Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Nucleosides are sensitive sites towards oxidations caused by endogenous and exogenous oxidative resources, and a large number of the produced DNA lesions behave as pathogenesis eventually. We herein analyze oxidative modes of nucleosides and structure-activity relationships of some clinical nucleoside drugs. Together with our previous findings on the inhibitory effects of nucleoside derivatives against DNA oxidation, all these results imply a possibility for nucleoside to be a new member in the family of antioxidants. Then, some novel synthetic routines of nucleoside analogs are collected to reveal the applicability in the construction of nucleoside antioxidants. Therefore, it is reasonable to envision that the nucleoside antioxidant will be a novel topic in the research of both nucleosides and antioxidants.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673264900231023050108
2023-11-06
2025-04-21
Loading full text...

Full text loading...

References

  1. RenM. GreenbergM.M. ZhouC. Participation of histones in DNA damage and repair within nucleosome core particles: Mechanism and applications.Acc. Chem. Res.20225571059107310.1021/acs.accounts.2c0004135271268
    [Google Scholar]
  2. LiK. LiZ. WuJ. GongY. GuoL. XieJ. In vitro evaluation of DNA damage effect markers toward five nitrogen mustards based on liquid chromatography-tandem mass spectrometry.Chem. Res. Toxicol.20223519911010.1021/acs.chemrestox.1c0034634969250
    [Google Scholar]
  3. TangF. YuanJ. YuanB.F. WangY. DNA-protein cross-linking sequencing for genome-wide mapping of thymidine glycol.J. Am. Chem. Soc.2022144145446210.1021/jacs.1c1049034978433
    [Google Scholar]
  4. KamińskaE. KorytiakováE. ReichlA. MüllerM. CarellT. Intragenomic decarboxylation of 5-carboxy-2'-deoxycutidineAngew. Chem. Int. Ed202160232072321110.1002/anie.202109995
    [Google Scholar]
  5. VangavetiS. RanganathanS.V. AgrisP.F. Physical chemistry of a single tRNA-modified nucleoside regulates decoding of the synonymous lysine wobble codon and affects type 2 diabetes.J. Phys. Chem. B202212661168117710.1021/acs.jpcb.1c0905335119848
    [Google Scholar]
  6. RavanatJ.-L. DumontE. Reactivity of singlet oxygen with DNA, an update.Photochem. Photobiol.202298356457110.1111/php.1358134931317
    [Google Scholar]
  7. HuwaidiA. KumariB. RobertG. GuérinB. SancheL. WagnerJ.R. Profiling DNA damage induced by the irradiation of DNA with gold nanoparticles.J. Phys. Chem. Lett.202112409947995410.1021/acs.jpclett.1c0259834617774
    [Google Scholar]
  8. PsykarakisE.E. ChatzopoulouE. GimisisT. First characterisation of two important postulated intermediates in the formation of a HydT DNA lesion, a thymidine oxidation product.Org. Biomol. Chem.201816132289230010.1039/C8OB00378E29537022
    [Google Scholar]
  9. SavioL.E.B. Leite-AguiarR. AlvesV.S. Coutinho-SilvaR. WyseA.T.S. Purinergic signaling in the modulation of redox biology.Redox Biol.20214710213710.1016/j.redox.2021.102137
    [Google Scholar]
  10. YamauchiK. MatsuokaY. TakahashiM. IzumiY. NakaH. TaniguchiY. KawaiK. BambaT. YamadaK. Detection and structural analysis of pyrimidine-derived radicals generated on DNA using a profluorescent nitroxide probe.Chem. Commun.2021581565910.1039/D1CC04998D34897335
