Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Genistein (GEN) is a member of the polyphenol family, known chiefly for its effects on metabolic diseases and gynecological disorders. GEN has anti-cancer properties by inhibiting tumor proliferation, tumor metastasis, invasion, migration, and inducing apoptosis. Ovarian cancer (OC) is ranked 7th among the most common gynecological cancers. Despite its low incidence compared to other cancers, it is the first cause of death among gynecologic malignancies. Surgery and chemotherapy are the main options for treating this fatal cancer. Therefore, further investigations into GEN may aid in the discovery of novel therapeutics for preventing and/or treating OC. In this review, we aim to investigate the role of GEN in ovarian cancer. We investigate the anti-tumor effects of GEN on OC cell lines, including inducing apoptosis, suppressing tumor growth, and inhibiting metastasis. Also, we review the studies investigating GEN's roles as an adjuvant in therapeutic regimens with other chemotherapeutic agents (, cisplatin, quercetin, and gemcitabine).

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673251713231019091910
2023-10-25
2025-07-11
Loading full text...

Full text loading...

References

  1. JaiswalN. AkhtarJ. SinghS.P. AhsanF. Badruddeen An overview on genistein and its various formulations.Drug Res. (Stuttg.)201969630531310.1055/a‑0797‑365730517965
    [Google Scholar]
  2. MukundV. MukundD. SharmaV. MannarapuM. AlamA. Genistein: Its role in metabolic diseases and cancer.Crit. Rev. Oncol. Hematol.2017119132210.1016/j.critrevonc.2017.09.00429065980
    [Google Scholar]
  3. MukundV. Genistein: Its role in breast cancer growth and metastasis.Curr. Drug Metab.202021161010.2174/138920022166620012012191931987018
    [Google Scholar]
  4. FuZ. CaoX. LiuL. CaoX. CuiY. LiX. QuanM. RenK. ChenA. XuC. QiuY. ChenX. WangZ. CaoJ. Genistein inhibits lung cancer cell stem-like characteristics by modulating MnSOD and FoxM1 expression.Oncol. Lett.20202032506251510.3892/ol.2020.1180232782570
    [Google Scholar]
  5. ZhangQ. BaoJ. YangJ. Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migrationand inhibition of cell migration.Arch. Med. Sci.20191541001100910.5114/aoms.2018.7874231360194
    [Google Scholar]
  6. ChenC. WangY. ChenS. RuanX. LiaoH. ZhangY. SunJ. GaoJ. DengG. Genistein inhibits migration and invasion of cervical cancer HeLa cells by regulating FAK-paxillin and MAPK signaling pathways.Taiwan. J. Obstet. Gynecol.202059340340810.1016/j.tjog.2020.03.01232416888
    [Google Scholar]
  7. MomenimovahedZ. TiznobaikA. TaheriS. SalehiniyaH. Ovarian cancer in the world: Epidemiology and risk factors.Int. J. Womens Health20191128729910.2147/IJWH.S19760431118829
    [Google Scholar]
  8. OrrB. EdwardsR.P. Diagnosis and treatment of ovarian cancer.Hematol. Oncol. Clin. North Am.201832694396410.1016/j.hoc.2018.07.01030390767
    [Google Scholar]
  9. YangZ. ZhuW. GaoS. XuH. WuB. KulkarniK. SinghR. TangL. HuM. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: Application to an oral bioavailability study of genistein in mice.J. Pharm. Biomed. Anal.2010531818910.1016/j.jpba.2010.03.01120378296
    [Google Scholar]
  10. ZhouS. HuY. ZhangB. TengZ. GanH. YangZ. WangQ. HuanM. MeiQ. Dose-dependent absorption, metabolism, and excretion of genistein in rats.J. Agric. Food Chem.200856188354835910.1021/jf801051d18710250
    [Google Scholar]
  11. AndradeJ.E. TwaddleN.C. HelferichW.G. DoergeD.R. Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice.J. Agric. Food Chem.20105874529453610.1021/jf903984320225898
    [Google Scholar]
