Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

As the engine that maintains blood circulation, the heart is also an endocrine organ that regulates the function of distant target organs by secreting a series of cardiokines. As endocrine factors, cardiokines play an indispensable role in maintaining the homeostasis of the heart and other organs. Here, we summarize some of the cardiokines that have been defined thus far and explore their roles in heart and kidney diseases. Finally, we propose that cardiokines may be a potential therapeutic target for kidney diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673261760231011114150
2023-10-19
2025-06-26
Loading full text...

Full text loading...

References

  1. ClericoA. FontanaM. VittoriniS. EmdinM. The search for a pathophysiological link between gender, cardiac endocrine function, body mass regulation and cardiac mortality: Proposal for a working hypothesis.Clin. Chim. Acta20094051-21710.1016/j.cca.2009.03.05019341716
    [Google Scholar]
  2. ClericoA. PassinoC. EmdinM. When gonads talk to the heart sex hormones and cardiac endocrine function.J. Am. Coll. Cardiol.201158662762810.1016/j.jacc.2011.03.04321798426
    [Google Scholar]
  3. ClericoA. GiannoniA. VittoriniS. PassinoC. Thirty years of the heart as an endocrine organ: Physiological role and clinical utility of cardiac natriuretic hormones.Am. J. Physiol. Heart Circ. Physiol.20113011H12H2010.1152/ajpheart.00226.201121551272
    [Google Scholar]
  4. WuY.S. ZhuB. LuoA.L. YangL. YangC. The role of cardiokines in heart diseases: Beneficial or detrimental?BioMed Res. Int.2018201811410.1155/2018/820705829744364
    [Google Scholar]
  5. SrivastavaH. PozzoliM. LauE. Defining the roles of cardiokines in human aging and age-associated diseases.Front. Aging2022388432110.3389/fragi.2022.88432135821831
    [Google Scholar]
  6. DuY. WangX. LiL. HaoW. ZhangH. LiY. QinY. NieS. ChristopherT.A. LopezB.L. LauW.B. WangY. MaX.L. WeiY. MiRNA-Mediated suppression of a cardioprotective cardiokine as a novel mechanism exacerbating Post-MI remodeling by sleep breathing disorders.Circ. Res.2020126221222810.1161/CIRCRESAHA.119.31506731694459
    [Google Scholar]
  7. BambaeichiE. HosseiniM. SarirH. KargarfardM. Effect of training with or without Ziziphus jujuba extract on cardiokines in heart tissue of myocardial infarcted rats.Int. J. Prev. Med.201910110310.4103/ijpvm.IJPVM_367_1831360350
    [Google Scholar]
  8. DongJ. ZhouH. LiY. LiR. ChenN. ZhengY. DengX. LuoM. WuJ. WangL. MG53 inhibits angiogenesis through regulating focal adhesion kinase signalling.J. Cell. Mol. Med.202125157462747110.1111/jcmm.1677734240802
    [Google Scholar]
  9. ZhangX. WangX. ZhuH. KraniasE.G. TangY. PengT. ChangJ. FanG.C. Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2.PLoS One201273e3276510.1371/journal.pone.003276522427880
    [Google Scholar]
  10. YangM. SongP. ZhaoL. WangX. Adipose-Renal axis in diabetic nephropathy.Curr. Med. Chem.202230161860187435946097
    [Google Scholar]
  11. YangM. LuoS. YangJ. ChenW. HeL. LiuD. ZhaoL. WangX. Crosstalk between the liver and kidney in diabetic nephropathy.Eur. J. Pharmacol.202293117521910.1016/j.ejphar.2022.17521935987257
    [Google Scholar]
  12. KumarU. WetterstenN. GarimellaP.S. Cardiorenal syndrome.Cardiol. Clin.201937325126510.1016/j.ccl.2019.04.00131279419
    [Google Scholar]
