Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Long intergenic noncoding RNAs (lincRNAs) have a variety of properties that differ from those of messenger RNAs (mRNAs) encoding proteins. Long intergenic non-protein coding RNA 667 (LINC00667) is a non-coding transcript located on chromosome 18p11.31. Recently, many studies have found that LINC00667 can enhance the progression of various cancers and play a key part in a lot of diseases, such as tumorigenesis. Therefore, LINC00667 can be recognized as a potential biomarker and therapeutic target. So, we reviewed the biological functions, relevant mechanisms, as well as clinical significance of LINC00667 in several human cancers in detail.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673248494231010044348
2023-10-19
2025-04-10
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. UlitskyI. BartelD.P. lincRNAs: Genomics, evolution, and mechanisms.Cell20131541264610.1016/j.cell.2013.06.02023827673
    [Google Scholar]
  3. Boque-SastreR. GuilS. A lncRNA decoy predicts sensitivity to cisplatin.Trends Mol. Med.202026435235410.1016/j.molmed.2020.01.01532277928
    [Google Scholar]
  4. ThomsonD.W. DingerM.E. Endogenous microRNA sponges: Evidence and controversy.Nat. Rev. Genet.201617527228310.1038/nrg.2016.2027040487
    [Google Scholar]
  5. RansohoffJ.D. WeiY. KhavariP.A. The functions and unique features of long intergenic non-coding RNA.Nat. Rev. Mol. Cell Biol.201819314315710.1038/nrm.2017.10429138516
    [Google Scholar]
  6. GuttmanM. AmitI. GarberM. FrenchC. LinM.F. FeldserD. HuarteM. ZukO. CareyB.W. CassadyJ.P. CabiliM.N. JaenischR. MikkelsenT.S. JacksT. HacohenN. BernsteinB.E. KellisM. RegevA. RinnJ.L. LanderE.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature2009458723522322710.1038/nature0767219182780
    [Google Scholar]
  7. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun.202141210912010.1002/cac2.1210833119215
    [Google Scholar]
  8. GuJ. ZhangX. MiaoR. MaX. XiangX. FuY. LiuC. NiuW. QuK. A three-long non-coding RNA-expression-based risk score system can better predict both overall and recurrence-free survival in patients with small hepatocellular carcinoma.Aging20181071627163910.18632/aging.10149730018179
    [Google Scholar]
  9. ChenY. BiF. AnY. YangQ. Identification of pathological grade and prognosis‐associated lncRNA for ovarian cancer.J. Cell. Biochem.20191209144441445410.1002/jcb.2870431034644
    [Google Scholar]
  10. DhanasekaranR. NaultJ.C. RobertsL.R. Zucman-RossiJ. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy.Gastroenterology2019156249250910.1053/j.gastro.2018.11.00130404026
    [Google Scholar]
  11. Gutiérrez-CuevasJ. Lucano-LanderosS. López-CifuentesD. SantosA. Armendariz-BorundaJ. Epidemiologic, genetic, pathogenic, metabolic, epigenetic aspects involved in NASH-HCC: Current therapeutic strategies.Cancers20221512310.3390/cancers1501002336612019
    [Google Scholar]
  12. DhanasekaranR. LimayeA. CabreraR. Hepatocellular carcinoma: Current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics.Hepat. Med.20124193724367230
    [Google Scholar]
  13. FornerA. ReigM. BruixJ. Hepatocellular carcinoma.Lancet2018391101271301131410.1016/S0140‑6736(18)30010‑229307467
    [Google Scholar]
  14. WongC.M. TsangF.H.C. NgI.O.L. Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications.Nat. Rev. Gastroenterol. Hepatol.201815313715110.1038/nrgastro.2017.16929317776