    [Google Scholar]
  11. WangH.-J. ZhongY.-Y. XiaoY.-C. ChenF.-E. Chemical and chemoenzymatic stereoselective synthesis of β-nucleosides and their analogues.Org. Chem. Front.2022961719174110.1039/D1QO01936H
    [Google Scholar]
  12. JiangH.P. XiongJ. LiuF.-L. MaC.-J. TangX.-L. YuanB.-F. FengY.-Q. Modified nucleoside triphosphates exist in mammals.Chem. Sci.20189174160416710.1039/C7SC05472F29780546
    [Google Scholar]
  13. MisiaszekR. CreanC. GeacintovN.E. ShafirovichV. Combination of nitrogen dioxide radicals with 8-oxo-7,8-dihydroguanine and guanine radicals in DNA: Oxidation and nitration end-products.J. Am. Chem. Soc.200512772191220010.1021/ja044390r15713097
    [Google Scholar]
  14. MingX. MatterB. SongM. VeliathE. ShanleyR. JonesR. TretyakovaN. Mapping structurally defined guanine oxidation products along DNA duplexes: Influence of local sequence context and endogenous cytosine methylation.J. Am. Chem. Soc.2014136114223423510.1021/ja411636j24571128
    [Google Scholar]
  15. CreanC. GeacintovN.E. ShafirovichV. Methylation of 2′-deoxyguanosine by a free radical mechanism.J. Phys. Chem. B200911338127731278110.1021/jp903554n19719172
    [Google Scholar]
  16. ZhengL. GreenbergM.M. Independent generation and reactivity of 2′-deoxyguanosin-N1-yl radical.J. Org. Chem.202085138665867210.1021/acs.joc.0c0109532525316
    [Google Scholar]
  17. ZengT. FlemingA.M. DingY. RenH. WhiteH.S. BurrowsC.J. Nanopore analysis of the 5-guanidinohydantoin to iminoallantoin isomerization in duplex DNA.J. Org. Chem.20188373973397810.1021/acs.joc.8b0031729490132
    [Google Scholar]
  18. D’AnnibaleV. NardiA.N. AmadeiA. D’AbramoM. Theoretical characterization of the reduction potentials of nucleic acids in solution.J. Chem. Theory Comput.20211731301130710.1021/acs.jctc.0c0072833621084
    [Google Scholar]
  19. ShaoJ. HuangC.-H. ShaoB. QinL. XuD. LiF. QuN. XieL.-N. KalyanaramanB. ZhuB.-Z. Potent oxidation of DNA by haloquinoid disinfection byproducts to the more mutagenic imidazolone dIz via an unprecedented haloquinone-enoxy radical-mediated mechanism.Environ. Sci. Technol.202054106244625310.1021/acs.est.9b0788632323976
    [Google Scholar]
  20. ShaoJ. YanZ.-Y. TangM. HuangC.-H. ShengZ.-G. ChenJ. ShaoB. ZhuB.Z. Potent oxidation of DNA by Ru(II) tri(polypyridyl) complexes under visible light irradiation via a singlet oxygen-mediated mechanism.Inorg. Chem. Front.202183421343210.1039/D0QI01518K
    [Google Scholar]
  21. BennyJ. SaitoT. MoeM. M. LiuJ. Singlet O2 reactions with radical cations of 8 bromoguanine and 8 bromoguanosine: Guided-ion beam mass spectrometric measurements and theoretical treatments.J. Phys. Chem. A2022126687910.1021/acs.jpca.1c09552
    [Google Scholar]
  22. HosfordM.E. MullerJ.G. BurrowsC.J. Spermine participates in oxidative damage of guanosine and 8-oxoguanosine leading to deoxyribosylurea formation.J. Am. Chem. Soc.2004126319540954110.1021/ja047981q15291548
    [Google Scholar]
  23. FlemingA.M. ChabotM.B. NguyenN.L.B. BurrowsC.J. Collateral damage occurs when using photosensitizer probes to detect or modulate nucleic acid modifications.Angew. Chem. Int. Ed.2022617e20211064910.1002/anie.20211064934919767
    [Google Scholar]