  12. ColdhamN.G. ZhangA.Q. KeyP. SauerM.J. Absolute bioavailability of [14C] genistein in the rat; plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity.Eur. J. Drug Metab. Pharmacokinet.200227424925810.1007/BF0319233512587954
    [Google Scholar]
  13. SetchellK.D.R. BrownN.M. DesaiP. Zimmer-NechemiasL. WolfeB.E. BrashearW.T. KirschnerA.S. CassidyA. HeubiJ.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J. Nutr.20011314Suppl.1362S1375S10.1093/jn/131.4.1362S11285356
    [Google Scholar]
  14. GuL. HouseS.E. PriorR.L. FangN. RonisM.J.J. ClarksonT.B. WilsonM.E. BadgerT.M. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women.J. Nutr.200613651215122110.1093/jn/136.5.121516614407
    [Google Scholar]
  15. ShelnuttS.R. CiminoC.O. WigginsP.A. BadgerT.M. Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein.Cancer Epidemiol. Biomarkers Prev.20009441341910794486
    [Google Scholar]
  16. AdlercreutzH. van der WildtJ. KinzelJ. AttallaH. WähälaK. MäkeläT. HaseT. FotsisT. Lignan and isoflavonoid conjugates in human urine.J. Steroid Biochem. Mol. Biol.19955219710310.1016/0960‑0760(94)00146‑D7857879
    [Google Scholar]
  17. FischerL. MahoneyC. JeffcoatA.R. KochM.A. ThomasB.F. ValentineJ.L. StinchcombeT. BoanJ. CrowellJ.A. ZeiselS.H. Clinical characteristics and pharmacokinetics of purified soy isoflavones: Multiple-dose administration to men with prostate neoplasia.Nutr. Cancer200448216017010.1207/s15327914nc4802_515231450
    [Google Scholar]
  18. GohY.X. JalilJ. LamK.W. HusainK. PremakumarC.M. Genistein: A review on its anti-inflammatory properties.Front. Pharmacol.20221382096910.3389/fphar.2022.82096935140617
    [Google Scholar]
  19. TuliH.S. TuorkeyM.J. ThakralF. SakK. KumarM. SharmaA.K. SharmaU. JainA. AggarwalV. BishayeeA. Molecular mechanisms of action of genistein in cancer: Recent advances.Front. Pharmacol.201910133610.3389/fphar.2019.0133631866857
    [Google Scholar]
  20. YangZ. KulkarniK. ZhuW. HuM. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME.Anticancer. Agents Med. Chem.201212101264128010.2174/18715201280383310722583407
    [Google Scholar]
  21. KanoM. TakayanagiT. HaradaK. SawadaS. IshikawaF. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults.J. Nutr.200613692291229610.1093/jn/136.9.229116920843
    [Google Scholar]
  22. PapajK. KasprzyckaA. GóraA. GrajoszekA. RzepeckaG. StojkoJ. BarskiJ.J. SzejaW. RusinA. Structure–bioavailability relationship study of genistein derivatives with antiproliferative activity on human cancer cell.J. Pharm. Biomed. Anal.202018511321610.1016/j.jpba.2020.11321632155543
    [Google Scholar]
  23. RusinA. KrawczykZ. GrynkiewiczG. GoglerA. Zawisza-PuchałkaJ. SzejaW. Synthetic derivatives of genistein, their properties and possible applications.Acta Biochim. Pol.2010571233410.18388/abp.2010_236820216977
    [Google Scholar]
  24. ByczekA. Zawisza-PuchalkaJ. GrucaA. PapajK. GrynkiewiczG. RusinM. SzejaW. RusinA. Genistein derivatives regioisomerically substituted at 7-O- and 4′-O- have different effect on the cell cycle.J. Chem.201310.1155/2013/191563
    [Google Scholar]
  25. SzejaW. GrynkiewiczG. BiegT. SwierkP. ByczekA. PapajK. KitelR. RusinA. Synthesis and cytotoxicity of 2,3-enopyranosyl C-linked conjugates of genistein.Molecules20141967072709310.3390/molecules1906707224886936
    [Google Scholar]
  26. KimS.H. KimC.W. JeonS.Y. GoR.E. HwangK.A. ChoiK.C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models.Lab. Anim. Res.201430414315010.5625/lar.2014.30.4.14325628724
    [Google Scholar]
  27. MahmoudA.M. YangW. BoslandM.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms.J. Steroid Biochem. Mol. Biol.201414011613210.1016/j.jsbmb.2013.12.01024373791
