Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is one of the serious diseases of modern times, occurring in all parts of the world and shows a wide range of effects on the human body. Reactive Oxygen Species (ROS) such as oxide and superoxide ions have both advantages and disadvantages during the progression of cancer, dependent on their concentration. It is a necessary part of the normal cellular mechanisms. Changes in its normal level can cause oncogenesis and other relatable problems. Metastasis can also be controlled by ROS levels in the tumor cells, which can be prevented by the use of antioxidants. However, ROS is also used for the initiation of apoptosis in cells by different mediators. There exists a cycle between the production of oxygen reactive species, their effect on the genes, role of mitochondria and the progression of tumors. ROS levels cause DNA damage by the oxidation process, gene damage, altered expression of the genes and signalling mechanisms. They finally lead to mitochondrial disability and mutations, resulting in cancer. This review summarizes the important role and activity of ROS in developing different types of cancers like cervical, gastric, bladder, liver, colorectal and ovarian cancers.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867330666230609110455
2023-08-15
2025-01-28
Loading full text...

Full text loading...

References

  1. SimonH.U. Haj-YehiaA. Levi-SchafferF. Role of reactive oxygen species (ROS) in apoptosis induction.Apoptosis.20005541541810.1023/A:1009616228304
    [Google Scholar]
  2. StadtmanE.R. BerlettB.S. Reactive oxygen-mediated protein oxidation in aging and disease.Drug Metab. Rev.199830222524310.3109/036025398089963109606602
    [Google Scholar]
  3. SharmaP. JhaA.B. DubeyR.S. PessarakliM. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot.2012201212610.1155/2012/217037
    [Google Scholar]
  4. YuT.W. AndersonD. Reactive oxygen species-induced DNA damage and its modification: A chemical investigation.Mutat. Res.1997379220121010.1016/S0027‑5107(97)00141‑39357549
    [Google Scholar]
  5. SfikasA. BatsiC. TselikouE. VartholomatosG. MonokrousosN. PappasP. ChristoforidisS. TzavarasT. KanavarosP. GorgoulisV.G. MarcuK.B. KolettasE. The canonical NF-κB pathway differentially protects normal and human tumor cells from ROS-induced DNA damage.Cell. Signal.201224112007202310.1016/j.cellsig.2012.06.01022750558
    [Google Scholar]
  6. Ushio-FukaiM. NakamuraY. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy.Cancer Lett.20082661375210.1016/j.canlet.2008.02.04418406051
    [Google Scholar]
  7. ClerkinJ.S. NaughtonR. QuineyC. CotterT.G. Mechanisms of ROS modulated cell survival during carcinogenesis.Cancer Lett.20082661303610.1016/j.canlet.2008.02.02918372105
    [Google Scholar]
  8. D’AutréauxB. ToledanoM.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis.Nat. Rev. Mol. Cell Biol.200781081382410.1038/nrm225617848967
    [Google Scholar]
  9. PelicanoH. CarneyD. HuangP. ROS stress in cancer cells and therapeutic implications.Drug Resist. Updat.2004729711010.1016/j.drup.2004.01.00415158766
    [Google Scholar]
  10. WuX. HuaX. TargetingR.O.S. Targeting ROS: Selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound.Cancer Biol. Ther.20076564664710.4161/cbt.6.5.409217387274
    [Google Scholar]
  11. GilesG.I. The redox regulation of thiol dependent signaling pathways in cancer.Curr. Pharm. Des.200612344427444310.2174/138161206779010549
    [Google Scholar]
  12. OzbenT. Oxidative stress and apoptosis: Impact on cancer therapy.J. Pharm. Sci.20079692181219610.1002/jps.2087417593552
    [Google Scholar]
  13. TolerS.M. NoeD. SharmaA. Selective enhancement of cellular oxidative stress by chloroquine: Implications for the treatment of glioblastoma multiforme.Neurosurg. Focus20062161410.3171/foc.2006.21.6.117341043
    [Google Scholar]
  14. RenschlerM.F. The emerging role of reactive oxygen species in cancer therapy.Eur. J. Cancer200440131934194010.1016/j.ejca.2004.02.03115315800
    [Google Scholar]
  15. HyoudouK. NishikawaM. KobayashiY. IkemuraM. YamashitaF. HashidaM. SOD derivatives prevent metastatic tumor growth aggravated by tumor removal.Clin. Exp. Metastasis200825553153610.1007/s10585‑008‑9165‑318357506
    [Google Scholar]
  16. HyoudouK. NishikawaM. KobayashiY. UmeyamaY. YamashitaF. HashidaM. PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal.Free Radic. Biol. Med.20064191449145810.1016/j.freeradbiomed.2006.08.00417023272