  24. KabacińskiP. RomanelliM. PonkkonenE. JaiswalV. K. CarellT. GaravelliM. CerulloG. ContiI. Unified description of ultrafast excited state decay processes in epigenetic deoxycytidine derivatives.J. Phys. Chem. Lett.202112110701107710.1021/acs.jpclett.1c02909
    [Google Scholar]
  25. ChristovP.P. Richie-JannettaR. KingsleyP.J. VemulapalliA. KimK. SulikowskiG.A. RizzoC.J. KetkarA. EoffR.L. RouzerC.A. MarnettL.J. Site-specific synthesis of oligonucleotides containing 6-oxo-M1dG, the genomic metabolite of M1dG, and liquid chromatography- tandem mass spectrometry analysis of its in vitro bypass by human polymerase ι.Chem. Res. Toxicol.202134122567257810.1021/acs.chemrestox.1c0033434860508
    [Google Scholar]
  26. RobinsM.J. GuoZ. SamanoM.C. WnukS.F. Biomimetic simulation of free radical-initiated cascade reactions postulated to occur at the active site of ribonucleotide reductases.J. Am. Chem. Soc.199912171425143310.1021/ja983449p
    [Google Scholar]
  27. DenisovS.A. WardS. ShcherbakovV. StarkA.D. KaczmarekR. Radzikowska-CieciuraE. DebnathD. JacobsT. KumarA. SevillaM.D. PernotP. DembinskiR. MostafaviM. AdhikaryA. Modulation of the directionality of hole transfer between the base and the sugar-phosphate backbone in DNA with the number of sulfur atoms in the phosphate group.J. Phys. Chem. B2022126243044210.1021/acs.jpcb.1c0906834990129
    [Google Scholar]
  28. HuangS.R. TurečekF. Noncanonical isomers of nucleoside cation radicals: An ab initio study of the dark matter of DNA ionization.J. Phys. Chem. A20221262480249710.1021/acs.jpca.2c00894
    [Google Scholar]
  29. Cruz-OrtizA.F. Jara-ToroR.A. ArangurenJ.P. ScuderiD. PinoG.A. Inter- and intramolecular proton transfer in an isolated (cytosine-guanine)H+ pair: Direct evidence from IRMPD spectroscopy.J. Phys. Chem. A202212681403141110.1021/acs.jpca.1c1065135175052
    [Google Scholar]
  30. JhaJ.S. NelC. HaldarT. PetersD. HoushK. GatesK. S. Products generated by amine-catalyzed strand cleavage at apurinic/apyrimidinic sites in DNA: New insights from a biomimetic nucleoside model system.Chem. Res. Toxicol.20223520321710.1021/acs.chemrestox.1c00408
    [Google Scholar]
  31. LinX. LiangC. ZouL. YinY. WangJ. ChenD. LanW. Advance of structural modification of nucleosides scaffold.Eur. J. Med. Chem.202121411323310.1016/j.ejmech.2021.113233
    [Google Scholar]
  32. HuonnicK. LinclauB. The synthesis and glycoside formation of polyfluorinated carbohydrates.Chem. Rev.202212220155031560210.1021/acs.chemrev.2c0008635613331
    [Google Scholar]
  33. KalmanT.I. Rational design of an orally active anticancer fluoropyrimidine, pencitabine, a hybrid of capecitabine and gemcitabine.ACS Med. Chem. Lett.20221340941610.1021/acsmedchemlett.1c00565
    [Google Scholar]
  34. AntoszczakM. Otto-ŚlusarczykD. KordylasM. StrugaM. HuczyńskiA. Synthesis of lasalocid-based bioconjugates and evaluation of their anticancer activity.ACS Omega2022721943195510.1021/acsomega.1c0543435071884
    [Google Scholar]
  35. SabatN. OuartiA. Migianu-GriffoniE. LecouveyM. FerrarisO. GallierF. PeyreftteC. Lubin-GermainN. UzielJ. Synthesis, antiviral and antitumor activities investigations of a series of ribavirin C-nucleoside analogue prodrugs.Bioorg. Chem.202212210572310.1016/j.bioorg.2022.1057
    [Google Scholar]