  13. RangaswamiJ. BhallaV. BlairJ.E.A. ChangT.I. CostaS. LentineK.L. LermaE.V. MezueK. MolitchM. MullensW. RoncoC. TangW.H.W. McCulloughP.A. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the American Heart Association.Circulation201913916e840e87810.1161/CIR.000000000000066430852913
    [Google Scholar]
  14. PrastaroM. NardiE. PaolilloS. SantoroC. ParlatiA.L.M. GargiuloP. BasileC. BuonocoreD. EspositoG. FilardiP.P. Cardiorenal syndrome: Pathophysiology as a key to the therapeutic approach in an under-diagnosed disease.J. Clin. Ultrasound20225081110112410.1002/jcu.2326536218199
    [Google Scholar]
  15. ZhongW. Benissan-MessanD.Z. MaJ. CaiC. LeeP.H.U. Cardiac effects and clinical applications of MG53.Cell Biosci.202111111510.1186/s13578‑021‑00629‑x34183055
    [Google Scholar]
  16. CaiC. MasumiyaH. WeislederN. MatsudaN. NishiM. HwangM. KoJ.K. LinP. ThorntonA. ZhaoX. PanZ. KomazakiS. BrottoM. TakeshimaH. MaJ. MG53 nucleates assembly of cell membrane repair machinery.Nat. Cell Biol.2009111566410.1038/ncb181219043407
    [Google Scholar]
  17. WhitsonB.A. TanT. GongN. ZhuH. MaJ. Muscle multiorgan crosstalk with MG53 as a myokine for tissue repair and regeneration.Curr. Opin. Pharmacol.202159263210.1016/j.coph.2021.04.00534052525
    [Google Scholar]
  18. PhilouzeC. TurbanS. CremersB. CaliezA. LamarcheG. BernardC. ProvostN. DeleriveP. MG53 is not a critical regulator of insulin signaling pathway in skeletal muscle.PLoS One2021162e024517910.1371/journal.pone.024517933566837
    [Google Scholar]
  19. YiJ.S. ParkJ.S. HamY.M. NguyenN. LeeN.R. HongJ. KimB.W. LeeH. LeeC.S. JeongB.C. Kyu SongH. ChoH. KimY.K. LeeJ.S. ParkK.S. ShinH. ChoiI. LeeS.H. ParkW.J. ParkS.Y. ChoiC.S. LinP. KarunasiriM. TanT. DuannP. ZhuH. MaJ. KoY.G. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling.Nat. Commun.201341235410.1038/ncomms335423965929
    [Google Scholar]
  20. ShanD. GuoS. WuH.K. LvF. JinL. ZhangM. XieP. WangY. SongY. WuF. LanF. HuX. CaoC.M. ZhangY. XiaoR.P. Cardiac ischemic preconditioning promotes MG53 secretion through H2O2-Activated protein kinase c-delta signaling.Circulation2020142111077109110.1161/CIRCULATIONAHA.119.04499832677469
    [Google Scholar]
  21. XieH. WangY. ZhuT. FengS. YanZ. ZhuZ. NiJ. NiJ. DuR. ZhuJ. DingF. LiuS. HanH. ZhangH. ZhaoJ. ZhangR. QuanW. YanX. Serum MG53/TRIM72 is associated with the presence and severity of coronary artery disease and acute myocardial infarction.Front. Physiol.20201161784510.3389/fphys.2020.61784533391037
    [Google Scholar]
  22. HanX. ChenD. LiufuN. JiF. ZengQ. YaoW. CaoM. MG53 protects against Sepsis-Induced myocardial dysfunction by upregulating peroxisome proliferator-activated receptor-alpha.Oxid. Med. Cell. Longev.2020202011610.1155/2020/741369332908637
    [Google Scholar]
  23. LiuC. HuY. HanY. WangY. ZhangY. ZhangX. HeD. RenH. LiuY. WangH. TanT. LinP. LiH. RovinB.H. MaJ. ZengC. MG53 protects against contrast-induced acute kidney injury by reducing cell membrane damage and apoptosis.Acta Pharmacol. Sin.202041111457146410.1038/s41401‑020‑0420‑832424239
    [Google Scholar]
  24. DuannP. LiH. LinP. TanT. WangZ. ChenK. ZhouX. GumpperK. ZhuH. LudwigT. MohlerP.J. RovinB. AbrahamW.T. ZengC. MaJ. MG53-mediated cell membrane repair protects against acute kidney injury.Sci. Transl. Med.20157279279ra3610.1126/scitranslmed.301075525787762
    [Google Scholar]