    [Google Scholar]
  28. SpagnuoloC. RussoG.L. OrhanI.E. HabtemariamS. DagliaM. SuredaA. NabaviS.F. DeviK.P. LoizzoM.R. TundisR. NabaviS.M. Genistein and cancer: Current status, challenges, and future directions.Adv. Nutr.20156440841910.3945/an.114.00805226178025
    [Google Scholar]
  29. BhatS.S. PrasadS.K. ShivamalluC. PrasadK.S. SyedA. ReddyP. CullC.A. AmachawadiR.G. Genistein: A potent anti-breast cancer agent.Curr. Issues Mol. Biol.20214331502151710.3390/cimb4303010634698063
    [Google Scholar]
  30. KobayashiT. NakataT. KuzumakiT. Effect of flavonoids on cell cycle progression in prostate cancer cells.Cancer Lett.20021761172310.1016/S0304‑3835(01)00738‑811790449
    [Google Scholar]
  31. YeF. WuJ. DunnT. YiJ. TongX. ZhangD. Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein.Cancer Lett.20042111394610.1016/j.canlet.2004.03.04315194215
    [Google Scholar]
  32. AlhasanS.A. AranhaO. SarkarF.H. Genistein elicits pleiotropic molecular effects on head and neck cancer cells.Clin. Cancer Res.20017124174418111751518
    [Google Scholar]
  33. SahinK. YeniceE. BilirB. OrhanC. TuzcuM. SahinN. OzercanI.H. KabilN. OzpolatB. KucukO. Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model.Cancer Prev. Res. (Phila.)201912313514610.1158/1940‑6207.CAPR‑17‑028930651293
    [Google Scholar]
  34. LuC. WangY. XuT. LiQ. WangD. ZhangL. FanB. WangF. LiuX. Genistein ameliorates scopolamine-induced amnesia in mice through the regulation of the cholinergic neurotransmission, antioxidant system and the ERK/CREB/BDNF signaling.Front. Pharmacol.20189115310.3389/fphar.2018.0115330369882
    [Google Scholar]
  35. CarbonelA.A.F. SimõesR.S. GirãoJ.H.C. SassoG. BertonciniC.R.A. SorpresoI.C.E. Isoflavones in gynecology.Rev. Assoc. Med. Bras.2018646560410.1590/1806‑9282.64.06.560
    [Google Scholar]
  36. KuiperG.G. EnmarkE. Pelto-HuikkoM. NilssonS. GustafssonJ.A. Cloning of a novel receptor expressed in rat prostate and ovary.Proc. Natl. Acad. Sci. USA199693125925593010.1073/pnas.93.12.59258650195
    [Google Scholar]
  37. CassidyA. de Pascual TeresaS. RimbachG. Molecular mechanisms by which dietary isoflavones potentially prevent atherosclerosis.Expert Rev. Mol. Med.200352411510.1017/S146239940300673214585174
    [Google Scholar]
  38. NilssonS. KoehlerK.F. GustafssonJ.Å. Development of subtype-selective oestrogen receptor-based therapeutics.Nat. Rev. Drug Discov.2011101077879210.1038/nrd355121921919
    [Google Scholar]
  39. MinutoloF. MacchiaM. KatzenellenbogenB.S. KatzenellenbogenJ.A. Estrogen receptor β ligands: Recent advances and biomedical applications.Med. Res. Rev.201131336444210.1002/med.2018619967775
    [Google Scholar]
  40. YonekuboS. FushimiN. MiyagiT. NakanishiO. KatsunoK. OzawaM. HandaC. FuruyaN. MuranakaH. Synthesis and structure–activity relationships of 1-benzylindane derivatives as selective agonists for estrogen receptor beta.Bioorg. Med. Chem.201624225895591010.1016/j.bmc.2016.09.04727692995
    [Google Scholar]
  41. ChanK.K.L. LeungT.H.Y. ChanD.W. WeiN. LauG.T.Y. LiuS.S. SiuM.K.Y. NganH.Y.S. Targeting estrogen receptor subtypes (ERα and ERβ) with selective ER modulators in ovarian cancer.J. Endocrinol.2014221232533610.1530/JOE‑13‑050024819599
    [Google Scholar]
  42. HarrisH.A. Preclinical characterization of selective estrogen receptor beta agonists: New insights into their therapeutic potential.Ernst. Schering. Found. Symp. Proc.20062006114961
    [Google Scholar]
  43. ChaudharyS.C. SinghT. TalwelkarS.S. SrivastavaR.K. ArumugamA. WengZ. ElmetsC.A. AfaqF. KopelovichL. AtharM. Erb-041, an estrogen receptor-β agonist, inhibits skin photocarcinogenesis in SKH-1 hairless mice by downregulating the WNT signaling pathway.Cancer Prev. Res. (Phila.)20147218619810.1158/1940‑6207.CAPR‑13‑027624217507