  36. WolfgangG.H.I. ShibataR. WangJ. RayA.S. WuS. DoerrflerE. ReiserH. LeeW.A. BirkusG. ChristensenN.D. AndreiG. SnoeckR. GS-9191 is a novel topical prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine with antiproliferative activity and possible utility in the treatment of human papillomavirus lesions.Antimicrob. Agents Chemother.20095372777278410.1128/AAC.00103‑0919398642
    [Google Scholar]
  37. ReiserH. WangJ. ChongL. WatkinsW.J. RayA.S. ShibataR. BirkusG. CihlarT. WuS. LiB. LiuX. HenneI.N. WolfgangG.H.I. DesaiM. RhodesG.R. FridlandA. LeeW.A. PlunkettW. VailD. ThammD.H. JerajR. TumasD.B. GS-9219-A novel acyclic nucleotide analogue with potent antineoplastic activity in dogs with spontaneous non-Hodgkin’s lymphoma.Clin. Cancer Res.20081492824283210.1158/1078‑0432.CCR‑07‑206118451250
    [Google Scholar]
  38. BerneyM. ManojM.T. FayE.M. McGouranJ.F. 5′-Phosphorylation increases the efficacy of nucleoside inhibitors of the DNA repair enzyme SNM1A.ChemMedChem2022175e20210060310.1002/cmdc.20210060334905656
    [Google Scholar]
  39. SimonovaA. MagriñáI. SýkorováV. PohlR. OrtizM. HavranL. FojtaM. O’SullivanC. K. HocekM. Tuning of oxidation potential of ferrocene for ratiometric redox labeling and coding of nucleotides and DNA.Chem. Eur. J.2020261286129110.1002/chem.201904700
    [Google Scholar]
  40. PiotrowiczM. KowalczykA. TrzybińskiD. WoźniakK. KowalskiK. Redox-active glycol nucleic acid (GNA) components: Synthesis and properties of the ferrocenyl-GNA nucleoside, phosphoramidite, and semicanonical dinucleoside phosphate.Organometallics202039681382310.1021/acs.organomet.9b00851
    [Google Scholar]
  41. KowalskiK. Organometallic nucleosides—Synthesis, transformations, and applications.Coord. Chem. Rev.202143221370510.1016/j.ccr.2020.213705
    [Google Scholar]
  42. LiuZ.-Q. Enhancing antioxidant effect against peroxyl radical-induced oxidation of DNA: Linking with ferrocene moiety!Chem. Rec.201919122385239710.1002/tcr.20180020130946536
    [Google Scholar]
  43. JeongL.S. ToshD.K. ChoiW.J. LeeS.K. KangY.-J. ChoiS. LeeJ.H. LeeH. LeeH.W. KimH.O. Discovery of a new template for anticancer agents: 2′-Deoxy-2′-fluoro-4′-selenoarabinofuranosyl-cytosine (2′-F-4′-seleno-ara-C).J. Med. Chem.200952175303530610.1021/jm900852b19691349
    [Google Scholar]
  44. XavierN.M. SchwarzS. VazP.D. CsukR. RauterA.P. Synthesis of purine nucleosides from D-glucuronic acid derivatives and evaluation of their cholinesterase-inhibitory activities.Eur. J. Org. Chem.20142770277910.1002/ejoc.201301913
    [Google Scholar]
  45. FialhoD.M. RocheT.P. HudN.V. Prebiotic syntheses of noncanonical nucleosides and nucleotides.Chem. Rev.2020120114806483010.1021/acs.chemrev.0c0006932421316
    [Google Scholar]
  46. NelliM.R. HeitmeierK.N. LooperR.E. Dissecting the nucleoside antibiotics as universal translation inhibitors.Acc. Chem. Res.2021542798281110.1021/acs.accounts.1c00221
    [Google Scholar]
  47. XiaoG. HeH. Chemical synthesis of the nucleoside antibiotic capuramycin.Eur. J. Org. Chem.2021263681368910.1002/ejoc.202100613
    [Google Scholar]
  48. ShaoX. ZhengC. XuP. ShiraishiT. KuzuyamaT. MolinaroA. SilipoA. YuB. Total synthesis and stereochemistry assignment of nucleoside antibiotic A-94964.Angew. Chem. Int. Ed.20226114e20220081810.1002/anie.20220081835142022
    [Google Scholar]
