.09627119056647
    [Google Scholar]
  43. XiaoX. ShiD. LiuL. WangJ. XieX. KangT. DengW. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.PLoS One201168e2293410.1371/journal.pone.002293421857970
    [Google Scholar]
  44. ChunO.K. ChungS.J. ClaycombeK.J. SongW.O. Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults.J. Nutr.2008138475376010.1093/jn/138.4.75318356331
    [Google Scholar]
  45. García-MediavillaV. CrespoI. ColladoP.S. EstellerA. Sánchez-CamposS. TuñónM.J. González-GallegoJ. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells.Eur. J. Pharmacol.20075572-322122910.1016/j.ejphar.2006.11.01417184768
    [Google Scholar]
  46. GuardiaT. RotelliA.E. JuarezA.O. PelzerL.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat.Farmaco200156683687
    [Google Scholar]
  47. AskariG. GhiasvandR. FeiziA. GhanadianS.M. KarimianJ. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress.J. Res. Med. Sci.201217763764123798923
    [Google Scholar]
  48. JavadiF. EghtesadiS. AhmadzadehA. AryaeianN. ZabihiyeganehM. ForoushaniA.R. JazayeriS. The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in women with rheumatoid arthritis.Int. J. Prev. Med.20145329330124829713
    [Google Scholar]
  49. AhmadN.S. FarmanM. NajmiM.H. MianK.B. HasanA. Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout.J. Ethnopharmacol.2008117347848210.1016/j.jep.2008.02.03118420362
    [Google Scholar]
  50. RamosF.A. TakaishiY. ShirotoriM. KawaguchiY. TsuchiyaK. ShibataH. HigutiT. TadokoroT. TakeuchiM. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin.J. Agric. Food Chem.200654103551355710.1021/jf060251c19127724
    [Google Scholar]
  51. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.00216323269
    [Google Scholar]
  52. SakK. Site-specific anticancer effects of dietary flavonoid quercetin.Nutr. Cancer201466217719310.1080/01635581.2014.86441824377461
    [Google Scholar]
  53. ShiraiM. KawaiY. YamanishiR. KinoshitaT. ChumanH. TeraoJ. ShiraiM. KawaiY. YamanishiR. KinoshitaT. ChumanH. TeraoJ. Effect of a conjugated quercetin metabolite, quercetin 3-glucuronide, on lipid hydroperoxide-dependent formation of reactive oxygen species in differentiated PC-12 cells.Free Radic. Res.200640101047105310.1080/1071576060079428717015249
    [Google Scholar]
  54. KimM.K. ParkK.S. LeeC. ParkH.R. ChooH. ChongY. Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (POM) promoiety.J. Med. Chem.201053248597860710.1021/jm101252m21090565
    [Google Scholar]
  55. IacopettaD. GrandeF. CarusoA. MordoccoR.A. PlutinoM.R. ScrivanoL. CeramellaJ. MuiàN. SaturninoC. PuociF. RosanoC. SinicropiM.S. New insights for the use of quercetin analogs in cancer treatment.Future Med. Chem.20179172011202810.4155/fmc‑2017‑011829076772
    [Google Scholar]
  56. PalA. SilS.K. Bromelain mediates apoptosis in HeLa cells via ROS-independent pathway.Advances in Traditional Medicine2022112
    [Google Scholar]
  57. HasegawaA. TanigawaK. OhtsuruA. YabeH. MaedaM. ShigemuraJ. OhiraT. TominagaT. AkashiM. HirohashiN. IshikawaT. KamiyaK. ShibuyaK. YamashitaS. ChhemR.K. Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima.Lancet2015386999247948810.1016/S0140‑6736(15)61106‑026251393
    [Google Scholar]
  58. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y32203277
    [Google Scholar]
  59. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.02431380246
    [Google Scholar]
  60. AbotalebM. SamuelS. VargheseE. VargheseS. KubatkaP. LiskovaA. BüsselbergD. Flavonoids in cancer and apoptosis.Cancers20181112810.3390/cancers1101002830597838
    [Google Scholar]