    [Google Scholar]
  17. LuksieneZ. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment.Medicina200339121137115014704501
    [Google Scholar]
  18. RajannaS. RastogiI. WojdylaL. FuroH. KuleszaA. LinL. SheuB. rakesM. IvanovichM. PuriN. Current molecularly targeting therapies in NSCLC and melanoma.Anticancer. Agents Med. Chem.201515785686810.2174/187152061566615020210013025642982
    [Google Scholar]
  19. LangdonS.P. CameronD.A. Pertuzumab for the treatment of metastatic breast cancer.Expert Rev. Anticancer Ther.201313890791810.1586/14737140.2013.81441923984893
    [Google Scholar]
  20. FlahertyK.T. Sorafenib: Delivering a targeted drug to the right targets.Expert Rev. Anticancer Ther.20077561762610.1586/14737140.7.5.61717492926
    [Google Scholar]
  21. CatB. StuhlmannD. SteinbrennerH. AliliL. HoltkötterO. SiesH. BrenneisenP. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species.J. Cell Sci.2006119132727273810.1242/jcs.0301116757516
    [Google Scholar]
  22. FangH. DeClerckY.A. Targeting the tumor microenvironment: From understanding pathways to effective clinical trials.Cancer Res.201373164965497710.1158/0008‑5472.CAN‑13‑066123913938
    [Google Scholar]
  23. De VlieghereE. VersetL. DemetterP. BrackeM. De WeverO. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics.Virchows Arch.2015467436738210.1007/s00428‑015‑1818‑426259962
    [Google Scholar]
  24. De WeverO. DemetterP. MareelM. BrackeM. Stromal myofibroblasts are drivers of invasive cancer growth.Int. J. Cancer2008123102229223810.1002/ijc.2392518777559
    [Google Scholar]
  25. MeiL. DuW. MaW.W. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: Controversies and promises.J. Gastrointest. Oncol.20167348749410.21037/jgo.2016.03.0327284483
    [Google Scholar]
  26. DesmoulièreA. GuyotC. GabbianiG. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior.Int. J. Dev. Biol.2004485-650951710.1387/ijdb.041802ad15349825
    [Google Scholar]
  27. SchroederA. HellerD.A. WinslowM.M. DahlmanJ.E. PrattG.W. LangerR. JacksT. AndersonD.G. Treating metastatic cancer with nanotechnology.Nat. Rev. Cancer2012121395010.1038/nrc318022193407
    [Google Scholar]
  28. BrenneisenP. ReichertA. Nanotherapy and reactive oxygen species (ROS) in cancer: A novel perspective.Antioxidants2018723110.3390/antiox702003129470419
    [Google Scholar]
  29. HalliwellB. Oxidative stress and cancer: Have we moved forward?Biochem. J.2007401111110.1042/BJ2006113117150040
    [Google Scholar]
  30. FruehaufJ.P. MeyskensF.L.Jr. Reactive oxygen species: A breath of life or death?Clin. Cancer Res.200713378979410.1158/1078‑0432.CCR‑06‑208217289868
    [Google Scholar]
  31. WuL.L. ChiouC.C. ChangP.Y. WuJ.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics.Clin. Chim. Acta20043391-21910.1016/j.cccn.2003.09.01014687888
    [Google Scholar]
  32. ArbiserJ.L. PetrosJ. KlafterR. GovindajaranB. McLaughlinE.R. BrownL.F. CohenC. MosesM. KilroyS. ArnoldR.S. LambethJ.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch.Proc. Natl. Acad. Sci.200299271572010.1073/pnas.02263019911805326
    [Google Scholar]
  33. LimS.D. SunC. LambethJ.D. MarshallF. AminM. ChungL. PetrosJ.A. ArnoldR.S. Increased Nox1 and hydrogen peroxide in prostate cancer.Prostate200562220020710.1002/pros.2013715389790
    [Google Scholar]
  34. JingX. UekiN. ChengJ. ImanishiH. HadaT. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin.Jpn. J. Cancer Res.200293887488210.1111/j.1349‑7006.2002.tb01332.x12716464
    [Google Scholar]
  35. RouxC. JafariS.M. ShindeR. DuncanG. CesconD.W. SilvesterJ. ChuM.F. HodgsonK. BergerT. WakehamA. PalomeroL. Garcia-ValeroM. PujanaM.A. MakT.W. McGahaT.L. CappelloP. GorriniC. Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1.Proc. Natl. Acad. Sci. USA2019116104326433510.1073/pnas.181947311630770442
    [Google Scholar]
  36. KongQ. LilleheiK.O. Antioxidant inhibitors for cancer therapy.Med. Hypotheses199851540540910.1016/S0306‑9877(98)90036‑69848469
    [Google Scholar]
  37. ReinehrR. BeckerS. EberleA. Grether-BeckS. HäussingerD. Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis.J. Biol. Chem.200528029271792719410.1074/jbc.M41436120015917250
    [Google Scholar]
  38. MedanD. WangL. ToledoD. LuB. StehlikC. JiangB.H. ShiX. RojanasakulY. Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages.J. Cell. Physiol.20052031788410.1002/jcp.2020115368542
    [Google Scholar]