    [Google Scholar]
  44. Schüler-ToprakS. HäringJ. InwaldE.C. MoehleC. OrtmannO. TreeckO. Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro.BMC Cancer201616195110.1186/s12885‑016‑2973‑y28003019
    [Google Scholar]
  45. Schüler-ToprakS. MoehleC. SkrzypczakM. OrtmannO. TreeckO. Effect of estrogen receptor β agonists on proliferation and gene expression of ovarian cancer cells.BMC Cancer201717131910.1186/s12885‑017‑3246‑028482871
    [Google Scholar]
  46. ChanK.K.L. SiuM.K.Y. JiangY. WangJ. LeungT.H.Y. NganH.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer.Cancer Cell Int.20181816510.1186/s12935‑018‑0559‑229743815
    [Google Scholar]
  47. HaddadY.H. SaidR.S. KamelR. MorsyE.M.E. El-DemerdashE. Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: Co-operative role of ER-β, TGF-β, and FOXL-2.Sci. Rep.20201011355110.1038/s41598‑020‑70309‑232782329
    [Google Scholar]
  48. SutrisnoS. AprinaH. SimanungkalitH.M. AndriyaniA. BarliantoW. SujutiH. SantosoS. DwijayasaP.M. WahyuniE.S. MustofaE. Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis.J. Tradit. Complement. Med.20188227828110.1016/j.jtcme.2017.03.00229736382
    [Google Scholar]
  49. TsuchiyaM. MiuraT. HanaokaT. IwasakiM. SasakiH. TanakaT. NakaoH. KatohT. IkenoueT. KabutoM. TsuganeS. Effect of soy isoflavones on endometriosis: Interaction with estrogen receptor 2 gene polymorphism.Epidemiology200718340240810.1097/01.ede.0000257571.01358.f917474167
    [Google Scholar]
  50. MumfordS.L. WeckJ. KannanK. Buck LouisG.M. Urinary phytoestrogen concentrations are not associated with incident endometriosis in premenopausal women.J. Nutr.2017147222723410.3945/jn.116.23884028031375
    [Google Scholar]
  51. ZhaoQ. ZhaoM. ParrisA.B. XingY. YangX. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.Int. J. Oncol.20164931203121010.3892/ijo.2016.358827574003
    [Google Scholar]
  52. PonsD.G. Nadal-SerranoM. Torrens-MasM. OliverJ. RocaP. The phytoestrogen genistein affects breast cancer cells treatment depending on the ERα/ERβ ratio.J. Cell. Biochem.2016117121822910.1002/jcb.2526826100284
    [Google Scholar]
  53. SundaramM.K. AnsariM.Z. Al MuteryA. AshrafM. NasabR. RaiS. RaisN. HussainA. Genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells.Anticancer. Agents Med. Chem.201818341242110.2174/187152061766617091814211428925878
    [Google Scholar]
  54. GossnerG. ChoiM. TanL. FogorosS. GriffithK. KuenkerM. LiuJ. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells.Gynecol. Oncol.20071051233010.1016/j.ygyno.2006.11.00917234261
    [Google Scholar]
  55. OuyangG. YaoL. RuanK. SongG. MaoY. BaoS. Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways.Cell Biol. Int.200933121237124410.1016/j.cellbi.2009.08.01119732843
    [Google Scholar]
  56. AbrahamR.T. Cell cycle checkpoint signaling through the ATM and ATR kinases.Genes Dev.200115172177219610.1101/gad.91440111544175
    [Google Scholar]
  57. ThasniK.A.A. RojiniG. RakeshS.N. RatheeshkumarT. BabuM.S. SrinivasG. BanerjiA. SrinivasP. Genistein induces apoptosis in ovarian cancer cells via different molecular pathways depending on breast cancer susceptibility gene-1 (BRCA1) status.Eur. J. Pharmacol.20085882-315816410.1016/j.ejphar.2008.04.04118514188
    [Google Scholar]
  58. ErtenF. Yeni̇ceE. OrhanC. ErB. Demi̇rel ÖnerP. Defo DeehP.B. Şahi̇nK. Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer.Turk. J. Med. Sci.20215131465147110.3906/sag‑2007‑25433550763
    [Google Scholar]