  61. AshrafizadehM. TaebS. Haghi-AminjanH. AfrashiS. MoloudiK. MusaA.E. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review.Anti-Cancer Agents Med. Chem.2021212327233610.2174/1871520620666201020160348
    [Google Scholar]
  62. DashS. SahuA.K. SrivastavaA. ChowdhuryR. MukherjeeS. Exploring the extensive crosstalk between the antagonistic cytokines- TGF-β and TNF-α in regulating cancer pathogenesis.Cytokine202113815534810.1016/j.cyto.2020.15534833153895
    [Google Scholar]
  63. HuaW. ten DijkeP. KostidisS. GieraM. HornsveldM. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer.Cell. Mol. Life Sci.202077112103212310.1007/s00018‑019‑03398‑631822964
    [Google Scholar]
  64. BadrinathN. YooS.Y. Mitochondria in cancer: In the aspects of tumorigenesis and targeted therapy.Carcinogenesis201839121419143010.1093/carcin/bgy14830357389
    [Google Scholar]
  65. JamesB.N. OyeniranC. SturgillJ.L. NewtonJ. MartinR.K. BieberichE. WeigelC. MaczisM.A. PalladinoE.N.D. LownikJ.C. TrudeauJ.B. Cook-MillsJ.M. WenzelS. MilstienS. SpiegelS. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma.J. Allergy Clin. Immunol.2021147519361948.e910.1016/j.jaci.2020.10.02433130063
    [Google Scholar]
  66. AubreyB.J. KellyG.L. JanicA. HeroldM.J. StrasserA. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?Cell Death Differ.201825110411310.1038/cdd.2017.16929149101
    [Google Scholar]
  67. JainA. DadsenaS. HolthuisJ.C.M. A switchable ceramide transfer protein for dissecting the mechanism of ceramide-induced mitochondrial apoptosis.FEBS Lett.2020594223739375010.1002/1873‑3468.1395633058150
    [Google Scholar]
  68. MortezaeeK. NajafiM. FarhoodB. AhmadiA. ShabeebD. MusaA.E. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity.J. Cell. Physiol.201923410171871720410.1002/jcp.2850430912132
    [Google Scholar]
  69. MortezaeeK. ParwaieW. MotevaseliE. Mirtavoos-MahyariH. MusaA.E. ShabeebD. EsmaelyF. NajafiM. FarhoodB. Targets for improving tumor response to radiotherapy.Int. Immunopharmacol.20197610584710.1016/j.intimp.2019.10584731466051
    [Google Scholar]
  70. NasrabadiN.N. AtaeeR. AbediankenariS. ShokrzadehM. NajafiM. HoseiniS.V. JanH.H.A. Expression of MT2 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features.J. Gastrointest. Cancer2014451546010.1007/s12029‑013‑9552‑024142542
    [Google Scholar]
  71. LièvreA. BachetJ.B. BoigeV. CayreA. Le CorreD. BucE. YchouM. BouchéO. LandiB. LouvetC. AndréT. BibeauF. DieboldM.D. RougierP. DucreuxM. TomasicG. EmileJ.F. Penault-LlorcaF. Laurent-PuigP. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab.J. Clin. Oncol.200826337437910.1200/JCO.2007.12.590618202412
    [Google Scholar]
  72. MaY. JinZ. HuangJ. ZhouS. YeH. JiangS. YuK. Quercetin suppresses the proliferation of multiple myeloma cells by down-regulating IQ motif-containing GTPase activating protein 1 expression and extracellular signal-regulated kinase activation.Leuk. Lymphoma201455112597260410.3109/10428194.2013.87912824397597
    [Google Scholar]
  73. RamdassB. ChowdharyA. KokaP.S. Hematological malignancies: Disease pathophysiology of leukemic stem cells.J. Stem Cells201383-415118724699024
    [Google Scholar]
  74. HeD. GuoX. ZhangE. ZiF. ChenJ. ChenQ. LinX. YangL. LiY. WuW. YangY. HeJ. CaiZ. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models.Oncotarget2016729454894549910.18632/oncotarget.999327329589
    [Google Scholar]
  75. JiaL. HuangS. YinX. ZanY. GuoY. HanL. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction.Life Sci.201820812313010.1016/j.lfs.2018.07.02730025823
    [Google Scholar]
  76. WangK. LiuR. LiJ. MaoJ. LeiY. WuJ. ZengJ. ZhangT. WuH. ChenL. HuangC. WeiY. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling.Autophagy20117996697810.4161/auto.7.9.1586321610320
