Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The main protease (Mpro) is a crucial enzyme for the life cycle of SARS-CoV-2 and a validated target for the treatment of COVID-19 infection. Natural products have been a proper alternative for treating viral diseases by modulating different steps of the life cycle of many viruses.

Objective

This review article is designed to summarize the cumulative information of natural-derived Mpro inhibitors that are validated by experimental biological testing.

Methods

The natural-derived Mpro inhibitors of SARS-CoV-2 that have been discovered since the emergence of the COVID-19 pandemic are reviewed in this article. Only natural products with experimental validation are reported in this article. Collected compounds are classified according to their chemical identity into flavonoids, phenolic acids, quinones, alkaloids, chromones, stilbenes, tannins, lignans, terpenes, and other polyphenolic and miscellaneous natural-derived Mpro inhibitors.

Conclusion

These compounds could serve as scaffolds for further lead-structure optimization for desirable potency, a larger margin of safety, and better oral activity.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673271674231109052709
2023-11-27
2025-06-21
Loading full text...

Full text loading...

References

  1. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑931986257
    [Google Scholar]
  2. BchetniaM. GirardC. DuchaineC. LapriseC. The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status.J. Infect. Public Health202013111601161010.1016/j.jiph.2020.07.01132778421
    [Google Scholar]
  3. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  4. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  5. WangY. GrunewaldM. PerlmanS. Coronaviruses: An updated overview of their replication and pathogenesis.Methods Mol. Biol.2020220312910.1007/978‑1‑0716‑0900‑2_132833200
    [Google Scholar]
  6. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  7. QuanB.X. ShuaiH. XiaA.J. HouY. ZengR. LiuX.L. LinG.F. QiaoJ.X. LiW.P. WangF.L. WangK. ZhouR.J. YuenT.T.T. ChenM.X. YoonC. WuM. ZhangS.Y. HuangC. WangY.F. YangW. TianC. LiW.M. WeiY.Q. YuenK.Y. ChanJ.F.W. LeiJ. ChuH. YangS. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron.Nat. Microbiol.20227571672510.1038/s41564‑022‑01119‑735477751
    [Google Scholar]
  8. UllrichS. NitscheC. The SARS-CoV-2 main protease as drug target.Bioorg. Med. Chem. Lett.2020301712737710.1016/j.bmcl.2020.12737732738988
    [Google Scholar]
  9. AmporndanaiK. MengX. ShangW. JinZ. RogersM. ZhaoY. RaoZ. LiuZ.J. YangH. ZhangL. O’NeillP.M. Samar HasnainS. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives.Nat. Commun.2021121306110.1038/s41467‑021‑23313‑734031399
    [Google Scholar]
  10. Pfizer’s Novel COVID-19 Oral Antiviral Treatment Candidate Reduced Risk of Hospitalization or Death By 89% In Interim Analysis Of Phase 2/3 EPIC-HR STUDY.Pfizer Inc.2021Available from:https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate
    [Google Scholar]
  11. BorasB. JonesR.M. AnsonB.J. ArensonD. AschenbrennerL. BakowskiM.A. BeutlerN. BinderJ. ChenE. EngH. HammondH. HammondJ. HauptR.E. HoffmanR. KadarE.P. KaniaR. KimotoE. KirkpatrickM.G. LanyonL. LendyE.K. LillisJ.R. LogueJ. LuthraS.A. MaC. MasonS.W. McGrathM.E. NoellS. ObachR.S. O’ BrienM.N. O’ConnorR. OgilvieK. OwenD. PetterssonM. ReeseM.R. RogersT.F. RosalesR. RossulekM.I. SathishJ.G. ShiraiN. SteppanC. TicehurstM. UpdykeL.W. WestonS. ZhuY. WhiteK.M. García-SastreA. WangJ. ChatterjeeA.K. MesecarA.D. FriemanM.B. AndersonA.S. AllertonC. Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19.Nat. Commun.2021121605510.1038/s41467‑021‑26239‑234663813
    [Google Scholar]
  12. McCarthyM.W. Ensitrelvir as a potential treatment for COVID-19.Expert Opin. Pharmacother.202223181995199810.1080/14656566.2022.214649336350029