    [Google Scholar]
  15. HanT.S. HurK. ChoH.S. BanH.S. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma.Cancers (Basel)2020129262210.3390/cancers1209262232937886
    [Google Scholar]
  16. HuangZ. ZhouJ.K. PengY. HeW. HuangC. The role of long noncoding RNAs in hepatocellular carcinoma.Mol. Cancer20201917710.1186/s12943‑020‑01188‑432295598
    [Google Scholar]
  17. QinZ. LiuX. LiZ. WangG. FengZ. LiuY. YangH. TanC. ZhangZ. LiK. LncRNA LINC00667 aggravates the progression of hepatocellular carcinoma by regulating androgen receptor expression as a miRNA-130a-3p sponge.Cell Death Discov.20217138710.1038/s41420‑021‑00787‑434907204
    [Google Scholar]
  18. GelmannE.P. Molecular biology of the androgen receptor.J. Clin. Oncol.200220133001301510.1200/JCO.2002.10.01812089231
    [Google Scholar]
  19. RizviS. KhanS.A. HallemeierC.L. KelleyR.K. GoresG.J. Cholangiocarcinoma — evolving concepts and therapeutic strategies.Nat. Rev. Clin. Oncol.20181529511110.1038/nrclinonc.2017.15728994423
    [Google Scholar]
  20. BrindleyP.J. BachiniM. IlyasS.I. KhanS.A. LoukasA. SiricaA.E. TehB.T. WongkhamS. GoresG.J. Cholangiocarcinoma.Nat. Rev. Dis. Primers2021716510.1038/s41572‑021‑00300‑234504109
    [Google Scholar]
  21. BlechaczB. KomutaM. RoskamsT. GoresG.J. Clinical diagnosis and staging of cholangiocarcinoma.Nat. Rev. Gastroenterol. Hepatol.20118951252210.1038/nrgastro.2011.13121808282
    [Google Scholar]
  22. RizviS. GoresG.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma.Gastroenterology201314561215122910.1053/j.gastro.2013.10.01324140396
    [Google Scholar]
  23. WangyangZ. DaolinJ. yiX. ZhenglongL. LiningH. YunfuC. XingmingJ. NcRNAs and cholangiocarcinoma.J. Cancer20189110010710.7150/jca.2178529290774
    [Google Scholar]
  24. ZhengB. JeongS. ZhuY. ChenL. XiaQ. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA).Oncotarget201785910081910083010.18632/oncotarget.1904429246025
    [Google Scholar]
  25. ShiX. ZhangH. WangM. XuX. ZhaoY. HeR. ZhangM. ZhouM. LiX. PengF. ShiC. ShenM. WangX. GuoX. QinR. LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells.Oncotarget2017835583945840410.18632/oncotarget.1688028938565
    [Google Scholar]
  26. JiangX.M. LiZ.L. LiJ.L. ZhengW.Y. LiX.H. CuiY.F. SunD.J. LncRNA CCAT1 as the unfavorable prognostic biomarker for cholangiocarcinoma.Eur. Rev. Med. Pharmacol. Sci.20172161242124728387907
    [Google Scholar]
  27. ParasramkaM. YanI.K. WangX. NguyenP. MatsudaA. MajiS. FoyeC. AsmannY. PatelT. BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma.Mol. Cancer20171612210.1186/s12943‑017‑0587‑x28122578
    [Google Scholar]
  28. TanX. HuangZ. LiX. Long Non-CodingR.N.A. Long non‐coding RNA MALAT1 interacts with miR‐204 to modulate human hilar cholangiocarcinoma proliferation, migration, and invasion by targeting CXCR4.J. Cell. Biochem.2017118113643365310.1002/jcb.2586228059437
    [Google Scholar]
  29. LiJ. GuanC. HuZ. LiuL. SuZ. KangP. JiangX. CuiY. YangY. Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p.Hum. Cell202134118720010.1007/s13577‑020‑00448‑133040228
    [Google Scholar]
  30. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑031631858
    [Google Scholar]