  49. RoyV. AgrofoglioL.A. Nucleosides and emerging viruses: A new story.Drug Discov. Today20222771945195310.1016/j.drudis.2022.02.01335189369
    [Google Scholar]
  50. KataevV.E. GarifullinB.F. Antiviral nucleoside analogs.Chem. Heterocycl. Compd.202157432634110.1007/s10593‑021‑02912‑834007086
    [Google Scholar]
  51. RabieA.M. Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication.ACS Omega2022732960296910.1021/acsomega.1c0599835071937
    [Google Scholar]
  52. Ahmed-BelkacemR. HausdorffM. DelpalA. Sutto-OrtizP. ColmantA.M.G. TouretF. OgandoN.S. SnijderE.J. CanardB. CoutardB. VasseurJ.-J. DecrolyE. DebartF. Potent inhibition of SARS-CoV-2 nsp14 N7-methyltransferase by sulfonamide-based bisubstrate analogues.J. Med. Chem.20226586231624910.1021/acs.jmedchem.2c0012035439007
    [Google Scholar]
  53. ChangJ. 4′-Modified nucleosides for antiviral drug discovery: Achievements and perspectives.Acc. Chem. Res.202255456557810.1021/acs.accounts.1c0069735077644
    [Google Scholar]
  54. AlexandreF.-R. RahaliR. RahaliH. GuillonS. ConvardT. FillgroveK. LaiM.-T. MeillonJ.-C. XuM. SmallJ. DoussonC.B. RaheemI.T. Synthesis and antiviral evaluation of carbocyclic nucleoside analogs of nucleoside reverse transcriptase translocation inhibitor MK-8591 (4′-ethynyl-2-fluoro-2′-deoxyadenosine).J. Med. Chem.201861209218922810.1021/acs.jmedchem.8b0014130265808
    [Google Scholar]
  55. MaagH. RydzewskiR.M. McRobertsM.J. Crawford-RuthD. VerheydenJ.P.H. PrisbeE.J. Synthesis and anti-HIV activity of 4′-azido- and 4′-methoxynucleosides.J. Med. Chem.19923581440145110.1021/jm00086a0131573638
    [Google Scholar]
  56. JiaX. ScholsD. MeierC. Lipophilic triphosphate prodrugs of various nucleoside analogues.J. Med. Chem.202063136991700710.1021/acs.jmedchem.0c0035832515595
    [Google Scholar]
  57. RuizF.X. HoangA. DilmoreC.R. DeStefanoJ.J. ArnoldE. Structural basis of HIV inhibition by L-nucleosides: Opportunities for drug development and repurposing.Drug Discov. Today20222771832184610.1016/j.drudis.2022.02.01635218925
    [Google Scholar]
  58. TalukdarA. MukherjeeA. BhattacharyaD. Fascinating transformation of SAM-competitive protein methyltransferase inhibitors from nucleoside analogues to non-nucleoside analogues.J. Med. Chem.20226531662168410.1021/acs.jmedchem.1c0120835014841
    [Google Scholar]
  59. KhirsariyaP. PospíšilP. MaierL. BoudnýM. BabášM. KroutilO. MrázM. VáchaR. ParuchK. Synthesis and profiling of highly selective inhibitors of methyltransferase DOT1L based on carbocyclic C-nucleosides.J. Med. Chem.2022655701572310.1021/acs.jmedchem.1c02228
    [Google Scholar]
  60. Lamiable-OulaidiF. HarijanR. K. ShafferK. J. CrumpD. R. SunY. DuQ. GulabS. A. KhanA. A. LuxenburgerA. WoolhouseA. D. SidoliS. TylerP. C. SchrammV. L. Synthesis and characterization of transition-state analogue inhibitors against human DNA methyltransferase.J. Med. Chem.2022655462549410.1021/acs.jmedchem.1c01869
    [Google Scholar]
  61. ZhaoP.-F. LiuA. WeiM.-G. LiuZ.-Q. Construction of 3D antioxidants with nucleosides as the core: Inhibition of DNA oxidation.J. Org. Chem.201984158541586410.1021/acs.joc.9b02104
    [Google Scholar]
  62. ZhouR. LiuZ.-Q. Tetramer as efficient structural mode for organizing antioxidative carboxylic acids: The case in inhibiting DNA oxidation.Arch. Biochem. Biophys.201763111010.1016/j.abb.2017.08.00228789935