    [Google Scholar]
  13. Lobo-GaloN. Terrazas-LópezM. Martínez-MartínezA. Díaz-SánchezA.G. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication.J. Biomol. Struct. Dyn.20213993419342732364011
    [Google Scholar]
  14. PBI-0451 Phase 2 Study in Nonhospitalized Symptomatic Adults With COVID-19.2023Available from: https://clinicaltrials.gov/ct2/show/NCT05543707
  15. EDP-235, a Potent, Once-Daily Oral Antiviral Treatment for COVID-19.2021Available from:https://www.enanta.com/science/
  16. ThomfordN. SenthebaneD. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  17. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  18. Musarra-PizzoM. PennisiR. Ben-AmorI. MandalariG. SciortinoM.T. Antiviral activity exerted by natural products against human viruses.Viruses202113582810.3390/v1305082834064347
    [Google Scholar]
  19. LiS. ChenC. ZhangH. GuoH. WangH. WangL. ZhangX. HuaS. YuJ. XiaoP. LiR.S. TanX. Identification of natural compounds with antiviral activities against SARS-associated coronavirus.Antiviral Res.2005671182310.1016/j.antiviral.2005.02.00715885816
    [Google Scholar]
  20. a KimC.H. Anti-SARS-CoV-2 natural products as potentially therapeutic agents.Front. Pharm.202112590509
    [Google Scholar]
  21. b MerarchiM. DudhaN. DasB.C. GargM. Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs.Phytother. Res. PTR2021351053845396
    [Google Scholar]
  22. c WangZ. YangL. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts.J. Ethnopharmacol.2021270113869
    [Google Scholar]
  23. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  24. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  25. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.Sci. World J.2013201311610.1155/2013/16275024470791
    [Google Scholar]
  26. Rubio-MartínezJ. Jiménez-AlesancoA. Ceballos-LaitaL. Ortega-AlarcónD. VegaS. CalvoC. BenítezC. AbianO. Velázquez-CampoyA. ThomsonT.M. Granadino-RoldánJ.M. Gómez-GutiérrezP. PérezJ.J. Discovery of diverse natural products as inhibitors of SARS-CoV-2 M pro protease through virtual screening.J. Chem. Inf. Model.202161126094610610.1021/acs.jcim.1c0095134806382
    [Google Scholar]
  27. MehmoodS. MaqsoodM. MahtabN. KhanM.I. SaharA. ZaibS. GulS. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies.J. Food Biochem.2022468e1418910.1111/jfbc.1418935474461
    [Google Scholar]
  28. LiuJ. BodnarB.H. MengF. KhanA.I. WangX. SaribasS. WangT. LohaniS.C. WangP. WeiZ. LuoJ. ZhouL. WuJ. LuoG. LiQ. HuW. HoW. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor.Cell Biosci.202111116810.1186/s13578‑021‑00680‑834461999
    [Google Scholar]
  29. KrügerN. KronenbergerT. XieH. RochaC. PöhlmannS. SuH. XuY. LauferS.A. PillaiyarT. Discovery of polyphenolic natural products as SARS-CoV-2 Mpro inhibitors for COVID-19.Pharmaceuticals202316219010.3390/ph1602019037259339
    [Google Scholar]
  30. TasdemirD. KaiserM. BrunR. YardleyV. SchmidtT.J. TosunF. RüediP. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies.Antimicrob. Agents Chemother.20065041352136410.1128/AAC.50.4.1352‑1364.200616569852
    [Google Scholar]
  31. ZhuD. SuH. KeC. TangC. WittM. QuinnR.J. XuY. LiuJ. YeY. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method.J. Pharm. Biomed. Anal.202220911453810.1016/j.jpba.2021.11453834929567
    [Google Scholar]
  32. LiuH. YeF. SunQ. LiangH. LiC. LiS. LuR. HuangB. TanW. LaiL. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro.J. Enzyme Inhib. Med. Chem.202136149750310.1080/14756366.2021.187397733491508
    [Google Scholar]
  33. WuQ. YanS. WangY. LiM. XiaoY. LiY. Discovery of 4′-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor.Biochem. Biophys. Res. Commun.2022604768210.1016/j.bbrc.2022.03.05235303682
    [Google Scholar]
  34. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu802009026891321
    [Google Scholar]