  39. UchikuraK. WadaT. HoshinoS. NagakawaY. AikoT. BulkleyG.B. KleinA.S. SunZ. Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species.Am. J. Physiol. Gastrointest. Liver Physiol.20042873G620G62610.1152/ajpgi.00314.200315087279
    [Google Scholar]
  40. DenningT.L. TakaishiH. CroweS.E. BoldoghI. JevnikarA. ErnstP.B. Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells.Free Radic. Biol. Med.200233121641165010.1016/S0891‑5849(02)01141‑312488132
    [Google Scholar]
  41. BenharM. EngelbergD. LevitzkiA. ROS, stress-activated kinases and stress signaling in cancer.EMBO Rep.20023542042510.1093/embo‑reports/kvf09411991946
    [Google Scholar]
  42. KimY.S. MorganM.J. ChoksiS. LiuZ. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death.Mol. Cell200726567568710.1016/j.molcel.2007.04.02117560373
    [Google Scholar]
  43. JacobC. CottrellG.S. GehringerD. SchmidlinF. GradyE.F. BunnettN.W. c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2.J. Biol. Chem.200528016160761608710.1074/jbc.M50010920015708858
    [Google Scholar]
  44. Scherz-ShouvalR. ElenaS. EphraimF. HagaiS. LidorG. ZvulunE. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4.EMBO J20072617491760
    [Google Scholar]
  45. Scherz-ShouvalR. ElazarZ. ROS, mitochondria and the regulation of autophagy.Trends Cell Biol.200717942242710.1016/j.tcb.2007.07.00917804237
    [Google Scholar]
  46. GhavamiS. AsoodehA. KlonischT. HalaykoA.J. KadkhodaK. KroczakT.J. GibsonS.B. BooyE.P. Naderi-ManeshH. LosM. Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway.J. Cell. Mol. Med.20081231005102210.1111/j.1582‑4934.2008.00129.x18494941
    [Google Scholar]
  47. CaiJ. NiuX. ChenY. HuQ. ShiG. WuH. WangJ. YiJ. Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis.Neoplasia200810141IN1910.1593/neo.0775418231637
    [Google Scholar]
  48. Scherz-ShouvalR. ShvetsE. ElazarZ. Oxidation as a post-translational modification that regulates autophagy.Autophagy20073437137310.4161/auto.421417438362
    [Google Scholar]
  49. BensaadK. TsurutaA. SelakM.A. VidalM.N.C. NakanoK. BartronsR. GottliebE. VousdenK.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.Cell2006126110712010.1016/j.cell.2006.05.03616839880
    [Google Scholar]
  50. CheungE.C. AthineosD. LeeP. RidgwayR.A. LambieW. NixonC. StrathdeeD. BlythK. SansomO.J. VousdenK.H. TIGAR is required for efficient intestinal regeneration and tumorigenesis.Dev. Cell201325546347710.1016/j.devcel.2013.05.00123726973
    [Google Scholar]
  51. AssiM. The differential role of reactive oxygen species in early and late stages of cancer.Am. J. Physiol. Regul. Integr. Comp. Physiol.20173136R646R65310.1152/ajpregu.00247.201728835450
    [Google Scholar]
  52. DebnathJ. MillsK.R. CollinsN.L. ReginatoM.J. MuthuswamyS.K. BruggeJ.S. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini.Cell20021111294010.1016/S0092‑8674(02)01001‑212372298
    [Google Scholar]
  53. CheungE.C. DeNicolaG.M. NixonC. BlythK. LabuschagneC.F. TuvesonD.A. VousdenK.H. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer.Cancer Cell2020372168182.e410.1016/j.ccell.2019.12.01231983610
    [Google Scholar]
  54. OkonI.S. ZouM.H. Mitochondrial ROS and cancer drug resistance: Implications for therapy.Pharmacol. Res.201510017017410.1016/j.phrs.2015.06.01326276086
    [Google Scholar]
  55. SabharwalS.S. SchumackerP.T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel?Nat. Rev. Cancer2014141170972110.1038/nrc380325342630
    [Google Scholar]
  56. WarburgO. The chemical constitution of respiration ferment.Science197968437443
    [Google Scholar]
  57. ChenX. QianY. WuS. The Warburg effect: Evolving interpretations of an established concept.Free Radic. Biol. Med.20157925326310.1016/j.freeradbiomed.2014.08.02725277420
    [Google Scholar]
  58. Modica-NapolitanoJ.S. SinghK.K. Mitochondrial dysfunction in cancer.Mitochondrion200445-675576210.1016/j.mito.2004.07.02716120430
    [Google Scholar]
  59. GogvadzeV. OrreniusS. ZhivotovskyB. Mitochondria in cancer cells: What is so special about them?Trends Cell Biol.200818416517310.1016/j.tcb.2008.01.00618296052
    [Google Scholar]
  60. SinghK.K. Mitochondrial dysfunction is a common phenotype in aging and cancer.Ann. N. Y. Acad. Sci.20041019126026410.1196/annals.1297.04315247025
    [Google Scholar]
  61. MurphyM.P. How mitochondria produce reactive oxygen species.Biochem. J.2009417111310.1042/BJ2008138619061483
    [Google Scholar]