    [Google Scholar]
  77. GranatoM. RizzelloC. Gilardini MontaniM.S. CuomoL. VitilloM. SantarelliR. GonnellaR. D’OraziG. FaggioniA. CironeM. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways.J. Nutr. Biochem.20174112413610.1016/j.jnutbio.2016.12.01128092744
    [Google Scholar]
  78. LiuY. GongW. YangZ.Y. ZhouX.S. GongC. ZhangT.R. WeiX. MaD. YeF. GaoQ.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer.Apoptosis201722454455710.1007/s10495‑016‑1334‑228188387
    [Google Scholar]
  79. ChienS.Y. WuY.C. ChungJ.G. YangJ.S. LuH.F. TsouM.F. WoodW.G. KuoS.J. ChenD.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells.Hum. Exp. Toxicol.200928849350310.1177/096032710910700219755441
    [Google Scholar]
  80. Granado-SerranoA.B. MartiínM.A. BravoL. GoyaL. RamosS. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).J. Nutr.2006136112715272110.1093/jn/136.11.271517056790
    [Google Scholar]
  81. ZhangJ. YiT. LiuJ. ZhaoZ. ChenH. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells.J. Agric. Food Chem.20136192188219510.1021/jf305263r23410218
    [Google Scholar]
  82. SeoH.S. KuJ.M. ChoiH.S. ChoiY.K. WooJ.K. KimM. KimI. NaC.H. HurH. JangB.H. ShinY.C. KoS.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells.Oncol. Rep.2016361314210.3892/or.2016.478627175602
    [Google Scholar]
  83. HashemzaeiM. FarA.D. YariA. HeraviR.E. TabrizianK. TaghdisiS.M. SadeghS.E. TsarouhasK. KouretasD. TzanakakisG. NikitovicD. AnisimovN.Y. SpandidosD.A. TsatsakisA.M. RezaeeR. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo.Oncol. Rep.201738281982810.3892/or.2017.576628677813
    [Google Scholar]
  84. SiegelinM.D. ReussD.E. HabelA. RamiA. von DeimlingA. Quercetin promotes degradation of survivin and thereby enhances death-receptor–mediated apoptosis in glioma cells.Neuro-oncol.200911212213110.1215/15228517‑2008‑08518971417
    [Google Scholar]
  85. RafiqR.A. QuadriA. NazirL.A. PeerzadaK. GanaiB.A. TasduqS.A. A potent inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells.PLoS One2015107e013125310.1371/journal.pone.013125326148186
    [Google Scholar]
  86. TanigawaS. FujiiM. HouD.X. Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells.Biosci. Biotechnol. Biochem.200872379780410.1271/bbb.7068018323654
    [Google Scholar]
  87. LeeS.H. KrisanapunC. BaekS.J. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3, C/EBP and ATF3.Carcinogenesis201031471972810.1093/carcin/bgq01620110283
    [Google Scholar]
  88. YangM.H. KimJ. KhanI.A. WalkerL.A. KhanS.I. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents.Life Sci.20141002758410.1016/j.lfs.2014.01.07524530873
    [Google Scholar]
  89. KuoP.C. LiuH.F. ChaoJ.I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells.J. Biol. Chem.200427953558755588510.1074/jbc.M40798520015456784
    [Google Scholar]
  90. BudanovA.V. The role of tumor suppressor p53 in the antioxidant defense and metabolism.Subcell Biochem.20148533735810.1007/978‑94‑017‑9211‑0_18
    [Google Scholar]
  91. KimS.Y. JeongH.C. HongS.K. LeeM.O. ChoS.J. ChaH.J. Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells.Oncotarget2017839649646497310.18632/oncotarget.1107029029404
    [Google Scholar]
  92. VafadarA. ShabaninejadZ. MovahedpourA. FallahiF. TaghavipourM. GhasemiY. AkbariM. ShafieeA. HajighadimiS. MoradizarmehriS. RaziE. SavardashtakiA. MirzaeiH. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells.Cell Biosci.20201013210.1186/s13578‑020‑00397‑032175075
    [Google Scholar]
  93. YadavN. TripathiA.K. ParveenA. PLGA-quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3,7 and independent FoxO1 activation with concomitant PI3K/AKT suppression.Pharmaceutics2022147132610.3390/pharmaceutics1407132635890222