  35. SuH. YaoS. ZhaoW. ZhangY. LiuJ. ShaoQ. WangQ. LiM. XieH. ShangW. KeC. FengL. JiangX. ShenJ. XiaoG. JiangH. ZhangL. YeY. XuY. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease.Nat. Commun.2021121362310.1038/s41467‑021‑23751‑334131140
    [Google Scholar]
  36. WangY.H. XuK.J. JiangW.S. Experimental and clinical study of shuanghuanglian aerosol in treating acute respiratory tract infection.Chung Kuo Chung Hsi I Chieh Ho Tsa Chih19951563473507549385
    [Google Scholar]
  37. SuH. YaoS. ZhaoW. LiM. LiuJ. ShangW. XieH. KeC. HuH. GaoM. YuK. LiuH. ShenJ. TangW. ZhangL. XiaoG. NiL. WangD. ZuoJ. JiangH. BaiF. WuY. YeY. XuY. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑632737471
    [Google Scholar]
  38. ChavesO. A. LimaC. R. Fintelman-RodriguesN. SacramentoC. Q. de FreitasC. S. VazquezL. TemerozoJ. R. RochaM. E. N. DiasS. S. G. CarelsN. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases.Int J Biol Macromol2022222Pt A1015102610.1016/j.ijbiomac.2022.09.204
    [Google Scholar]
  39. El-hawaryS.S. AliT.F.S. Abo El-ElaS.O. ElwekeelA. AbdelmohsenU.R. OwisA.I. Secondary metabolites of Livistona decipiens as potential inhibitors of SARS-CoV-2.RSC Advances20221230195051951110.1039/D2RA01306A35865563
    [Google Scholar]
  40. AbdallahH.M. El-HalawanyA.M. SirwiA. El-ArabyA.M. MohamedG.A. IbrahimS.R.M. KoshakA.E. AsfourH.Z. AwanZ.A. A ElfakyM. Repurposing of some natural product isolates as SARS-COV-2 main protease inhibitors via in vitro cell free and cell-based antiviral assessments and molecular modeling approaches.Pharmaceuticals202114321310.3390/ph1403021333806331
    [Google Scholar]
  41. ZhangY. LiW. HuY. DingT. ZafarM.M. JiaX. ZhangL. RenM. LiF. WangW. Cotton flower metabolites inhibit SARS‐CoV‐2 main protease.FEBS Open Bio202212101886189510.1002/2211‑5463.1347736054247
    [Google Scholar]
  42. XiongY. ZhuG.H. WangH.N. HuQ. ChenL.L. GuanX.Q. LiH.L. ChenH.Z. TangH. GeG.B. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening.Fitoterapia202115210490910.1016/j.fitote.2021.10490933894315
    [Google Scholar]
  43. AbianO. Ortega-AlarconD. Jimenez-AlesancoA. Ceballos-LaitaL. VegaS. ReyburnH.T. RizzutiB. Velazquez-CampoyA. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening.Int. J. Biol. Macromol.20201641693170310.1016/j.ijbiomac.2020.07.23532745548
    [Google Scholar]
  44. BahunM. JukicM. OblakD. KranjcL. BajcG. ButalaM. BozovicarK. BratkovicT. PodlipnikC. Poklar UlrihN. Inhibition of the SARS-CoV-2 3CL(pro) main protease by plant polyphenols.Food Chem 2022373Pt B131594
    [Google Scholar]
  45. LiaoQ. ChenZ. TaoY. ZhangB. WuX. YangL. WangQ. WangZ. An integrated method for optimized identification of effective natural inhibitors against SARS-CoV-2 3CLpro.Sci. Rep.20211112279610.1038/s41598‑021‑02266‑334815498
    [Google Scholar]
  46. RizzutiB. GrandeF. ConfortiF. Jimenez-AlesancoA. Ceballos-LaitaL. Ortega-AlarconD. VegaS. ReyburnH.T. AbianO. Velazquez-CampoyA. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs.Biomedicines20219437510.3390/biomedicines904037533918402
    [Google Scholar]
  47. YiY. ZhangM. XueH. YuR. BaoY.O. KuangY. ChaiY. MaW. WangJ. ShiX. LiW. HongW. LiJ. MuturiE. WeiH. WlodarzJ. RoszakS. QiaoX. YangH. YeM. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19.Acta Pharm. Sin. B202212114154416410.1016/j.apsb.2022.07.01735968270
    [Google Scholar]
  48. WangZ.L. GaoH.M. WangS. ZhangM. ChenK. ZhangY.Q. WangH.D. HanB.Y. XuL.L. SongT.Q. YunC.H. QiaoX. YeM. Dissection of the general two-step di- C -glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants.Proc. Natl. Acad. Sci.202011748308163082310.1073/pnas.201274511733199630
    [Google Scholar]
  49. KhanfarM.A. SalaasN. AbumostafaR. Discovery of natural‐derived M pro inhibitors as therapeutic candidates for COVID‐19: Structure‐based pharmacophore screening combined with QSAR analysis.Mol. Inform.2023424220019810.1002/minf.20220019836762567