  62. HuY. LuW. ChenG. WangP. ChenZ. ZhouY. OgasawaraM. TrachoothamD. FengL. PelicanoH. ChiaoP.J. KeatingM.J. Garcia-ManeroG. HuangP. K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis.Cell Res.201222239941210.1038/cr.2011.14521876558
    [Google Scholar]
  63. WeinbergF. HamanakaR. WheatonW.W. WeinbergS. JosephJ. LopezM. KalyanaramanB. MutluG.M. BudingerG.R.S. ChandelN.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.Proc. Natl. Acad. Sci.2010107198788879310.1073/pnas.100342810720421486
    [Google Scholar]
  64. ZhangE. ZhangC. SuY. ChengT. ShiC. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy.Drug Discov. Today2011163-414014610.1016/j.drudis.2010.12.00621182981
    [Google Scholar]
  65. FuldaS. GalluzziL. KroemerG. Targeting mitochondria for cancer therapy.Nat. Rev. Drug Discov.20109644746410.1038/nrd313720467424
    [Google Scholar]
  66. GogvadzeV. OrreniusS. ZhivotovskyB. Mitochondria as targets for chemotherapy.Apoptosis200914462464010.1007/s10495‑009‑0323‑019205885
    [Google Scholar]
  67. VigneriR. MalandrinoP. VigneriP. The changing epidemiology of thyroid cancer.Curr. Opin. Oncol.20152711710.1097/CCO.000000000000014825310641
    [Google Scholar]
  68. IbrahimE.Y. BusaidyN.L. Treatment and surveillance of advanced, metastatic iodine-resistant differentiated thyroid cancer.Curr. Opin. Oncol.201729215115810.1097/CCO.000000000000034928141684
    [Google Scholar]
  69. StaynerL.T. DankovicD.A. LemenR.A. Occupational exposure to chrysotile asbestos and cancer risk: A review of the amphibole hypothesis.Am. J. Public Health199686217918610.2105/AJPH.86.2.1798633733
    [Google Scholar]
  70. RaoG.N. BerkB.C. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression.Circ. Res.199270359359910.1161/01.RES.70.3.5931371430
    [Google Scholar]
  71. AikawaR. KomuroI. YamazakiT. ZouY. KudohS. TanakaM. ShiojimaI. HiroiY. YazakiY. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats.J. Clin. Invest.199710071813182110.1172/JCI1197099312182
    [Google Scholar]
  72. GuytonK.Z. LiuY. GorospeM. XuQ. HolbrookN.J. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury.J. Biol. Chem.199627184138414210.1074/jbc.271.8.41388626753
    [Google Scholar]
  73. SpencerJ.P.E. Interactions of flavonoids and their metabolites with cell signaling cascades.Nutrigenomics200535337810.1201/9781420028096.ch17
    [Google Scholar]
  74. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.2007391448410.1016/j.biocel.2006.07.00116978905
    [Google Scholar]
  75. PoliG. LeonarduzziG. BiasiF. ChiarpottoE. Oxidative stress and cell signalling.Curr. Med. Chem.20041191163118210.2174/092986704336532315134513
    [Google Scholar]
  76. NuceraC. LawlerJ. ParangiS. BRAF(V600E) and microenvironment in thyroid cancer: A functional link to drive cancer progression.Cancer Res.20117172417242210.1158/0008‑5472.CAN‑10‑384421447745
    [Google Scholar]
  77. FukuyoY. InoueM. NakajimaT. HigashikuboR. HorikoshiN.T. HuntC. UshevaA. FreemanM.L. HorikoshiN. Oxidative stress plays a critical role in inactivating mutant BRAF by geldanamycin derivatives.Cancer Res.200868156324633010.1158/0008‑5472.CAN‑07‑660218676857
    [Google Scholar]
  78. LeeY.S. KimD.W. LeeY.H. OhJ.H. YoonS. ChoiM.S. LeeS.K. KimJ.W. LeeK. SongC.W. Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells.Arch. Toxicol.201185121529154010.1007/s00204‑011‑0714‑121611810
    [Google Scholar]
  79. AshaRaniP.V. LowK.M.G. HandeM.P. ValiyaveettilS. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano20093227929010.1021/nn800596w
    [Google Scholar]
  80. YangJ. WangQ. WangC. YangR. AhmedM. KumaranS. VeluP. LiB. Pseudomonas aeruginosa synthesized silver nanoparticles inhibit cell proliferation and induce ROS mediated apoptosis in thyroid cancer cell line (TPC1).Artif. Cells Nanomed. Biotechnol.202048180080910.1080/21691401.2019.1687495
    [Google Scholar]
  81. MizrahiJ.D. SuranaR. ValleJ.W. ShroffR.T. Pancreatic cancer.Lancet2020395102422008202010.1016/S0140‑6736(20)30974‑032593337
    [Google Scholar]
  82. IshikawaK. TakenagaK. AkimotoM. KoshikawaN. YamaguchiA. ImanishiH. NakadaK. HonmaY. HayashiJ.I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.Science2008320587666166410.1126/science.115690618388260
    [Google Scholar]
  83. ten KateM. van der WalJ.B.C. SluiterW. HoflandL.J. JeekelJ. SonneveldP. van EijckC.H.J. The role of superoxide anions in the development of distant tumour recurrence.Br. J. Cancer200695111497150310.1038/sj.bjc.660343617088916
    [Google Scholar]