    [Google Scholar]
  94. SadhukhanP. KunduM. ChatterjeeS. GhoshN. MannaP. DasJ. SilP.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy.Mater. Sci. Eng. C201910012914010.1016/j.msec.2019.02.09630948047
    [Google Scholar]
  95. LuoC.L. LiuY.Q. WangP. SongC.H. WangK.J. DaiL.P. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.Biomed. Pharmacother.20168259560510.1016/j.biopha.2016.05.029
    [Google Scholar]
  96. PatraA. SatpathyS. ShenoyA. BushJ. KaziM. HussainM.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers.Int. J. Nanomedicine2018132869288110.2147/IJN.S15309429844670
    [Google Scholar]
  97. ErsozM. ErdemirA. DermanS. ArasogluT. MansurogluB. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells.Pharm. Dev. Technol.202025675776610.1080/10837450.2020.174093332192406
    [Google Scholar]
  98. BaksiR. SinghD.P. BorseS.P. RanaR. SharmaV. NivsarkarM. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production.Biomed. Pharmacother.20182849510310.1016/j.biopha.2018.07.106
    [Google Scholar]
  99. MiyoshiK. MiyoshiT. SiomiH. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production.Mol. Genet. Genomics201028429510310.1007/s00438‑010‑0556‑120596726
    [Google Scholar]
  100. BartelD.P. MicroRNAs: Genomics, biogenesis, mechanism, and function.Cell.2004116281297
    [Google Scholar]
  101. HanJ. LeeY. YeomK.-H. NamJ.-W. HeoI. RheeJ.-K. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.Cell.2006125887901
    [Google Scholar]
  102. OrangV.A. SafaralizadehR. Kazemzadeh-BaviliM. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation.Int J Genomics.2014201410.1155/2014/970607
    [Google Scholar]
  103. ZhangY. FanM. ZhangX. HuangF. WuK. ZhangJ. LiuJ. HuangZ. LuoH. TaoL. ZhangH. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.RNA201420121878188910.1261/rna.045633.11425336585
    [Google Scholar]
  104. DaugaardI. HansenT.B. Biogenesis and function of ago-associated RNAs.Trends Genet.201733320821910.1016/j.tig.2017.01.00328174021
    [Google Scholar]
  105. ZhangB. PanX. CobbG.P. AndersonT.A. microRNAs as oncogenes and tumor suppressors.Dev. Biol.2007302111210.1016/j.ydbio.2006.08.02816989803
    [Google Scholar]
  106. HubéF. UlvelingD. SureauA. ForveilleS. FrancastelC. Short intron-derived ncRNAs.Nucleic Acids Res.20174584768478128053119
    [Google Scholar]
  107. GroßhansH. JohnsonT. ReinertK.L. GersteinM. SlackF.J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans.Dev. Cell20058332133010.1016/j.devcel.2004.12.01915737928
    [Google Scholar]
  108. YatesL.A. NorburyC.J. GilbertR.J.C. The long and short of microRNA.Cell2013153351651910.1016/j.cell.2013.04.00323622238
    [Google Scholar]
  109. CroceC. Introduction to the role of microRNAs in cancer diagnosis, prognosis, and treatment.Cancer J.201218321321410.1097/PPO.0b013e31825efb4122647356
    [Google Scholar]
  110. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.24260679912434020
    [Google Scholar]
  111. LuJ. GetzG. MiskaE.A. Alvarez-SaavedraE. LambJ. PeckD. MicroRNA expression profiles classify human cancers.Nature.2005435834838
    [Google Scholar]
  112. ShimonoY. ZabalaM. ChoR.W. LoboN. DalerbaP. QianD. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.Cell.2009138592603
    [Google Scholar]
  113. SrivastavaS.K. AhmadA. ZubairH. MireeO. SinghS. RocconiR.P. ScaliciJ. SinghA.P. MicroRNAs in gynecological cancers: Small molecules with big implications.Cancer Lett.201740712313810.1016/j.canlet.2017.05.01128549791
    [Google Scholar]
  114. BhardwajA. SinghS. SinghA.P. MicroRNA-based cancer therapeutics: big hope from small RNAs.Mol. Cell. Pharmacol.20102521321921289871