    [Google Scholar]
  50. ZhaoG. TongY. LuanF. ZhuW. ZhanC. QinT. AnW. ZengN. Alpinetin: A review of its pharmacology and pharmacokinetics.Front. Pharmacol.20221381437010.3389/fphar.2022.81437035185569
    [Google Scholar]
  51. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  52. SehrawatR. RatheeP. AkkolE.K. KhatkarS. LatherA. RedhuN. KhatkarA. Phenolic acids-versatile natural moiety with numerous biological applications.Curr. Top. Med. Chem.202222181472148410.2174/156802662266622062311445035747974
    [Google Scholar]
  53. HelenoS.A. MartinsA. QueirozM.J.R.P. FerreiraI.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review.Food Chem.201517350151310.1016/j.foodchem.2014.10.05725466052
    [Google Scholar]
  54. HicksE.G. KandelS.E. LampeJ.N. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors.Bioorg. Med. Chem. Lett.20226612873210.1016/j.bmcl.2022.12873235427739
    [Google Scholar]
  55. Gomes JúniorA.L. IslamM.T. NicolauL.A.D. de SouzaL.K.M. AraújoT.S.L. Lopes de OliveiraG.A. de Melo NogueiraK. da Silva LopesL. MedeirosJ.V.R. MubarakM.S. Melo-CavalcanteA.A.C. Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models.ACS Omega2020531195061951510.1021/acsomega.0c0177532803044
    [Google Scholar]
  56. ChenZ. CuiQ. CooperL. ZhangP. LeeH. ChenZ. WangY. LiuX. RongL. DuR. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases.Cell Biosci.20211114510.1186/s13578‑021‑00564‑x33640032
    [Google Scholar]
  57. ZhongB. PengW. DuS. ChenB. FengY. HuX. LaiQ. LiuS. ZhouZ.W. FangP. WuY. GaoF. ZhouH. SunL. Oridonin inhibits SARS‐CoV‐2 by targeting Its 3C‐like protease.Small Sci.202226210012410.1002/smsc.20210012435600064
    [Google Scholar]
  58. HuS. WangJ. ZhangY. BaiH. WangC. WangN. HeL. Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2.J. Med. Virol.20219353143315110.1002/jmv.2687433580518
    [Google Scholar]
  59. Al-DhabiN.A. ArasuM.V. ParkC.H. ParkS.U. Recent studies on rosmarinic acid and its biological and pharmacological activities.EXCLI J.2014131192119526417331
    [Google Scholar]
  60. (a GuanH. LuoW. BaoB. CaoY. ChengF. YuS. FanQ. ZhangL. WuQ. ShanM. A comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight.Molecules202227103292
    [Google Scholar]
  61. (b MayG. WilluhnG. Antiviral effect of aqueous plant extracts in tissue culture.Arzneimittelforschung197828117204315
    [Google Scholar]
  62. QinT. RasulA. SarfrazA. SarfrazI. HussainG. AnwarH. RiazA. LiuS. WeiW. LiJ. LiX. Salvianolic acid A & B: Potential cytotoxic polyphenols in battle against cancer via targeting multiple signaling pathways.Int. J. Biol. Sci.201915102256226410.7150/ijbs.3746731592132
    [Google Scholar]
  63. ZhangY. GaoH. HuX. WangQ. ZhongF. ZhouX. LinC. YangY. WeiJ. DuW. HuangH. ZhouH. HeW. ZhangH. ZhangY. McCormickP.J. FuJ. WangD. FuY. LuX. ZhangT. DuanJ. QinB. JiangH. LuoJ. ZhangY. ChenQ. LuoQ. ChengL. ZhangZ. ZhangJ. LiJ. Structure-based discovery and structural basis of a novel broad-spectrum natural product against the main protease of coronavirus.J. Virol.2022961e01253-2110.1128/JVI.01253‑2134586857
    [Google Scholar]
  64. Santana-GálvezJ. Cisneros-ZevallosL. Jacobo-VelázquezD. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome.Molecules201722335810.3390/molecules2203035828245635
    [Google Scholar]
  65. KhanR.A. HossainR. RoyP. JainD. Mohammad SaikatA.S. Roy ShuvoA.P. AkramM. ElbossatyW.F. KhanI.N. PainuliS. SemwalP. RaufA. IslamM.T. KhanH. Anticancer effects of acteoside: Mechanistic insights and therapeutic status.Eur. J. Pharmacol.202291617469910.1016/j.ejphar.2021.17469934919888
    [Google Scholar]
  66. Nawrot-HadzikI. ZmudzinskiM. MatkowskiA. PreissnerR. Kęsik-BrodackaM. HadzikJ. DragM. AbelR. Reynoutria Rhizomes as a Natural Source of SARS-CoV-2 Mpro inhibitors–molecular docking and in vitro study.Pharmaceuticals202114874210.3390/ph1408074234451839