  84. PiskounovaE. AgathocleousM. MurphyM.M. HuZ. HuddlestunS.E. ZhaoZ. LeitchA.M. JohnsonT.M. DeBerardinisR.J. MorrisonS.J. Oxidative stress inhibits distant metastasis by human melanoma cells.Nature2015527757718619110.1038/nature1572626466563
    [Google Scholar]
  85. PorporatoP.E. PayenV.L. Pérez-EscuredoJ. De SaedeleerC.J. DanhierP. CopettiT. DhupS. TardyM. VazeilleT. BouzinC. FeronO. MichielsC. GallezB. SonveauxP. A mitochondrial switch promotes tumor metastasis.Cell Rep.20148375476610.1016/j.celrep.2014.06.04325066121
    [Google Scholar]
  86. CheungE.C. LeeP. CeteciF. NixonC. BlythK. SansomO.J. VousdenK.H. Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine.Genes Dev.2016301526310.1101/gad.271130.11526679840
    [Google Scholar]
  87. LeeP. VousdenK.H. CheungE.C. TIGAR, TIGAR, burning bright.Cancer Metab.201421110.1186/2049‑3002‑2‑124383451
    [Google Scholar]
  88. DeNicolaG.M. KarrethF.A. HumptonT.J. GopinathanA. WeiC. FreseK. MangalD. YuK.H. YeoC.J. CalhounE.S. ScrimieriF. WinterJ.M. HrubanR.H. Iacobuzio-DonahueC. KernS.E. BlairI.A. TuvesonD.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.Nature2011475735410610910.1038/nature1018921734707
    [Google Scholar]
  89. Le GalK. IbrahimM.X. WielC. SayinV.I. AkulaM.K. KarlssonC. DalinM.G. AkyürekL.M. LindahlP. NilssonJ. BergoM.O. Antioxidants can increase melanoma metastasis in mice.Sci. Transl. Med.20157308308re810.1126/scitranslmed.aad374026446958
    [Google Scholar]
  90. WielC. Le GalK. IbrahimM.X. JahangirC.A. KashifM. YaoH. ZieglerD.V. XuX. GhoshT. MondalT. KanduriC. LindahlP. SayinV.I. BergoM.O. BACH1 stabilization by antioxidants stimulates lung cancer metastasis.Cell20191782330345.e2210.1016/j.cell.2019.06.00531257027
    [Google Scholar]
  91. LabuschagneC.F. CheungE.C. BlagihJ. DomartM.C. VousdenK.H. Cell clustering promotes a metabolic switch that supports metastatic colonization.Cell Metab.2019304720734.e510.1016/j.cmet.2019.07.01431447323
    [Google Scholar]
  92. SchaferZ.T. GrassianA.R. SongL. JiangZ. Gerhart-HinesZ. IrieH.Y. GaoS. PuigserverP. BruggeJ.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment.Nature2009461726010911310.1038/nature0826819693011
    [Google Scholar]
  93. GundemG. Van LooP. KremeyerB. AlexandrovL.B. TubioJ.M.C. PapaemmanuilE. BrewerD.S. KallioH.M.L. HögnäsG. AnnalaM. KivinummiK. GoodyV. LatimerC. O’MearaS. DawsonK.J. IsaacsW. Emmert-BuckM.R. NykterM. FosterC. Kote-JaraiZ. EastonD. WhitakerH.C. NealD.E. CooperC.S. EelesR.A. VisakorpiT. CampbellP.J. McDermottU. WedgeD.C. BovaG.S. The evolutionary history of lethal metastatic prostate cancer.Nature2015520754735335710.1038/nature1434725830880
    [Google Scholar]
  94. DaviesK. The broad spectrum of responses to oxidants in proliferating cells: A new paradigm for oxidative stress.IUBMB Life1999481414710.1080/71380346310791914
    [Google Scholar]
  95. RippleM.O. WildingG. HenryW.F. RagoR.P. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells.J. Natl. Cancer Inst.1997891404810.1093/jnci/89.1.408978405
    [Google Scholar]
  96. BabiorB.M. The respiratory burst oxidase.Basic Life Sci.19884981582110.1007/978‑1‑4684‑5568‑7_1312855004
    [Google Scholar]
  97. FleshnerN.E. KlotzL.H. Diet, androgens, oxidative stress and prostate cancer susceptibility.Cancer Metastasis Rev.1998-199917432533010.1023/A:100611862818310453275
    [Google Scholar]
  98. StorzP. Reactive oxygen species in tumor progression.Front. Biosci.2005101-31881189610.2741/166715769673
    [Google Scholar]
  99. KunduN. ZhangS. FultonA.M. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma.Clin. Exp. Metastasis1995131162210.1007/BF001440147820952
    [Google Scholar]
  100. KumarB. KoulS. KhandrikaL. MeachamR.B. KoulH.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.Cancer Res.20086861777178510.1158/0008‑5472.CAN‑07‑525918339858
    [Google Scholar]
  101. MormoneE. GeorgeJ. NietoN. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches.Chem. Biol. Interact.2011193322523110.1016/j.cbi.2011.07.00121803030
    [Google Scholar]
  102. GretenT.F. PapendorfF. BleckJ.S. KirchhoffT. WohlberedtT. KubickaS. KlempnauerJ. GalanskiM. MannsM.P. Survival rate in patients with hepatocellular carcinoma: A retrospective analysis of 389 patients.Br. J. Cancer200592101862186810.1038/sj.bjc.660259015870713
    [Google Scholar]
  103. MurakamiT. KimT. NakamuraH. Invited. Hepatitis, cirrhosis, and hepatoma.J. Magn. Reson. Imaging19988234635810.1002/jmri.18800802149562061