    [Google Scholar]
  115. TsudaN. IshiyamaS. LiY. IoannidesC.G. AbbruzzeseJ.L. ChangD.Z. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells.Clin. Cancer Res.200612216557656410.1158/1078‑0432.CCR‑06‑058817085671
    [Google Scholar]
  116. WenD. DanquahM. ChaudharyA.K. MahatoR.I. Small molecules targeting microRNA for cancer therapy: Promises and obstacles.J. Control. Release201521923724710.1016/j.jconrel.2015.08.01126256260
    [Google Scholar]
  117. GambariR. BrognaraE. SpandidosD.A. FabbriE. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review).Int. J. Oncol.201649153210.3892/ijo.2016.350327175518
    [Google Scholar]
  118. MognatoM. CelottiL. MicroRNAs used in combination with anti-cancer treatments can enhance therapy efficacy.Mini Rev. Med. Chem.201515131052106210.2174/138955751566615070911535526156420
    [Google Scholar]
  119. SegalM. SlackF.J. Challenges identifying efficacious miRNA therapeutics for cancer.Expert Opin. Drug Discov.202015998799110.1080/17460441.2020.176577032421364
    [Google Scholar]
  120. HassanniaB. VandenabeeleP. Vanden BergheT. Targeting ferroptosis to iron out cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.00231105042
    [Google Scholar]
  121. ChenG.Q. BenthaniF.A. WuJ. LiangD. BianZ.X. JiangX. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis.Cell Death Differ.202027124225410.1038/s41418‑019‑0352‑331114026
    [Google Scholar]
  122. MasaldanS. ClatworthyS.A.S. GamellC. MeggyesyP.M. RigopoulosA.T. HauptS. HauptY. DenoyerD. AdlardP.A. BushA.I. CaterM.A. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis.Redox Biol.20181410011510.1016/j.redox.2017.08.01528888202
    [Google Scholar]
  123. WangZ.X. MaJ. LiX.Y. WuY. ShiH. ChenY. LuG. ShenH.M. LuG.D. ZhouJ. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis.Br. J. Pharmacol.202117851133114810.1111/bph.1535033347603
    [Google Scholar]
  124. GaoM. FanK. ChenY. ZhangG. ChenJ. ZhangY. Understanding the mechanistic regulation of ferroptosis in cancer: the gene matters.J. Genet. Genomics2022491091392610.1016/j.jgg.2022.06.00235697272
    [Google Scholar]
  125. XuP. WangY. DengZ. TanZ. PeiX. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression.Oncol. Lett.20222326710.3892/ol.2022.1318635069876
    [Google Scholar]
  126. LiuL. YaoH. ZhouX. ChenJ. ChenG. ShiX. WuG. ZhouG. HeS. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer.Mol. Carcinog.202261330131010.1002/mc.2336734727409
    [Google Scholar]
  127. GuoL. ZhangQ. LiuY. The role of microRNAs in ferroptosis.Front. Mol. Biosci.20229100304510.3389/fmolb.2022.100304536310600
    [Google Scholar]
  128. TangX. ChenW. LiuH. LiuN. ChenD. TianD. WangJ. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors (Review).Oncol. Lett.20212324710.3892/ol.2021.1316534992680
    [Google Scholar]
  129. SunK. RenW. LiS. ZhengJ. HuangY. ZhiK. GaoL. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11.Pathol. Res. Pract.202223115377810.1016/j.prp.2022.15377835093695
    [Google Scholar]
  130. YadavP. SharmaP. SundaramS. VenkatramanG. BeraA.K. KarunagaranD. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells.Cancer Lett.202152221122410.1016/j.canlet.2021.09.03334571083
    [Google Scholar]
  131. KimD.H. KhanH. UllahH. HassanS.T.S. ŠmejkalK. EfferthT. MahomoodallyM.F. XuS. HabtemariamS. FilosaR. LagoaR. RengasamyK.R.R. MicroRNA targeting by quercetin in cancer treatment and chemoprotection.Pharmacol. Res.201914710434610.1016/j.phrs.2019.10434631295570
    [Google Scholar]
  132. HarrisZ. DonovanM.G. BrancoG.M. LimesandK.H. BurdR. Quercetin as an emerging anti-melanoma agent: A four-focus area therapeutic development strategy.Front. Nutr.201634810.3389/fnut.2016.0004827843913