  31. WolfA.M.D. FonthamE.T.H. ChurchT.R. FlowersC.R. GuerraC.E. LaMonteS.J. EtzioniR. McKennaM.T. OeffingerK.C. ShihY.C.T. WalterL.C. AndrewsK.S. BrawleyO.W. BrooksD. FedewaS.A. Manassaram-BaptisteD. SiegelR.L. WenderR.C. SmithR.A. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society.CA Cancer J. Clin.201868425028110.3322/caac.2145729846947
    [Google Scholar]
  32. KasiP.M. ShahjehanF. CochuytJ.J. LiZ. ColibaseanuD.T. MercheaA. Rising proportion of young individuals with rectal and colon cancer.Clin. Colorectal Cancer2019181e87e9510.1016/j.clcc.2018.10.00230420120
    [Google Scholar]
  33. WangL. ChoK.B. LiY. TaoG. XieZ. GuoB. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer.Int. J. Mol. Sci.20192022575810.3390/ijms2022575831744051
    [Google Scholar]
  34. OgunwobiO.O. MahmoodF. AkingboyeA. Biomarkers in colorectal cancer: Current research and future prospects.Int. J. Mol. Sci.20202115531110.3390/ijms2115531132726923
    [Google Scholar]
  35. NiW. YaoS. ZhouY. LiuY. HuangP. ZhouA. LiuJ. CheL. LiJ. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3.Mol. Cancer201918114310.1186/s12943‑019‑1079‑y31619268
    [Google Scholar]
  36. GeQ. JiaD. CenD. QiY. ShiC. LiJ. SangL. YangL. HeJ. LinA. ChenS. WangL. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity.J. Clin. Invest.202113122e15291110.1172/JCI15291134591791
    [Google Scholar]
  37. YuJ. WangF. ZhangJ. LiJ. ChenX. HanG. LINC00667/miR-449b-5p/YY1 axis promotes cell proliferation and migration in colorectal cancer.Cancer Cell Int.202020132210.1186/s12935‑020‑01377‑732694944
    [Google Scholar]
  38. AbnetC.C. ArnoldM. WeiW.Q. Epidemiology of esophageal squamous cell carcinoma.Gastroenterology2018154236037310.1053/j.gastro.2017.08.02328823862
    [Google Scholar]
  39. SmythE.C. LagergrenJ. FitzgeraldR.C. LordickF. ShahM.A. LagergrenP. CunninghamD. Oesophageal cancer.Nat. Rev. Dis. Primers2017311704810.1038/nrdp.2017.4828748917
    [Google Scholar]
  40. PengL. ChengS. LinY. CuiQ. LuoY. ChuJ. ShaoM. FanW. ChenY. LinA. XiY. SunY. ZhangL. ZhangC. TanW. GaoG. WuC. LinD. CCGD-ESCC: A comprehensive database for genetic variants associated with esophageal squamous cell carcinoma in chinese population.Genomics Proteomics Bioinformatics201816426226810.1016/j.gpb.2018.03.00530208340
    [Google Scholar]
  41. HuangX. ZhouX. HuQ. SunB. DengM. QiX. LüM. Advances in esophageal cancer: A new perspective on pathogenesis associated with long non-coding RNAs.Cancer Lett.20184139410110.1016/j.canlet.2017.10.04629104147
    [Google Scholar]
  42. CaoW. LeeH. WuW. ZamanA. McCorkleS. YanM. ChenJ. XingQ. Sinnott-ArmstrongN. XuH. SailaniM.R. TangW. CuiY. liuJ. GuanH. LvP. SunX. SunL. HanP. LouY. ChangJ. WangJ. GaoY. GuoJ. SchenkG. ShainA.H. BiddleF.G. CollissonE. SnyderM. BivonaT.G. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma.Nat. Commun.2020111367510.1038/s41467‑020‑17227‑z32699215
    [Google Scholar]
  43. CuiY. ZhangC. MaS. LiZ. WangW. LiY. MaY. FangJ. WangY. CaoW. GuanF. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma.J. Exp. Clin. Cancer Res.202140129410.1186/s13046‑021‑02096‑134544449
    [Google Scholar]
  44. LiangY. ChenX. WuY. LiJ. ZhangS. WangK. GuanX. YangK. BaiY. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein.Cell Death Differ.201825111980199510.1038/s41418‑018‑0084‑929511340
    [Google Scholar]
  45. PanJ. ZangY. LINC00667 promotes progression of esophageal cancer cells by regulating miR-200b-3p/SLC2A3 Axis.Dig. Dis. Sci.20226772936294734313922
    [Google Scholar]