  25. LiH. DuannP. LiZ. ZhouX. MaJ. RovinB.H. LinP.H. The cell membrane repair protein MG53 modulates transcription factor NF-κB signaling to control kidney fibrosis.Kidney Int.2022101111913010.1016/j.kint.2021.09.02734757120
    [Google Scholar]
  26. CalandraT. RogerT. Macrophage migration inhibitory factor: A regulator of innate immunity.Nat. Rev. Immunol.200331079180010.1038/nri120014502271
    [Google Scholar]
  27. BilsborrowJ.B. DohertyE. TilstamP.V. BucalaR. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus.Expert Opin. Ther. Targets201923973374410.1080/14728222.2019.165671831414920
    [Google Scholar]
  28. SumaiyaK. LangfordD. NatarajaseenivasanK. ShanmughapriyaS. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies.Pharmacol. Ther.202223310802410.1016/j.pharmthera.2021.10802434673115
    [Google Scholar]
  29. OsipyanA. ChenD. DekkerF.J. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation.Drug Discov. Today20212671728173410.1016/j.drudis.2021.03.01233746067
    [Google Scholar]
  30. LuedikeP. AlatzidesG. PapathanasiouM. HeislerM. PohlJ. LehmannN. RassafT. Circulating macrophage migration inhibitory factor (MIF) in patients with heart failure.Cytokine201811010410910.1016/j.cyto.2018.04.03329723777
    [Google Scholar]
  31. LyuJ. HuangJ. WuJ. YuT. WeiX. LeiQ. Lack of macrophage migration inhibitory factor reduces susceptibility to ventricular arrhythmias during the acute phase of myocardial infarction.J. Inflamm. Res.2021141297131110.2147/JIR.S30455333854357
    [Google Scholar]
  32. DengX.N. WangX.Y. YuH.Y. ChenS.M. XuX.Y. HuaiW. LiuG.H. MaQ.B. ZhangY.Y. DartA.M. DuX.J. GaoW. Admission macrophage migration inhibitory factor predicts long-term prognosis in patients with ST-elevation myocardial infarction.Eur. Heart J. Qual. Care Clin. Outcomes20184320821929726987
    [Google Scholar]
  33. ZhangY. ZhuW. HeH. FanB. DengR. HongY. LiangX. ZhaoH. LiX. ZhangF. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair.Aging20191124126411266010.18632/aging.10259231881006
    [Google Scholar]
  34. RammosC. Hendgen-CottaU.B. SobierajskiJ. AdamczykS. HetzelG.R. KleophasW. DellannaF. KelmM. RassafT. Macrophage migration inhibitory factor is associated with vascular dysfunction in patients with end-stage renal disease.Int. J. Cardiol.201316865249525610.1016/j.ijcard.2013.08.02123978362
    [Google Scholar]
  35. StoppeC. AverdunkL. GoetzenichA. SoppertJ. MarlierA. KraemerS. VietenJ. CoburnM. KowarkA. KimB.S. MarxG. RexS. OchiA. LengL. MoeckelG. LinkermannA. El BounkariO. ZarbockA. BernhagenJ. DjudjajS. BucalaR. BoorP. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery.Sci. Transl. Med.201810441eaan488610.1126/scitranslmed.aan488629769287
    [Google Scholar]
  36. DjudjajS. MartinI.V. BuhlE.M. NothoferN.J. LengL. PiecychnaM. FloegeJ. BernhagenJ. BucalaR. BoorP. Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest.J. Am. Soc. Nephrol.201728123590360410.1681/ASN.201702019028801314
    [Google Scholar]
  37. KhalilpourJ. Roshan-MilaniS. GharalariF.H. FardA.A. Macrophage migration inhibitory factor antagonist (p425) ameliorates kidney histopathological and functional changes in diabetic rats.J. Bras. Nefrol.201941331532210.1590/2175‑8239‑jbn‑2018‑018430720852
    [Google Scholar]
  38. WangZ. WeiM. WangM. ChenL. LiuH. RenY. ShiK. JiangH. Inhibition of macrophage migration inhibitory factor reduces diabetic nephropathy in type II diabetes mice.Inflammation20143762020202910.1007/s10753‑014‑9934‑x24958012