    [Google Scholar]
  133. SrivastavaS.K. AroraS. AverettC. SinghS. SinghA.P. Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance.BioMed Res. Int.201520151910.1155/2015/84871025853141
    [Google Scholar]
  134. QuintanilhaB. ReisB. DuarteG. CozzolinoS. RogeroM. Nutrimiromics: Role of microRNAs and nutrition in modulating inflammation and chronic diseases.Nutrients2017911116810.3390/nu911116829077020
    [Google Scholar]
  135. Boesch-SaadatmandiC. LobodaA. WagnerA.E. StachurskaA. JozkowiczA. DulakJ. DöringF. WolfframS. RimbachG. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.J. Nutr. Biochem.201122329329910.1016/j.jnutbio.2010.02.00820579867
    [Google Scholar]
  136. Boesch-SaadatmandiC. WagnerA.E. WolfframS. RimbachG. Effect of quercetin on inflammatory gene expression in mice liver in vivo – role of redox factor 1, miRNA-122 and miRNA-125b.Pharmacol. Res.201265552353010.1016/j.phrs.2012.02.00722402395
    [Google Scholar]
  137. LouG. LiuY. WuS. XueJ. YangF. FuH. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis.Cell. Physiol. Biochem.20153521922202
    [Google Scholar]
  138. CurtiV. CapelliE. BoschiF. NabaviS.F. BongiornoA.I. HabtemariamS. NabaviS.M. DagliaM. Modulation of human miR-17–3p expression by methyl 3- O -methyl gallate as explanation of its in vivo protective activities.Mol. Nutr. Food Res.20145891776178410.1002/mnfr.20140000724975036
    [Google Scholar]
  139. LançonA. MichailleJ.J. LatruffeN. Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis.J. Sci. Food Agric.201393133155316410.1002/jsfa.622823674481
    [Google Scholar]
  140. SonokiH. SatoT. EndoS. MatsunagaT. YamaguchiM. YamazakiY. SugataniJ. IkariA. Quercetin decreases claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells.Nutrients2015764578459210.3390/nu706457826061016
    [Google Scholar]
  141. Del Follo-MartinezA. BanerjeeN. LiX. SafeS. Mertens-TalcottS. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a.Nutr. Cancer201365349450410.1080/01635581.2012.72519423530649
    [Google Scholar]
  142. ZhouJ. GongJ. DingC. ChenG. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.Mol. Med. Rep.20151223127313110.3892/mmr.2015.367925937243
    [Google Scholar]
  143. TaoS. HeH. ChenQ. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells.Mol. Cell. Biochem.20154021-29310010.1007/s11010‑014‑2317‑725596948
    [Google Scholar]
  144. HuS. ChengJ. ZhaoW. ZhaoH. Quercetin induces apoptosis in meningioma cells through the miR-197/IGFBP5 cascade.Environ. Toxicol. Pharmacol.20208010343910.1016/j.etap.2020.10343932585423
    [Google Scholar]
  145. ChaiR. XuC. LuL. LiuX. MaZ. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway.Immunopharmacol. Immunotoxicol.202143669370310.1080/08923973.2021.196603234448661
    [Google Scholar]
  146. ZhangC. HaoY. SunY. LiuP. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis.J. Pharmacol. Sci.2019140212813610.1016/j.jphs.2019.03.00531257059
    [Google Scholar]
  147. LiW. LiuM. XuY.F. FengY. CheJ.P. WangG.C. ZhengJ.H. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a.Oncol. Rep.201431111712410.3892/or.2013.281124173369
    [Google Scholar]
  148. YangF.Q. LiuM. LiW. CheJ.P. WangG.C. ZhengJ.H. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA-21.Mol. Med. Rep.20151121085109210.3892/mmr.2014.281325354548
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673259466231031050437
Loading
/content/journals/cmc/10.2174/0109298673259466231031050437
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; biological pathways; Cancer; epigenetic; microRNA; phytochemicals; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test