    [Google Scholar]
  67. TianY. LiuW. LuY. WangY. ChenX. BaiS. ZhaoY. HeT. LaoF. ShangY. GuoY. SheG. Naturally occurring cinnamic acid sugar ester derivatives.Molecules20162110140210.3390/molecules2110140227783048
    [Google Scholar]
  68. ZimmermannM.L. SnedenA.T. Vanicosides A and B, protein kinase C inhibitors from Polygonum pensylvanicum.J. Nat. Prod.199457223624210.1021/np50104a0078176400
    [Google Scholar]
  69. KimD. WangC.Y. HuR. LeeJ.Y. LuuT.T.T. ParkH.J. LeeS.K. Antitumor activity of vanicoside B Isolated from Persicaria dissitiflora by Targeting CDK8 in Triple-Negative Breast Cancer Cells.J. Nat. Prod.201982113140314910.1021/acs.jnatprod.9b0072031622095
    [Google Scholar]
  70. LinS. WangX. TangR.W.L. LeeH.C. ChanH.H. ChoiS.S.A. DongT.T.X. LeungK.W. WebbS.E. MillerA.L. TsimK.W.K. The extracts of Polygonum cuspidatum root and rhizome block the entry of SARS-CoV-2 wild-type and omicron pseudotyped viruses via inhibition of the S-Protein and 3CL protease.Molecules20222712380610.3390/molecules2712380635744929
    [Google Scholar]
  71. RubinB. WaughM.H. Antiphlogistic effects of antiserotonin (SQ 10,643) and aminopyrine in rats versus endotoxin and other agents.Exp. Biol. Med.1965119243844310.3181/00379727‑119‑3020414328912
    [Google Scholar]
  72. ChenL. GuiC. LuoX. YangQ. GüntherS. ScandellaE. DrostenC. BaiD. HeX. LudewigB. ChenJ. LuoH. YangY. YangY. ZouJ. ThielV. ChenK. ShenJ. ShenX. JiangH. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.J. Virol.200579117095710310.1128/JVI.79.11.7095‑7103.200515890949
    [Google Scholar]
  73. NarakiK. RameshradM. HosseinzadehH. Protective effects and therapeutic applications of ellagic acid against natural and synthetic toxicants: A review article.Iran. J. Basic Med. Sci.202225121402141536544528
    [Google Scholar]
  74. WissO. GloorU. Nature and distribution of terpene quinones.Biochem. Soc. Symp.19702979874944439
    [Google Scholar]
  75. MalikM.S. AlsantaliR.I. JassasR.S. AlsimareeA.A. SyedR. AlsharifM.A. KalpanaK. MoradM. AlthagafiI.I. AhmedS.A. Journey of anthraquinones as anticancer agents-a systematic review of recent literature.RSC Advances20211157358063582710.1039/D1RA05686G35492773
    [Google Scholar]
  76. XinD. LiH. ZhouS. ZhongH. PuW. Effects of anthraquinones on immune responses and inflammatory diseases.Molecules20222712383110.3390/molecules2712383135744949
    [Google Scholar]
  77. DavisR.H. AgnewP.S. ShapiroE. Antiarthritic activity of anthraquinones found in aloe for podiatric medicine.J. Am. Podiatr. Med. Assoc.1986762616610.7547/87507315‑76‑2‑613941379
    [Google Scholar]
  78. MalikE.M. MüllerC.E. Anthraquinones as pharmacological tools and drugs.Med. Res. Rev.201636470574810.1002/med.2139127111664
    [Google Scholar]
  79. FossoM.Y. ChanK.Y. GregoryR. ChangC.W.T. Library synthesis and antibacterial investigation of cationic anthraquinone analogs.ACS Comb. Sci.201214323123510.1021/co200207522324350
    [Google Scholar]
  80. GroomQ. ReynoldsT. Barbaloin in aloe species.Planta Med.198753434534810.1055/s‑2006‑96273517269040
    [Google Scholar]
  81. HoT. WuS. ChenJ. LiC. HsiangC. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction.Antiviral Res.20077429210110.1016/j.antiviral.2006.04.01416730806
    [Google Scholar]
  82. (a XuW. XuJ. WangT. LiuW. WeiH. YangX. YanW. ZhouW. XiaoJ. Ellagic acid and Sennoside B inhibit osteosarcoma cell migration, invasion and growth by repressing the expression of c-Jun.Oncol Lett.2018161898904
    [Google Scholar]
  83. (b ChenY.C. ChangC.N. HsuH.C. ChiouS.J. LeeL.T. HseuT.H. Sennoside B inhibits PDGF receptor signaling and cell proliferation induced by PDGF-BB in human osteosarcoma cells.Life Sci.20098425-2691592219393247
    [Google Scholar]