    [Google Scholar]
  39. SharmaM. McFarlaneC. KambadurR. KukretiH. BonalaS. SrinivasanS. Myostatin: Expanding horizons.IUBMB Life201567858960010.1002/iub.139226305594
    [Google Scholar]
  40. EspositoP. PicciottoD. BattagliaY. CostiglioloF. ViazziF. VerzolaD. Myostatin: Basic biology to clinical application.Adv. Clin. Chem.202210618123410.1016/bs.acc.2021.09.00635152972
    [Google Scholar]
  41. WagnerK.R. The elusive promise of myostatin inhibition for muscular dystrophy.Curr. Opin. Neurol.202033562162810.1097/WCO.000000000000085332773450
    [Google Scholar]
  42. ZimmersT.A. DaviesM.V. KoniarisL.G. HaynesP. EsquelaA.F. TomkinsonK.N. McPherronA.C. WolfmanN.M. LeeS.J. Induction of cachexia in mice by systemically administered myostatin.Science200229655721486148810.1126/science.106952512029139
    [Google Scholar]
  43. KongX. YaoT. ZhouP. KazakL. TenenD. LyubetskayaA. DawesB.A. TsaiL. KahnB.B. SpiegelmanB.M. LiuT. RosenE.D. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin.Cell Metab.2018284631643.e310.1016/j.cmet.2018.07.00430078553
    [Google Scholar]
  44. BreitbartA. Auger-MessierM. MolkentinJ.D. HeinekeJ. Myostatin from the heart: Local and systemic actions in cardiac failure and muscle wasting.Am. J. Physiol. Heart Circ. Physiol.20113006H1973H198210.1152/ajpheart.00200.201121421824
    [Google Scholar]
  45. TsuchidaK. Activins, myostatin and related TGF-beta family members as novel therapeutic targets for endocrine, metabolic and immune disorders.Curr. Drug Targets Immune Endocr. Metabol. Disord.20044215716610.2174/156800804333990115180456
    [Google Scholar]
  46. HanS. Crystal structure of activin receptor type IIB kinase domain.Vitam. Horm.201185293810.1016/B978‑0‑12‑385961‑7.00002‑021353874
    [Google Scholar]
  47. AbatiE. ManiniA. ComiG.P. CortiS. Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases.Cell. Mol. Life Sci.202279737410.1007/s00018‑022‑04408‑w35727341
    [Google Scholar]
  48. McNallyE.M. Questions and answers about myostatin, GDF11, and the aging heart.Circ. Res.201611816810.1161/CIRCRESAHA.115.30786126837737
    [Google Scholar]
  49. BiesemannN. MendlerL. WietelmannA. HermannS. SchäfersM. KrügerM. BoettgerT. BorchardtT. BraunT. Myostatin regulates energy homeostasis in the heart and prevents heart failure.Circ. Res.2014115229631010.1161/CIRCRESAHA.115.30418524807786
    [Google Scholar]
  50. ChenP. LiuZ. LuoY. ChenL. LiS. PanY. LeiX. WuD. XuD. Predictive value of serum myostatin for the severity and clinical outcome of heart failure.Eur. J. Intern. Med.201964334010.1016/j.ejim.2019.04.01731056368
    [Google Scholar]
  51. VerzolaD. MilanesiS. ViazziF. AnsaldoF. SaioM. GaribaldiS. CartaA. CostiglioloF. SalvidioG. BarisioneC. EspositoP. GaribottoG. PicciottoD. Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy.Sci. Rep.2020101634310.1038/s41598‑020‑62875‑232286342
    [Google Scholar]
  52. BarisioneC. VerzolaD. GaribaldiS. FerrariP.F. GaribottoG. AmeriP. PaneB. SpinellaG. PratesiG. PalomboD. Renal Ischemia/Reperfusion early induces myostatin and PCSK9 expression in rat kidneys and HK-2 cells.Int. J. Mol. Sci.20212218988410.3390/ijms2218988434576046
    [Google Scholar]