    [Google Scholar]
  63. ZhaoP.-F. LiuZ.-Q. Attaching a dipeptide to fullerene as an antioxidant hybrid against DNA oxidation.Chem. Res. Toxicol.2021342366237410.1021/acs.chemrestox.1c00283
    [Google Scholar]
  64. XiG.-L. LiuZ.-Q. Coumestan inhibits radical-induced oxidation of DNA: Is hydroxyl a necessary functional group?J. Agric. Food Chem.201462245636564210.1021/jf500013v24911109
    [Google Scholar]
  65. MüggenburgF. MüllerS. Azide-modified nucleosides as versatile tools for bioorthogonal labeling and functionalization.Chem. Rec.202222e20210032210.1002/tcr.202100322
    [Google Scholar]
  66. WangQ. LiY. ZhengL. HuangX. WangY. ChenC.-H. ChengY.-Y. Morris-NatschkeS.L. LeeK.-H. Novel betulinic acid-nucleoside hybrids with potent anti-HIV activity.ACS Med. Chem. Lett.202011112290229310.1021/acsmedchemlett.0c0041433214842
    [Google Scholar]
  67. AkulaH.K. BaeS. PradhanP. YangL. ZajcB. LakshmanM.K. Diversely C8-functionalized adenine nucleosides via their underexplored carboxaldehydes.Chem. Commun.202258111744174710.1039/D1CC06686B35029254
    [Google Scholar]
  68. MadecA.G.E. SchockerN.S. SanchiniS. MyratgeldiyevG. DasD. ImperialiB. Facile solid-phase synthesis and assessment of nucleoside analogs as inhibitors of bacterial UDP-sugar processing enzymes.ACS Chem. Biol.2018132542255010.1021/acschembio.8b00477
    [Google Scholar]
  69. ChatzisideriT. LeonidisG. KarampelasT. SkavatsouE. Velentza-AlmpaniA. BianchiniF. TamvakopoulosC. SarliV. Integrin-mediated targeted cancer therapy using c(RGDyK)-based conjugates of gemcitabine.J. Med. Chem.20226527128410.1021/acs.jmedchem.1c01468
    [Google Scholar]
  70. SebastianD. SatishkumarS. PradhanP. YangL. LakshmanM. K. General approach to N 6,C5’-difunctionalization of adenosine.J. Org. Chem.2022871839
    [Google Scholar]
  71. WeinrichT. JaumannE.A. SchefferU.M. PrisnerT.F. GöbelM.W. Phosphoramidite building blocks with protected nitroxides for the synthesis of spin-labeled DNA and RNA.Beilstein J. Org. Chem.2018141563156910.3762/bjoc.14.13330013683
    [Google Scholar]
  72. MillerE.J. GarciaK.J. HolahanE.C. CiccarelliR.M. BerginR.A. CasinoS.L. BogaczykT.L. KroutM.R. FindeisP.M. StocklandR.A.J.r. Resolved P-metalated nucleoside phosphoramidites.Inorg. Chem.20145324126801268210.1021/ic502435725437274
    [Google Scholar]
  73. MiyazakiY. YoshidaA. OkaniwaT. MiyauchiK. OhkuboA. Oligonucleotide synthesis on porous glass resins containing activators.Org. Lett.2022243807381110.1021/acs.orglett.2c01348
    [Google Scholar]
  74. JanaS.K. HarikrishnaS. SudhakarS. El-KhouryR. PradeepkumarP.I. DamhaM.J. Nucleoside analogues with a seven-membered sugar ring: Synthesis and structural compatibility in DNA-RNA hybrids.J. Org. Chem.2022872367237910.1021/acs.joc.1c02254
    [Google Scholar]
  75. ZhouC. ChattopadhyayaJ. Intramolecular free-radical cyclization reactions on pentose sugars for the synthesis of carba-LNA and carba-ENA and the application of their modified oligonucleotides as potential RNA targeted therapeutics.Chem. Rev.201211273808383210.1021/cr100306q22530946
    [Google Scholar]
  76. LiQ. YuanF. ZhouC. PlashkevychO. ChattopadhyayaJ. Free-radical ring closure to conformationally locked α-L-carba-LNAs and synthesis of their oligos: Nuclease stability, target RNA specificity, and elicitation of RNase H.J. Org. Chem.201075186122614010.1021/jo100900v20738147