  84. AhmadiE.S. TajbakhshA. IranshahyM. AsiliJ. KretschmerN. ShakeriA. SahebkarA. Naphthoquinone derivatives isolated from plants: Recent advances in biological activity.Mini Rev. Med. Chem.202020192019203510.2174/138955752066620081821202032811411
    [Google Scholar]
  85. YadavS. SharmaA. NayikG.A. CooperR. BhardwajG. SohalH.S. MutrejaV. KaurR. ArecheF.O. AlOudatM. ShaikhA.M. KovácsB. Mohamed AhmedA.E. Review of Shikonin and Derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology.Front. Pharmacol.20221390575510.3389/fphar.2022.90575535847041
    [Google Scholar]
  86. a ZhangZ. BaiJ. ZengY. CaiM. YaoY. WuH. YouL. DongX. NiJ. Pharmacology, toxicity and pharmacokinetics of acetylshikonin: A review.Pharm Biol2020581950958
    [Google Scholar]
  87. b GuoC. HeJ. SongX. TanL. WangM. JiangP. LiY. CaoZ. PengC. Pharmacological properties and derivatives of shikonin-A review in recent years.Pharmacol. Res.2019149104463
    [Google Scholar]
  88. LiJ. ZhouX. ZhangY. ZhongF. LinC. McCormickP.J. JiangF. LuoJ. ZhouH. WangQ. FuY. DuanJ. ZhangJ. Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode.Sci. Bull.202166766166310.1016/j.scib.2020.10.01833163253
    [Google Scholar]
  89. ZhuW. XuM. ChenC.Z. GuoH. ShenM. HuX. ShinnP. Klumpp-ThomasC. MichaelS.G. ZhengW. Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening.ACS Pharmacol. Transl. Sci.2020351008101610.1021/acsptsci.0c0010833062953
    [Google Scholar]
  90. GomesC.L. de Albuquerque Wanderley SalesV. Gomes de MeloC. Ferreira da SilvaR.M. Vicente NishimuraR.H. RolimL.A. Rolim NetoP.J. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis.Phytochemistry202118611271310.1016/j.phytochem.2021.11271333667813
    [Google Scholar]
  91. a QiuS. SunH. ZhangA.H. XuH.Y. YanG.L. HanY. WangX.J. Natural alkaloids: Basic aspects, biological roles, and future perspectives.Chin J Nat Med2014126401406
    [Google Scholar]
  92. b HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity-an update and forward look.Molecules2021267183633805869
    [Google Scholar]
  93. BharateS.B. MandaS. MupparapuN. BattiniN. VishwakarmaR.A. Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor.Mini Rev. Med. Chem.201212765066410.2174/13895571280062671922512549
    [Google Scholar]
  94. LyakhovaI. PiatkovaM. GulaiaV. RomanishinA. ShmelevM. BryukhovetskiyA. SharmaA. SharmaH.S. KhotimchenkoR. BryukhovetskiyI. Alkaloids of fascaplysin are promising chemotherapeutic agents for the treatment of glioblastoma: Review.Int. Rev. Neurobiol.202015129932410.1016/bs.irn.2020.03.01032448613
    [Google Scholar]
  95. Sharifi-RadJ. BahukhandiA. DhyaniP. SatiP. CapanogluE. DoceaA.O. Al-HarrasiA. DeyA. CalinaD. Therapeutic potential of neoechinulins and their derivatives: An overview of the molecular mechanisms behind pharmacological activities.Front. Nutr.2021866419710.3389/fnut.2021.66419734336908
    [Google Scholar]
  96. WeiW. KongN. LiuM.Z. HanT. XuJ.F. LiuC. Anisodamine potently inhibits SARS-CoV-2 infection in vitro and targets its main protease.Biochem. Biophys. Res. Commun.202261681310.1016/j.bbrc.2022.05.02435636257
    [Google Scholar]
  97. EisenkraftA. FalkA. Possible role for anisodamine in organophosphate poisoning.Br. J. Pharmacol.2016173111719172710.1111/bph.1348627010563
    [Google Scholar]
  98. YangG.D. Patients of severe acute respiratory syndrome with hypoxemia treated by anisodamine.Zhongguo Wei Zhong Bing Ji Jiu Yi Xue200315845212919639
    [Google Scholar]
  99. QinZ. XiangK. SuD.F. SunY. LiuX. Activation of the cholinergic anti-inflammatory pathway as a novel therapeutic strategy for COVID-19.Front. Immunol.20211159534210.3389/fimmu.2020.59534233633726
    [Google Scholar]
  100. WangZ. ZhaoY. WangQ. XingY. FengL. KongJ. PengC. ZhangL. YangH. LuM. Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 Mpro.Signal Transduct. Target. Ther.20216121410.1038/s41392‑021‑00639‑834075025