  53. BatailleS. DouL. BartoliM. SalléeM. AniortJ. FerkakB. ChermitiR. McKayN. Da SilvaN. BurteyS. PoitevinS. Mechanisms of myostatin and activin A accumulation in chronic kidney disease.Nephrol. Dial. Transplant.20223771249126010.1093/ndt/gfac13635333341
    [Google Scholar]
  54. YasarE. TekN.A. TekbudakM.Y. YurtdaşG. GülbaharÖ. UyarG.Ö. UralZ. ÇelikÖ.M. ErtenY. The relationship between myostatin, inflammatory markers, and sarcopenia in patients with chronic kidney disease.J. Ren. Nutr.202232667768410.1053/j.jrn.2022.01.01135122995
    [Google Scholar]
  55. YanoS. NagaiA. IsomuraM. YamasakiM. KijimaT. TakedaM. HamanoT. NabikaT. Relationship between blood myostatin levels and kidney function :Shimane CoHRE study.PLoS One20151010e014103510.1371/journal.pone.014103526502079
    [Google Scholar]
  56. AgapovaO.A. FangY. SugataniT. SeifertM.E. HruskaK.A. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease.Kidney Int.20168961231124310.1016/j.kint.2016.02.00227165838
    [Google Scholar]
  57. YangY. LiY. MaZ. JiangS. FanC. HuW. WangD. DiS. SunY. YiW. A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection.Prog. Lipid Res.20166417017710.1016/j.plipres.2016.10.00127743997
    [Google Scholar]
  58. SongC.X. ChenJ.Y. LiN. GuoY. CTRP9 enhances efferocytosis in macrophages via MAPK/Drp1-Mediated mitochondrial fission and AdipoR1-Induced immunometabolism.J. Inflamm. Res.2021141007101710.2147/JIR.S30294433790616
    [Google Scholar]
  59. LiuM. LiW. WangH. YinL. YeB. TangY. HuangC. CTRP9 ameliorates atrial inflammation, fibrosis, and vulnerability to atrial fibrillation in Post-Myocardial infarction rats.J. Am. Heart Assoc.2019821e01313310.1161/JAHA.119.01313331623508
    [Google Scholar]
  60. WongG.W. KrawczykS.A. Kitidis-MitrokostasC. GeG. SpoonerE. HugC. GimenoR. LodishH.F. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin.FASEB J.200923124125810.1096/fj.08‑11499118787108
    [Google Scholar]
  61. GuanH. WangY. LiX. XiangA. GuoF. FanJ. YuQ. C1q/tumor necrosis factor-related protein 9: Basics and therapeutic potentials.Front. Physiol.20221381621810.3389/fphys.2022.81621835370782
    [Google Scholar]
  62. ZhangP. HuangC. LiJ. LiT. GuoH. LiuT. LiN. ZhuQ. GuoY. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation.Mol. Cell. Biochem.20164171-2677410.1007/s11010‑016‑2714‑127188183
    [Google Scholar]
  63. SuH. YuanY. WangX.M. LauW.B. WangY. WangX. GaoE. KochW.J. MaX.L. Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice.Basic Res. Cardiol.2013108131510.1007/s00395‑012‑0315‑z23212557
    [Google Scholar]
  64. AppariM. BreitbartA. BrandesF. SzaroszykM. FroeseN. Korf-KlingebielM. MohammadiM.M. GrundA. ScharfG.M. WangH. ZwadloC. FraccarolloD. SchrameckU. NemerM. WongG.W. KatusH.A. WollertK.C. MüllerO.J. BauersachsJ. HeinekeJ. C1q-TNF-Related protein-9 promotes cardiac hypertrophy and failure.Circ. Res.20171201667710.1161/CIRCRESAHA.116.30939827821723
    [Google Scholar]
  65. GaoC. ZhaoS. LianK. MiB. SiR. TanZ. FuF. WangS. WangR. MaX. TaoL. C1q/TNF-related protein 3 (CTRP3) and 9 (CTRP9) concentrations are decreased in patients with heart failure and are associated with increased morbidity and mortality.BMC Cardiovasc. Disord.201919113910.1186/s12872‑019‑1117‑031182031
    [Google Scholar]
  66. YangJ. ZhaoD. ChenY. MaY. ShiX. WangX. LvY. YuanH. Association of serum CTRP9 levels with cardiac autonomic neuropathy in patients with type 2 diabetes mellitus.J. Diabetes Investig.20211281442145110.1111/jdi.1349533417302