    [Google Scholar]
  104. HussainS.P. HofsethL.J. HarrisC.C. Radical causes of cancer.Nat. Rev. Cancer20033427628510.1038/nrc104612671666
    [Google Scholar]
  105. HothornT. LausenB. BennerA. Radespiel-TrögerM. Bagging survival trees.Stat. Med.2004231779110.1002/sim.159314695641
    [Google Scholar]
  106. GeorgakilasA.G. MosleyW.G. GeorgakilaS. ZiechD. PanayiotidisM.I. Viral-induced human carcinogenesis: An oxidative stress perspective.Mol. Biosyst.2010671162117210.1039/b923958h20436967
    [Google Scholar]
  107. KawelkeN. VaselM. SensC. von AuA. DooleyS. NakchbandiI.A. Fibronectin protects from excessive liver fibrosis by modulating the availability of and responsiveness of stellate cells to active TGF-β.PLoS One2011611e2818110.1371/journal.pone.002818122140539
    [Google Scholar]
  108. BoschJ. AbraldesJ.G. FernándezM. García-PagánJ.C. Hepatic endothelial dysfunction and abnormal angiogenesis: New targets in the treatment of portal hypertension.J. Hepatol.201053355856710.1016/j.jhep.2010.03.02120561700
    [Google Scholar]
  109. LinW. TsaiW.L. ShaoR.X. WuG. PengL.F. BarlowL.L. ChungW.J. ZhangL. ZhaoH. JangJ.Y. ChungR.T. Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner.Gastroenterology2010138725092518.e1, 2518.e110.1053/j.gastro.2010.03.00820230822
    [Google Scholar]
  110. HöselM. QuasdorffM. WiegmannK. WebbD. ZedlerU. BroxtermannM. TedjokusumoR. EsserK. ArzbergerS. KirschningC.J. LangenkampA. FalkC. BüningH. Rose-JohnS. ProtzerU. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection.Hepatology20095061773178210.1002/hep.2322619937696
    [Google Scholar]
  111. WangZ. LiZ. YeY. XieL. LiW. Oxidative stress and liver cancer: Etiology and therapeutic targets.Oxid. Med. Cell. Longev.2016201611010.1155/2016/789157427957239
    [Google Scholar]
  112. WangW. DongX. LiuY. NiB. SaiN. YouL. SunM. YaoY. QuC. YinX. NiJ. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways.Biomed. Pharmacother.202013111066110.1016/j.biopha.2020.11066132942154
    [Google Scholar]
  113. DinhP. HarnettP. Piccart-GebhartM.J. AwadaA. New therapies for ovarian cancer: Cytotoxics and molecularly targeted agents.Crit. Rev. Oncol. Hematol.200867210311210.1016/j.critrevonc.2008.01.01218342536
    [Google Scholar]
  114. GalanisA. PappaA. GiannakakisA. LanitisE. DangajD. SandaltzopoulosR. Reactive oxygen species and HIF-1 signalling in cancer.Cancer Lett.20082661122010.1016/j.canlet.2008.02.02818378391
    [Google Scholar]
  115. DawnA.K. ElisabethA.S. SheriF.T.F. DanielR.C.N. ColleenM.S. ElijahM.E. PascalS. KatalinC. MaryJ.C.H. A molecular role for lysyl oxidase in breast cancer invasion.Cancer Res2002621544784483
    [Google Scholar]
  116. YoonS.O. ParkS.J. YoonS.Y. YunC.H. ChungA.S. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway.J. Biol. Chem.200227733302713028210.1074/jbc.M20264720012058032
    [Google Scholar]
  117. SchietkeR. WarneckeC. WackerI. SchödelJ. MoleD.R. CampeanV. AmannK. Goppelt-StruebeM. BehrensJ. EckardtK.U. WiesenerM.S. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: Insights into cellular transformation processes mediated by HIF-1.J. Biol. Chem.201028596658666910.1074/jbc.M109.04242420026874
    [Google Scholar]
  118. WoznickA.R. BraddockA.L. DulaiM. SeymourM.L. CallahanR.E. WelshR.J. ChmielewskiG.W. ZelenockG.B. ShanleyC.J. Lysyl oxidase expression in bronchogenic carcinoma.Am. J. Surg.2005189329730110.1016/j.amjsurg.2004.11.03115792754
    [Google Scholar]
  119. WangY. MaJ. ShenH. WangC. SunY. HowellS.B. LinX. Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.Oncol. Rep.20143252150215810.3892/or.2014.344825174950
    [Google Scholar]
  120. DickinsonB.C. ChangC.J. Chemistry and biology of reactive oxygen species in signaling or stress responses.Nat. Chem. Biol.20117850451110.1038/nchembio.60721769097
    [Google Scholar]
  121. HancockJ.T. DesikanR. NeillS.J. Role of reactive oxygen species in cell signalling pathways.Biochem. Soc. Trans.200129234534910.1042/bst029034511356180
    [Google Scholar]
  122. WarisG. AhsanH. Reactive oxygen species: Role in the development of cancer and various chronic conditions.J. Carcinog.2006511410.1186/1477‑3163‑5‑1416689993
    [Google Scholar]
  123. SreevalsanS. SafeS. Safe, reactive oxygen species and colorectal cancer.Curr. Colorectal. Cancer Rep.20139435035710.1007/s11888‑013‑0190‑5
    [Google Scholar]