  46. RemarkR. BeckerC. GomezJ.E. DamotteD. Dieu-NosjeanM.C. Sautès-FridmanC. FridmanW.H. PowellC.A. AltorkiN.K. MeradM. GnjaticS. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome.Am. J. Respir. Crit. Care Med.2015191437739010.1164/rccm.201409‑1671PP25369536
    [Google Scholar]
  47. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  48. ZhouW. LiuT. SarenG. LiaoL. FangW. ZhaoH. Comprehensive analysis of differentially expressed long non‑coding RNAs in non‑small cell lung cancer.Oncol. Lett.20191821145115610.3892/ol.2019.1041431423174
    [Google Scholar]
  49. YangY. LiS. CaoJ. LiY. HuH. WuZ. RRM2 regulated by linc00667/mir-143-3p signal is responsible for non-small cell lung cancer cell progression.OncoTargets Ther.2019129927993910.2147/OTT.S22133931819489
    [Google Scholar]
  50. YangH. YangW. DaiW. MaY. ZhangG. LINC00667 promotes the proliferation, migration, and pathological angiogenesis in non–small cell lung cancer through stabilizing VEGFA by EIF4A3.Cell Biol. Int.20204481671168010.1002/cbin.1136132281700
    [Google Scholar]
  51. ChenY.P. ChanA.T.C. LeQ.T. BlanchardP. SunY. MaJ. Nasopharyngeal carcinoma.Lancet201939410192648010.1016/S0140‑6736(19)30956‑031178151
    [Google Scholar]
  52. ChanA.T.C. Nasopharyngeal carcinoma.Ann. Oncol.201021Suppl. 7vii308vii31210.1093/annonc/mdq27720943634
    [Google Scholar]
  53. BossiP. ChanA.T. LicitraL. TramaA. OrlandiE. HuiE.P. HalámkováJ. MattheisS. BaujatB. HardilloJ. SmeeleL. van HerpenC. CastroA. MachielsJ.P. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up†.Ann. Oncol.202132445246510.1016/j.annonc.2020.12.00733358989
    [Google Scholar]
  54. TangL.L. ChenY.P. ChenC.B. ChenM.Y. ChenN.Y. ChenX.Z. DuX.J. FangW.F. FengM. GaoJ. HanF. HeX. HuC.S. HuD. HuG.Y. JiangH. JiangW. JinF. LangJ.Y. LiJ.G. LinS.J. LiuX. LiuQ.F. MaL. MaiH.Q. QinJ.Y. ShenL.F. SunY. WangP.G. WangR.S. WangR.Z. WangX.S. WangY. WuH. XiaY.F. XiaoS.W. YangK.Y. YiJ.L. ZhuX.D. MaJ. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma.Cancer Commun.202141111195122710.1002/cac2.1221834699681
    [Google Scholar]
  55. BoH. GongZ. ZhangW. LiX. ZengY. LiaoQ. ChenP. ShiL. LianY. JingY. TangK. LiZ. ZhouY. ZhouM. XiangB. LiX. YangJ. XiongW. LiG. ZengZ. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma.Oncotarget2015624204042041810.18632/oncotarget.405726246469
    [Google Scholar]
  56. SunQ. LiuH. LiL. ZhangS. LiuK. LiuY. YangC. Long noncoding RNA-LET, which is repressed by EZH2, inhibits cell proliferation and induces apoptosis of nasopharyngeal carcinoma cell.Med. Oncol.201532922610.1007/s12032‑015‑0673‑026243049
    [Google Scholar]
  57. GongZ. ZhangS. ZengZ. WuH. YangQ. XiongF. ShiL. YangJ. ZhangW. ZhouY. ZengY. LiX. XiangB. PengS. ZhouM. LiX. TanM. LiY. XiongW. LiG. LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2.PLoS One2014911e11067410.1371/journal.pone.011067425422887
    [Google Scholar]
  58. LiaoB. YiY. ZengL. WangZ. ZhuX. LiuJ. XieB. LiuY. LINC00667 sponges miR-4319 to promote the development of nasopharyngeal carcinoma by increasing FOXQ1 expression.Front. Oncol.20211063281310.3389/fonc.2020.63281333569351
    [Google Scholar]
  59. KalapurakalJ.A. DomeJ.S. PerlmanE.J. MalogolowkinM. HaaseG.M. GrundyP. CoppesM.J. Management of Wilms’ tumour: Current practice and future goals.Lancet Oncol.200451374610.1016/S1470‑2045(03)01322‑614700607
    [Google Scholar]