    [Google Scholar]
  67. ZhaoD. FengP. SunY. QinZ. ZhangZ. TanY. GaoE. LauW.B. MaX. YangJ. YuS. XuX. YiD. YiW. Cardiac-derived CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-dependent inhibition of apoptosis.Cell Death Dis.20189772310.1038/s41419‑018‑0726‑329925877
    [Google Scholar]
  68. HuH. LiW. LiuM. XiongJ. LiY. WeiY. HuangC. TangY. C1q/Tumor necrosis Factor-Related protein-9 attenuates diabetic nephropathy and kidney fibrosis in db/db mice.DNA Cell Biol.202039693894810.1089/dna.2019.530232283037
    [Google Scholar]
  69. AsadaM. MoriokaT. YamazakiY. KakutaniY. KawarabayashiR. MotoyamaK. MoriK. FukumotoS. ShioiA. ShojiT. EmotoM. InabaM. Plasma C1q/TNF-Related protein-9 levels are associated with atherosclerosis in patients with type 2 diabetes without renal dysfunction.J. Diabetes Res.201620161910.1155/2016/862431328070523
    [Google Scholar]
  70. NakagawaY. NishikimiT. KuwaharaK. Atrial and brain natriuretic peptides: Hormones secreted from the heart.Peptides2019111182510.1016/j.peptides.2018.05.01229859763
    [Google Scholar]
  71. PotterL.R. YoderA.R. FloraD.R. AntosL.K. DickeyD.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications.Handb. Exp. Pharmacol.200919119134136610.1007/978‑3‑540‑68964‑5_1519089336
    [Google Scholar]
  72. RomańczykM. SurmaS. ŁabuzekK. Natriuretic peptides in diagnostics and therapy.Pol. Merkuriusz Lek.20204828737037433130802
    [Google Scholar]
  73. de BoldA.J. BorensteinH.B. VeressA.T. SonnenbergH. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats.Life Sci.1981281899410.1016/0024‑3205(81)90370‑27219045
    [Google Scholar]
  74. MariesL. ManitiuI. Diagnostic and prognostic values of B-type natriuretic peptides (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP) : Review article.Cardiovasc. J. Afr.201324728628910.5830/CVJA‑2013‑05524217307
    [Google Scholar]
  75. NakagawaY. NishikimiT. CNP, the third natriuretic peptide: Its biology and significance to the cardiovascular system.Biology202211798610.3390/biology1107098636101368
    [Google Scholar]
  76. PotterL.R. Natriuretic peptide metabolism, clearance and degradation.FEBS J.2011278111808181710.1111/j.1742‑4658.2011.08082.x21375692
    [Google Scholar]
  77. LernerY. HanoutW. Ben-UlielS.F. GaniS. LeshemM.P. QvitN. Natriuretic peptides as the basis of peptide drug discovery for cardiovascular diseases.Curr. Top. Med. Chem.202020322904292110.2174/156802662066620101315432633050863
    [Google Scholar]
  78. ObinecheE. ChandranathI. AdeghateE. BenedictS. FahimM. AdemA. Alterations in atrial natriuretic peptide and its receptor levels in long-term, streptozotocin-induced, diabetes in rats.Ann. N. Y. Acad. Sci.20061084122323410.1196/annals.1372.02517151304
    [Google Scholar]
  79. MakinoH. MukoyamaM. MoriK. SuganamiT. KasaharaM. YahataK. NagaeT. YokoiH. SawaiK. OgawaY. SugaS. YoshimasaY. SugawaraA. TanakaI. NakaoK. Transgenic overexpression of brain natriuretic peptide prevents the progression of diabetic nephropathy in mice.Diabetologia200649102514252410.1007/s00125‑006‑0352‑y16917760
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673261760231011114150
Loading
/content/journals/cmc/10.2174/0109298673261760231011114150
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): blood circulation; Cardiokines; heart; kidney; MG53; myostatin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test