  59. HuangS.L. ChangT.C. ChaoC.C.K. SunN.K. Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells.Biochem. Pharmacol.202017711396510.1016/j.bcp.2020.11396532278794
    [Google Scholar]
  60. NingY. FengW. CaoX. RenK. QuanM. ChenA. XuC. QiuY. CaoJ. LiX. LuoX. RETRACTED ARTICLE: Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis.J. Exp. Clin. Cancer Res.20193811910.1186/s13046‑018‑1010‑130646963
    [Google Scholar]
  61. XuL. XiangJ. ShenJ. ZouX. ZhaiS. YinY. LiP. WangX. SunQ. Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells.Anticancer. Agents Med. Chem.20131371126113210.2174/1871520611313999000623438830
    [Google Scholar]
  62. ParkerL.P. TaylorD.D. KestersonJ. MetzingerD.S. Gercel-TaylorC. Modulation of microRNA associated with ovarian cancer cells by genistein.Eur. J. Gynaecol. Oncol.200930661662120099489
    [Google Scholar]
  63. RusinA. Zawisza-PuchałkaJ. KujawaK. Gogler-PigłowskaA. WietrzykJ. ŚwitalskaM. Głowala-KosińskaM. GrucaA. SzejaW. KrawczykZ. GrynkiewiczG. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells.Bioorg. Med. Chem.201119129530510.1016/j.bmc.2010.11.02421129977
    [Google Scholar]
  64. NingY. XuM. CaoX. ChenX. LuoX. Inactivation of AKT, ERK and NF-κB by genistein derivative, 7-difluoromethoxyl-5,4′-di-n-octylygenistein, reduces ovarian carcinoma oncogenicity.Oncol. Rep.201738294995810.3892/or.2017.570928627607
    [Google Scholar]
  65. NingY. LiQ. XiangH. LiuF. CaoJ. Apoptosis induced by 7-difluoromethoxyl-5,4′-di-n-octyl genistein via the inactivation of FoxM1 in ovarian cancer cells.Oncol. Rep.20122761857186422447287
    [Google Scholar]
  66. NingY.X. LiQ.X. RenK.Q. QuanM.F. CaoJ.G. 7-difluoromethoxyl-5,4′-di-n-octyl genistein inhibits ovarian cancer stem cell characteristics through the downregulation of FOXM1.Oncol. Lett.20148129530010.3892/ol.2014.208024959264
    [Google Scholar]
  67. NingY.X. LuoX. XuM. FengX. WangJ. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc.Oncotarget2017843748367484510.18632/oncotarget.2041329088827
    [Google Scholar]
  68. AhmedA.A. GoldsmithJ. FoktI. LeX.F. KrzyskoK.A. LesyngB. BastR.C.Jr PriebeW. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer.Cancer Chemother. Pharmacol.20116841033104410.1007/s00280‑011‑1575‑221340606
    [Google Scholar]
  69. WangJ. GaoC. Meng Lk: Study on the synthesis and antitumor effects of 5-Hydroxy-4′-nitro-7-propionyloxy-isoflavone.China Pharmacist.20121513781385
    [Google Scholar]
  70. JinY. LiuC. WuQ. YaoB. DaiY. ZhangL. Design and synthesis of genistein derivatives 5-hydroxy-4′-nitro-7-substituted acyloxy isoflavone and their antitumor effects.Acad. J. Mil. Med. Univ.2005262182185
    [Google Scholar]
  71. BaiJ. LuoX. 5-Hydroxy-4′-nitro-7-propionyloxy-genistein inhibited invasion and metastasis via inactivating wnt/b-catenin signal pathway in human endometrial carcinoma ji endometrial cells.Med. Sci. Monit.2018243230324310.12659/MSM.90947229769480
    [Google Scholar]
  72. BaiJ. YangB.J. LuoX. Effects of 5-hydroxy-4′-nitro-7-propionyloxy-genistein on inhibiting proliferation and invasion via activating reactive oxygen species in human ovarian cancer A2780/DDP cells.Oncol. Lett.20181545227523510.3892/ol.2018.793829552162
    [Google Scholar]
  73. LiuY. ZhangY-M. SongD-F. CuiH-B. Effect of apoptosis in human breast cancer cells and its probable mechanisms by genistein.Wei Sheng Yen Chiu2005341676915862028
    [Google Scholar]
  74. HsiehC-Y. SantellR.C. HaslamS.Z. HelferichW.G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo.Cancer Res.19985817383338389731492
    [Google Scholar]
  75. SatohH. NishikawaK. SuzukiK. AsanoR. VirgonaN. IchikawaT. HagiwaraK. YanoT. Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent.Res. Commun. Mol. Pathol. Pharmacol.2003113-11414915815686114