  60. TregerT.D. ChowdhuryT. Pritchard-JonesK. BehjatiS. The genetic changes of Wilms tumour.Nat. Rev. Nephrol.201915424025110.1038/s41581‑019‑0112‑030705419
    [Google Scholar]
  61. MaX. LiuY. LiuY. AlexandrovL.B. EdmonsonM.N. GawadC. ZhouX. LiY. RuschM.C. EastonJ. HuetherR. Gonzalez-PenaV. WilkinsonM.R. HermidaL.C. DavisS. SiosonE. PoundsS. CaoX. RiesR.E. WangZ. ChenX. DongL. DiskinS.J. SmithM.A. Guidry AuvilJ.M. MeltzerP.S. LauC.C. PerlmanE.J. MarisJ.M. MeshinchiS. HungerS.P. GerhardD.S. ZhangJ. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours.Nature2018555769637137610.1038/nature2579529489755
    [Google Scholar]
  62. GhanemM.A. Van SteenbruggeG.J. Van Der KwastT.H. SudaryoM.K. NoordzijM.A. NijmanR.J.M. Expression and prognostic value Of CD44 isoforms in nephroblastoma (Wilms tumor).J. Urol.2002168268168610.1016/S0022‑5347(05)64723‑412131349
    [Google Scholar]
  63. SegersH. van den Heuvel-EibrinkM.M. WilliamsR.D. van TinterenH. VujanicG. PietersR. Pritchard-JonesK. BownN. Gain of 1q is a marker of poor prognosis in Wilms’ tumors.Genes Chromosomes Cancer201352111065107410.1002/gcc.2210124038759
    [Google Scholar]
  64. GratiasE.J. JenningsL.J. AndersonJ.R. DomeJ.S. GrundyP. PerlmanE.J. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: A report from the Children’s Oncology Group.Cancer2013119213887389410.1002/cncr.2823923983061
    [Google Scholar]
  65. LiuP. ChenS. HuangY. XuS. SongH. ZhangW. SunN. LINC00667 promotes Wilms’ tumor metastasis and stemness by sponging miR‐200b/c/429 family to regulate IKK‐β.Cell Biol. Int.20204461382139310.1002/cbin.1133432129525
    [Google Scholar]
  66. HenryN.L. HayesD.F. Cancer biomarkers.Mol. Oncol.20126214014610.1016/j.molonc.2012.01.01022356776
    [Google Scholar]
  67. YotsukuraS. MamitsukaH. Evaluation of serum-based cancer biomarkers: A brief review from a clinical and computational viewpoint.Crit. Rev. Oncol. Hematol.201593210311510.1016/j.critrevonc.2014.10.00225459666
    [Google Scholar]
  68. TangY. CheungB.B. AtmadibrataB. MarshallG.M. DingerM.E. LiuP.Y. LiuT. The regulatory role of long noncoding RNAs in cancer.Cancer Lett.2017391121910.1016/j.canlet.2017.01.01028111137
    [Google Scholar]
  69. MarcheseF.P. RaimondiI. HuarteM. The multidimensional mechanisms of long noncoding RNA function.Genome Biol.201718120610.1186/s13059‑017‑1348‑229084573
    [Google Scholar]
  70. CrowleyE. Di NicolantonioF. LoupakisF. BardelliA. Liquid biopsy: Monitoring cancer-genetics in the blood.Nat. Rev. Clin. Oncol.201310847248410.1038/nrclinonc.2013.11023836314
    [Google Scholar]
  71. TakahashiR-U. Prieto-VilaM. KohamaI. OchiyaT. [MicroRNA in body fluids - development of the novel plat form for cancer therapeutics and diagnosis].Gan To Kagaku Ryoho201845689990530026410
    [Google Scholar]
  72. SunZ. YangS. ZhouQ. WangG. SongJ. LiZ. ZhangZ. XuJ. XiaK. ChangY. LiuJ. YuanW. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment.Mol. Cancer20181718210.1186/s12943‑018‑0831‑z29678180
    [Google Scholar]
  73. XieY. DangW. ZhangS. YueW. YangL. ZhaiX. YanQ. LuJ. The role of exosomal noncoding RNAs in cancer.Mol. Cancer20191813710.1186/s12943‑019‑0984‑430849983
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673248494231010044348
Loading
/content/journals/cmc/10.2174/0109298673248494231010044348
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test