  124. ZhangP. ZhaoS. LuX. ShiZ. LiuH. ZhuB. Metformin enhances the sensitivity of colorectal cancer cells to cisplatin through ROS-mediated PI3K/Akt signaling pathway.Gene202074514462310.1016/j.gene.2020.14462332222530
    [Google Scholar]
  125. ChiuW.H. LuoS.J. ChenC.L. ChengJ.H. HsiehC.Y. WangC.Y. HuangW.C. SuW.C. LinC.F. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells.Biochem. Pharmacol.20128391159117110.1016/j.bcp.2012.01.01622285910
    [Google Scholar]
  126. JiangY. YuX. SuC. ZhaoL. ShiY. Chitosan nanoparticles induced the antitumor effect in hepatocellular carcinoma cells by regulating ROS-mediated mitochondrial damage and endoplasmic reticulum stress.Artif. Cells Nanomed. Biotechnol.201947174775610.1080/21691401.2019.157787630873872
    [Google Scholar]
  127. RashmiK.C. Harsha RajM. PaulM. GirishK.S. SalimathB.P. AparnaH.S. A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity.Chem. Biol. Interact.201929912013010.1016/j.cbi.2018.12.00530543781
    [Google Scholar]
  128. le CaërS. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation.Water20113201123525310.3390/w3010235
    [Google Scholar]
  129. IchikawaJ. TsuchimotoD. OkaS. OhnoM. FuruichiM. SakumiK. NakabeppuY. Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death.DNA Repair20087341843010.1016/j.dnarep.2007.11.00718155646
    [Google Scholar]
  130. BarkerH.E. PagetJ.T.E. KhanA.A. HarringtonK.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence.Nat. Rev. Cancer201515740942510.1038/nrc395826105538
    [Google Scholar]
  131. BaoS. WuQ. McLendonR.E. HaoY. ShiQ. HjelmelandA.B. DewhirstM.W. BignerD.D. RichJ.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature2006444712075676010.1038/nature0523617051156
    [Google Scholar]
  132. DiehnM. ChoR.W. LoboN.A. KaliskyT. DorieM.J. KulpA.N. QianD. LamJ.S. AillesL.E. WongM. JoshuaB. KaplanM.J. WapnirI. DirbasF.M. SomloG. GarberoglioC. PazB. ShenJ. LauS.K. QuakeS.R. BrownJ.M. WeissmanI.L. ClarkeM.F. Association of reactive oxygen species levels and radioresistance in cancer stem cells.Nature2009458723978078310.1038/nature0773319194462
    [Google Scholar]
  133. SunX. ZhangX. ZhaiH. ZhangD. MaS. Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS.Biomed. Pharmacother.202012510911810.1016/j.biopha.2019.10911832106366
    [Google Scholar]
  134. BishayeeK. GhoshS. MukherjeeA. SadhukhanR. MondalJ. Khuda-BukhshA.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: Signal cascade and drug-DNA interaction.Cell Prolif.201346215316310.1111/cpr.1201723510470
    [Google Scholar]
  135. AzadM.B. ChenY. GibsonS.B. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment.Antioxid. Redox Signal.200911477779010.1089/ars.2008.227018828708
    [Google Scholar]
  136. WongC.H. IskandarK.B. YadavS.K. HirparaJ.L. LohT. PervaizS. Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation.PLoS One201054e999610.1371/journal.pone.000999620368806
    [Google Scholar]
  137. MowersE.E. SharifiM.N. MacleodK.F. Autophagy in cancer metastasis.Oncogene20163620161619163010.1038/onc.2016.333
    [Google Scholar]
  138. LuX. MasicA. LiY. ShinY. LiuQ. ZhouY. The PI3K/Akt pathway inhibits influenza A virus-induced Bax- mediated apoptosis by negatively regulating the JNK pathway via ASK1.J. Gen. Virol.20109161439144910.1099/vir.0.018465‑020130137
    [Google Scholar]
  139. SteelmanL.S. AbramsS.L. WhelanJ. BertrandF.E. LudwigD.E. BäseckeJ. LibraM. StivalaF. MilellaM. TafuriA. LunghiP. BonatiA. MartelliA.M. McCubreyJ.A. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia.Leukemia200822468670710.1038/leu.2008.2618337767
    [Google Scholar]
  140. TafaniM. SansoneL. LimanaF. ArcangeliT. De SantisE. PoleseM. FiniM. RussoM.A. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression.Oxid. Med. Cell. Longev.2016201611810.1155/2016/390714726798421
    [Google Scholar]
  141. PrasadS. GuptaS.C. TyagiA.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.Cancer Lett.20173879510510.1016/j.canlet.2016.03.04227037062
    [Google Scholar]
  142. FedericoA. MorgilloF. TuccilloC. CiardielloF. LoguercioC. Chronic inflammation and oxidative stress in human carcinogenesis.Int. J. Cancer2007121112381238610.1002/ijc.2319217893868
    [Google Scholar]
  143. LandskronG. De la FuenteM. ThuwajitP. ThuwajitC. HermosoM.A. Chronic inflammation and cytokines in the tumor microenvironment.J. Immunol. Res.2014201411910.1155/2014/14918524901008
    [Google Scholar]
  144. XieH. ChunF.K.H. RutzJ. BlahetaR.A. Sulforaphane impact on reactive oxygen species (ROS) in bladder carcinoma.Int. J. Mol. Sci.20212211593810.3390/ijms22115938