    [Google Scholar]
  76. MaiZ. BlackburnG.L. ZhouJ.R. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells.Mol. Carcinog.200746753454210.1002/mc.2030017295235
    [Google Scholar]
  77. LiY. AhmedF. AliS. PhilipP.A. KucukO. SarkarF.H. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells.Cancer Res.200565156934694210.1158/0008‑5472.CAN‑04‑460416061678
    [Google Scholar]
  78. GongL. LiY. Nedeljkovic-KurepaA. SarkarF.H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells.Oncogene200322304702470910.1038/sj.onc.120658312879015
    [Google Scholar]
  79. CaëtanoB. Le CorreL. ChalabiN. DelortL. BignonY.J. Bernard-GallonD.J. Soya phytonutrients act on a panel of genes implicated with BRCA1 and BRCA2 oncosuppressors in human breast cell lines.Br. J. Nutr.200695240641310.1079/BJN2005164016469160
    [Google Scholar]
  80. SeoH.S. DeNardoD.G. JacquotY. LaïosI. VidalD.S. ZambranaC.R. LeclercqG. BrownP.H. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha.Breast Cancer Res. Treat.200699212113410.1007/s10549‑006‑9191‑216541309
    [Google Scholar]
  81. LiuB. EdgertonS. YangX. KimA. Ordonez-ErcanD. MasonT. AlvarezK. McKimmeyC. LiuN. ThorA. Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumor prevention.Cancer Res.200565387988610.1158/0008‑5472.879.65.315705886
    [Google Scholar]
  82. MansonM.M. FarmerP.B. GescherA. StewardW.P. Innovative agents in cancer prevention.Recent Results Cancer Res.200516625727510.1007/3‑540‑26980‑0_1715648195
    [Google Scholar]
  83. KelloffGJ CrowellJA SteeleVE LubetRA MaloneWA BooneCW Progress in cancer chemoprevention: Development of diet-derived chemopreventive agents.J. Nutr.20002S Suppl467s271s
    [Google Scholar]
  84. KumarR. VermaV. JainA. JainR.K. MaikhuriJ.P. GuptaG. Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer.J. Nutr. Biochem.201122872373110.1016/j.jnutbio.2010.06.00321062672
    [Google Scholar]
  85. SolomonL.A. AliS. BanerjeeS. MunkarahA.R. MorrisR.T. SarkarF.H. Sensitization of ovarian cancer cells to cisplatin by genistein: The role of NF-kappaB.J. Ovarian Res.200811910.1186/1757‑2215‑1‑919025644
    [Google Scholar]
  86. YanhongH. PengY. QinghongZ. XiaoyanX. Genistein sensitizes ovarian carcinoma cells to chemotherapy by switching the cell cycle progression in vitro.J. Med. Coll. PLA200924312513510.1016/S1000‑1948(09)60028‑9
    [Google Scholar]
  87. ShenF. WeberG. Synergistic action of quercetin and genistein in human ovarian carcinoma cells.Oncol. Res.1997911-125976029563007
    [Google Scholar]
  88. RezaeiA. FathiM. JafariS.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers.Food Hydrocoll.20198814616210.1016/j.foodhyd.2018.10.003
    [Google Scholar]
  89. DeLeonV.H. NguyenT.D. NarM. D’SouzaN.A. GoldenT.D. Polymer nanocomposites for improved drug delivery efficiency.Mater. Chem. Phys.20121322-340941510.1016/j.matchemphys.2011.11.046
    [Google Scholar]
  90. ElzoghbyA.O. Abo El-FotohW.S. ElgindyN.A. Casein-based formulations as promising controlled release drug delivery systems.J. Control. Release2011153320621610.1016/j.jconrel.2011.02.01021338636
    [Google Scholar]
  91. BindhyaK.P. Uma MaheswariP. Meera Sheriffa BegumK.M. Milk protein inspired multifunctional magnetic carrier targeting progesterone receptors: Improved anticancer potential of soybean-derived genistein against breast and ovarian cancers.Mater. Chem. Phys.202127212505510.1016/j.matchemphys.2021.125055
    [Google Scholar]
  92. NurunnabiM. KhatunZ. BadruddozaA.Z.M. McCarthyJ.R. LeeY. HuhK.M. Biomaterials and bioengineering approaches for mitochondria and nuclear targeting drug delivery.ACS Biomater. Sci. Eng.2019541645166010.1021/acsbiomaterials.8b01615