    [Google Scholar]
  77. BeckK.M. NielsenP. Double-headed 2′-deoxynucleotides that hybridize to DNA and RNA targets via normal and reverse Watson-Crick base pairs.J. Org. Chem.20228785113512410.1021/acs.joc.1c0306335363467
    [Google Scholar]
  78. KruseF.M. TeichertJ.S. TrappO. Prebiotic nucleoside synthesis: The selectivity of simplicity.Chem. Eur. J.20202665147761479010.1002/chem.20200151332428355
    [Google Scholar]
  79. KlejchT. KeoughD.T. KingG. DoleželováE. ČesnekM. BuděšínskýM. ZíkováA. JanebaZ. GuddatL.W. HockováD. Stereo-defined acyclic nucleoside phosphonates are selective and potent inhibitors of parasite 6-oxopurine phosphoribosyltransferases.J. Med. Chem.20226554030405710.1021/acs.jmedchem.1c0188135175749
    [Google Scholar]
  80. MaityS.K. LönnbergT.A. Synthesis of organometallic oligonucleotides through oximation with metalated benzaldehydes.ACS Omega20194188031880810.1021/acsomega.9b02804
    [Google Scholar]
  81. MadsenC.S. WitzkeS. KumarP. NegiK. SharmaP.K. PetersenM. NielsenP. Additional base-pair formation in DNA duplexes by a double-headed nucleotide.Chem. Eur. J.201218247434744210.1002/chem.20110346722532443
    [Google Scholar]
  82. RenS. HuffmanM.A. WhittakerA.M. YangH. NawratC.C. WaterhouseD.J. MaloneyK.M. StrotmanN.A. Synthesis of isotopically labeled anti-HIV nucleoside islatravir through a one-pot biocatalytic cascade reaction.Org. Process Res. Dev.20212551652110.1021/acs.oprd.0c00476
    [Google Scholar]
  83. PapisM. LoroC. PensoM. BrogginiG. FoschiF. Synthesis of morpholino nucleosides starting from enantiopure glycidol.Org. Chem. Front.202292949295410.1039/D2QO00400C
    [Google Scholar]
  84. WangX.-K. JiaY.-M. LiY.-X. YuC.-Y. Total synthesis of pseudouridimycin.Org. Lett.202224251151510.1021/acs.orglett.1c0391435005956
    [Google Scholar]
  85. ObradorsC. MitschkeB. AuklandM.H. LeutzschM. GrossmannO. BrunenS. SchwengersS.A. ListB. Direct and catalytic C-glycosylation of arenes: Expeditious synthesis of the remdesivir nucleoside. Angew. Chem. Int. Ed.202261e20211461910.1002/anie.202114619
    [Google Scholar]
  86. ShepardS.M. JessenH.J. CumminsC.C. Beyond triphosphates: Reagents and methods for chemical oligophosphorylation.J. Am. Chem. Soc.2022144177517753010.1021/jacs.1c0799035471019
    [Google Scholar]
  87. LiuZ.Q. What about the progress in the synthesis of flavonoid from 2020?Eur. J. Med. Chem.202224311467110.1016/j.ejmech.2022.1114671
    [Google Scholar]
  88. XiG.-L. LiuZ.-Q. Antioxidant effectiveness generated by one or two phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles.Eur. J. Med. Chem.20136838539310.1016/j.ejmech.2013.06.059
    [Google Scholar]
  89. NabiG. LiuZ.-Q. Radical-scavenging properties of ferrocenyl chalcones.Bioorg. Med. Chem. Lett.201121394494610.1016/j.bmcl.2010.12.05121215630
    [Google Scholar]
  90. LiY.-F. LiuZ.-Q. Dendritic antioxidants with pyrazole as the core: Ability to scavenge radicals and to protect DNA.Free Radical Biol. Med.20125210310810.1016/j.freeradbiomed.2011.09.032
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673264900231023050108
Loading
/content/journals/cmc/10.2174/0109298673264900231023050108
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test