    [Google Scholar]
  101. KorirE. KiplimoJ.J. CrouchN.R. MoodleyN. KoorbanallyN.A. Quinolizidine Alkaloids from Sophora velutina subsp. zimbabweensis (Fabaceae: Sophoreae).Nat. Prod. Commun.2012781934578X120070010.1177/1934578X120070081022978215
    [Google Scholar]
  102. ZhangP. AnQ. YiP. CuiY. ZouJ.B. YuanC.M. ZhangY. GuW. HuangL.J. ZhaoL.H. HuZ.X. HaoX.J. Thermlanseedlines A–G, seven thermopsine-based alkaloids with antiviral and insecticidal activities from the seeds of Thermopsis lanceolata R. Br.Fitoterapia202215810514010.1016/j.fitote.2022.10514035122885
    [Google Scholar]
  103. KeriR.S. BudagumpiS. PaiR.K. BalakrishnaR.G. Chromones as a privileged scaffold in drug discovery: A review.Eur. J. Med. Chem.20147834037410.1016/j.ejmech.2014.03.04724691058
    [Google Scholar]
  104. a SilvaC.F. PintoD.C. SilvaA.M. Chromones: A promising ring system for new anti-inflammatory drugs. ChemMedChem2016112022522260
    [Google Scholar]
  105. b SharmaS.K. KumarS. ChandK. KathuriaA. GuptaA. JainR. An update on natural occurrence and biological activity of chromones.Curr. Med. Chem.201118253825385221824102
    [Google Scholar]
  106. BajpaiS. Biological importance of Aloe vera and its active constituents.Synthesis of Medicinal Agents from Plants.Elsevier201817720310.1016/B978‑0‑08‑102071‑5.00008‑8
    [Google Scholar]
  107. ShenT. WangX.N. LouH.X. Natural stilbenes: An overview.Nat. Prod. Rep.200926791693510.1039/b905960a19554241
    [Google Scholar]
  108. SinghA.P. SinghR. VermaS.S. RaiV. KaschulaC.H. MaitiP. GuptaS.C. Health benefits of resveratrol: Evidence from clinical studies.Med. Res. Rev.20193951851189110.1002/med.2156530741437
    [Google Scholar]
  109. YangM. WeiJ. HuangT. LeiL. ShenC. LaiJ. YangM. LiuL. YangY. LiuG. LiuY. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 ( SARS‐CoV ‐2) in cultured Vero cells.Phytother. Res.20213531127112910.1002/ptr.691633222316
    [Google Scholar]
  110. ter EllenB.M. Dinesh KumarN. BoumaE.M. TroostB. van de PolD.P.I. van der Ende-MetselaarH.H. ApperlooL. van GosligaD. van den BergeM. NawijnM.C. van der VoortP.H.J. MoserJ. Rodenhuis-ZybertI.A. SmitJ.M. Resveratrol and pterostilbene inhibit sars-cov-2 replication in air–liquid interface cultured human primary bronchial epithelial cells.Viruses2021137133510.3390/v1307133534372541
    [Google Scholar]
  111. BarbehennR.V. Peter ConstabelC. Tannins in plant–herbivore interactions.Phytochemistry201172131551156510.1016/j.phytochem.2011.01.04021354580
    [Google Scholar]
  112. AjebliM. EddouksM. The promising role of plant tannins as bioactive antidiabetic agents.Curr. Med. Chem.201926254852488410.2174/092986732566618060512425629874989
    [Google Scholar]
  113. NguyenT.T.H. JungJ.H. KimM.K. LimS. ChoiJ.M. ChungB. KimD.W. KimD. The inhibitory effects of plant derivate polyphenols on the main protease of SARS coronavirus 2 and their structure–activity relationship.Molecules2021267192410.3390/molecules2607192433808054
    [Google Scholar]
  114. WangS.C. ChenY. WangY.C. WangW.J. YangC.S. TsaiC.L. HouM.H. ChenH.F. ShenY.C. HungM.C. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease.Am. J. Cancer Res.202010124538454633415017
    [Google Scholar]
  115. YanG. LiD. LinY. FuZ. QiH. LiuX. ZhangJ. SiS. ChenY. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors.Cell Biosci.202111119910.1186/s13578‑021‑00720‑334865653
    [Google Scholar]
  116. ThomasN.V. KimS.K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.Environ. Toxicol. Pharmacol.201132332533510.1016/j.etap.2011.09.00422004951
    [Google Scholar]
  117. JinY.H. LeeJ. JeonS. KimS. MinJ.S. KwonS. Natural Polyphenols, 1,2,3,4,6-O-Pentagalloyglucose and proanthocyanidins, as broad-spectrum anticoronaviral inhibitors targeting Mpro and RdRp of SARS-CoV-2.Biomedicines2022105117010.3390/biomedicines1005117035625907