    [Google Scholar]
  93. SouhoT. LamboniL. XiaoL. YangG. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery.Biotechnol. Adv.20183671928194510.1016/j.biotechadv.2018.08.00130077715
    [Google Scholar]
  94. AttariE. NosratiH. DanafarH. Kheiri ManjiliH. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier.J. Biomed. Mater. Res. A2019107112492250010.1002/jbm.a.3675531298774
    [Google Scholar]
  95. NosratiH. JavaniE. SalehiabarM. Kheiri ManjiliH. DavaranS. DanafarH. Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system.J. Mater. Res.201833111602161110.1557/jmr.2018.148
    [Google Scholar]
  96. PurushothamanB.K. MaheshwariU.P. K MM.S.B. Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer.Int. J. Biol. Macromol.202015129330410.1016/j.ijbiomac.2020.02.17232084471
    [Google Scholar]
  97. KamarajS. PalanisamyU.M. Kadhar MohamedM.S.B. GangasalamA. MariaG.A. KandasamyR. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.Eur. J. Pharm. Sci.2018116486010.1016/j.ejps.2018.01.02329355595
    [Google Scholar]
  98. HussienN.A. IşıklanN. TürkM. Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel.Mater. Chem. Phys.201821147948810.1016/j.matchemphys.2018.03.015
    [Google Scholar]
  99. DiepC.H. DanielA.R. MauroL.J. KnutsonT.P. LangeC.A. Progesterone action in breast, uterine, and ovarian cancers.J. Mol. Endocrinol.2015542R31R5310.1530/JME‑14‑025225587053
    [Google Scholar]
  100. ZhouL. ZhouW. ZhangH. HuY. YuL. ZhangY. ZhangY. WangS. WangP. XiaW. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α.Int. J. Mol. Med.201740375576110.3892/ijmm.2017.306028713912
    [Google Scholar]
  101. SyedV. MukherjeeK. Godoy-TundidorS. HoS.M. Progesterone induces Apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL overexpression.J. Cell. Biochem.2007102244245210.1002/jcb.2130417393432
    [Google Scholar]
  102. PoolH. Campos-VegaR. Herrera-HernándezM.G. García-SolisP. García-GascaT. SánchezI.C. Luna-BárcenasG. Vergara-CastañedaH. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells.Am. J. Transl. Res.20181082306232330210672
    [Google Scholar]
  103. WangY. LiW. WangZ. RenH. LiY. ZhangY. YangP. PanS. Genistein upregulates cyclin D1 and CDK4 expression and promotes the proliferation of ovarian cancer OVCAR-5 cells.Clin. Chim. Acta202151210010510.1016/j.cca.2019.08.02331465770
    [Google Scholar]
  104. HwangK.A. ParkM.A. KangN.H. YiB.R. HyunS.H. JeungE.B. ChoiK.C. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways.Toxicol. Appl. Pharmacol.2013272363764610.1016/j.taap.2013.07.02723933164
    [Google Scholar]
  105. Gercel-TaylorC. FeitelsonA.K. TaylorD.D. Inhibitory effect of genistein and daidzein on ovarian cancer cell growth.Anticancer Res.2004242B79580015161029
    [Google Scholar]
  106. ChoiE.J. KimT. LeeM.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells.Life Sci.200780151403140810.1016/j.lfs.2006.12.03117291540
    [Google Scholar]
  107. Novak-HoferI. CohrsS. GrünbergJ. FriedliA. SchlatterM.C. PfeiferM. AltevogtP. SchubigerP.A. Antibodies directed against L1-CAM synergize with Genistein in inhibiting growth and survival pathways in SKOV3ip human ovarian cancer cells.Cancer Lett.2008261219320410.1016/j.canlet.2007.11.01218155830
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673251713231019091910
Loading
/content/journals/cmc/10.2174/0109298673251713231019091910
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; endometriosis; fatty acids; Genistein; gynecological cancers; ovarian cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test