    [Google Scholar]
  145. NB. ChandrashekarK.R. PrabhuA. RekhaP.D. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell. Dev. Biol. Anim.201955533134010.1007/s11626‑019‑00332‑930945115
    [Google Scholar]
  146. ZhouX. ChenY. WangF. WuH. ZhangY. LiuJ. CaiY. HuangS. HeN. HuZ. JinX. Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells.Chem. Biol. Interact.202033110927310.1016/j.cbi.2020.10927333002460
    [Google Scholar]
  147. Poillet-PerezL. DespouyG. Delage-MourrouxR. Boyer-GuittautM. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy.Redox Biol.2015418419210.1016/j.redox.2014.12.00325590798
    [Google Scholar]
  148. ChoiS.L. KimS.J. LeeK.T. KimJ. MuJ. BirnbaumM.J. Soo KimS. HaJ. The regulation of AMP-activated protein kinase by H2O2.Biochem. Biophys. Res. Commun.20012871929710.1006/bbrc.2001.554411549258
    [Google Scholar]
  149. MaedaA. ShiraoT. ShirasayaD. YoshiokaY. YamashitaY. AkagawaM. AshidaH. Piperine promotes glucose uptake through ros-dependent activation of the CAMKK/AMPK signaling pathway in skeletal muscle.Mol. Nutr. Food Res.20186211180008610.1002/mnfr.20180008629683271
    [Google Scholar]
  150. HinchyE.C. GruszczykA.V. WillowsR. NavaratnamN. HallA.R. BatesG. BrightT.P. KriegT. CarlingD. MurphyM.P. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.J. Biol. Chem.201829344172081721710.1074/jbc.RA118.00257930232152
    [Google Scholar]
  151. JeonS.M. Regulation and function of AMPK in physiology and diseases.Exp. Mol. Med.2016487e24510.1038/emm.2016.8127416781
    [Google Scholar]
  152. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  153. BuskwofieA. David-WestG. ClareC.A. A review of cervical cancer: Incidence and disparities.J. Natl. Med. Assoc.2020112222923210.1016/j.jnma.2020.03.00232278478
    [Google Scholar]
  154. HeJ. HuangB. ZhangK. LiuM. XuT. Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity.Biomed. Pharmacother.202012711020910.1016/j.biopha.2020.11020932559848
    [Google Scholar]
  155. BraunJ.A. HerrmannA.L. BlaseJ.I. FrensemeierK. BulkescherJ. ScheffnerM. GalyB. Hoppe-SeylerK. Hoppe-SeylerF. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: Repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis.Int. J. Cancer2020146246147410.1002/ijc.3270931603527
    [Google Scholar]
  156. Al-ZubaydiF. GaoD. KakkarD. LiS. AdlerD. HollowayJ. SzekelyZ. GuZ. ChanN. KumarS. LoveS. SinkoP.J. Breast intraductal nanoformulations for treating ductal carcinoma in situ I: Exploring metal-ion complexation to slow ciclopirox release, enhance mammary persistence and efficacy.J. Control. Release2020323718210.1016/j.jconrel.2020.04.01632302762
    [Google Scholar]
  157. BernierK.M. MorrisonL.A. Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice.Antiviral Res.201815610210610.1016/j.antiviral.2018.06.01029908958
    [Google Scholar]
  158. HuangZ. HuangS. Reposition of the fungicide ciclopirox for cancer treatment.Recent Pat. Anticancer Drug Discov.202116202112213510.2174/1574892816666210211090845
    [Google Scholar]
  159. FanH. HeY. XiangJ. ZhouJ. WanX. YouJ. DuK. LiY. CuiL. WangY. ZhangC. BuY. LeiY. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy.Redox Biol.20225310233910.1016/j.redox.2022.10233935636017
    [Google Scholar]
  160. ZhouJ. ZhangL. WangM. ZhouL. FengX. YuL. LanJ. GaoW. ZhangC. BuY. HuangC. ZhangH. LeiY. CPX targeting DJ-1 triggers ROS-induced cell death and protective autophagy in colorectal cancer.Theranostics20199195577559410.7150/thno.3466331534504
    [Google Scholar]
  161. ZhouH. ShenT. ShangC. LuoY. LiuL. YanJ. LiY. HuangS. ZhouH. ShenT. ShangC. LuoY. LiuL. YanJ. LiY. HuangS. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway.Oncotarget2014520101401015010.18632/oncotarget.247125294812
    [Google Scholar]
  162. GaladariS. RahmanA. PallichankandyS. ThayyullathilF. Reactive oxygen species and cancer paradox: To promote or to suppress?Free Radic. Biol. Med.201710414416410.1016/j.freeradbiomed.2017.01.00428088622
    [Google Scholar]
  163. KhanA.Q. RashidK. AlAmodiA.A. AghaM.V. AkhtarS. HakeemI. RazaS.S. UddinS. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids.Biomed. Pharmacother.202114311214210.1016/j.biopha.2021.11214234536761
    [Google Scholar]
/content/journals/cmc/10.2174/0929867330666230609110455
Loading
/content/journals/cmc/10.2174/0929867330666230609110455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test