    [Google Scholar]
  118. (a CaoY. HimmeldirkK. B. QianY. RenY. MalkiA. ChenX. Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry.Antiviral Res20171471928
    [Google Scholar]
  119. (b TuZ. XuM. ZhangJ. FengJ. HaoZ. TuC. LiuY. Pentagalloylglucose inhibits the replication of rabies virus via mediation of the miR-455/SOCS3/STAT3/IL-6 pathway.J. Virol.20199318e00539e0051931243136
    [Google Scholar]
  120. ShahatA.A. CosP. De BruyneT. ApersS. HammoudaF.M. IsmailS.I. AzzamS. ClaeysM. GoovaertsE. PietersL. Vanden BergheD. VlietinckA.J. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica.Planta Med.200268653954110.1055/s‑2002‑3254712094299
    [Google Scholar]
  121. PanJ.Y. ChenS.L. YangM.H. WuJ. SinkkonenJ. ZouK. An update on lignans: Natural products and synthesis.Nat. Prod. Rep.200926101251129210.1039/b910940d19779640
    [Google Scholar]
  122. WahabG.A. AboelmaatyW.S. LahloubM.F. SallamA. In vitro and in silico studies of SARS-CoV-2 main protease M pro inhibitors isolated from Helichrysum bracteatum.RSC Advances20221229184121842410.1039/D2RA01213H35799933
    [Google Scholar]
  123. GershenzonJ. DudarevaN. The function of terpene natural products in the natural world.Nat. Chem. Biol.20073740841410.1038/nchembio.2007.517576428
    [Google Scholar]
  124. DubeyV.S. BhallaR. LuthraR. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants.J. Biosci.200328563764610.1007/BF0270333914517367
    [Google Scholar]
  125. KanwalA. BilalM. RasoolN. ZubairM. ShahS.A.A. ZakariaZ.A. Total synthesis of terpenes and their biological significance: A critical review.Pharmaceuticals20221511139210.3390/ph1511139236422521
    [Google Scholar]
  126. LiX. ZhangC.T. MaW. XieX. HuangQ. Oridonin: A review of its pharmacology, pharmacokinetics and toxicity.Front. Pharmacol.20211264582410.3389/fphar.2021.64582434295243
    [Google Scholar]
  127. HeH. JiangH. ChenY. YeJ. WangA. WangC. LiuQ. LiangG. DengX. JiangW. ZhouR. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity.Nat. Commun.201891255010.1038/s41467‑018‑04947‑629959312
    [Google Scholar]
  128. StojakowskaA. MalarzJ. KisielW. Sesquiterpene lactones in tissue culture of Lactuca virosa.Planta Med.1994601939410.1055/s‑2006‑95941917236022
    [Google Scholar]
  129. WesołowskaA. NikiforukA. MichalskaK. KisielW. Chojnacka-WójcikE. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice.J. Ethnopharmacol.2006107225425810.1016/j.jep.2006.03.00316621374
    [Google Scholar]
  130. BischoffT.A. KelleyC.J. KarchesyY. LaurantosM. Nguyen-DinhP. ArefiA.G. Antimalarial activity of Lactucin and Lactucopicrin: Sesquiterpene lactones isolated from Cichorium intybus L.J. Ethnopharmacol.2004952-345545710.1016/j.jep.2004.06.03115507374
    [Google Scholar]
  131. RyuY.B. ParkS.J. KimY.M. LeeJ.Y. SeoW.D. ChangJ.S. ParkK.H. RhoM.C. LeeW.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii.Bioorg. Med. Chem. Lett.20102061873187610.1016/j.bmcl.2010.01.15220167482
    [Google Scholar]
  132. JangM. ParkY.I. ChaY.E. ParkR. NamkoongS. LeeJ.I. ParkJ. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro.Evid. Based Complement. Alternat. Med.202020201710.1155/2020/563083832963564
    [Google Scholar]
  133. (a IsaacsC.E. XuW. Theaflavin-3,3′-digallate and lactic acid combinations reduce herpes simplex virus infectivity.Antimicrob Agents Chemother20135783806381422521753
    [Google Scholar]
  134. (b ZuM. YangF. ZhouW. LiuA. DuG. ZhengL. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives.Antiviral Res.2012943217224
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673271674231109052709
Loading
/content/journals/cmc/10.2174/0109298673271674231109052709
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Coronavirida; COVID-19; molecular modeling; Mpro; natural products; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test