Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Three-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673262300231129102520
2024-01-22
2025-04-04
Loading full text...

Full text loading...

References

  1. GebhardtA. Understanding Additive Manufacturing.Carl Hanser Verlag GmbH & Co. KG2011IIX10.3139/9783446431621.fm
    [Google Scholar]
  2. RuiY. GangX. Shuang-ShuangM. Hua-YuY. Xin-TingS. WeiS. Yi-LeiM. Three-dimensional printing: review of application in medicine and hepatic surgery.Cancer Biol. Med.201613444345110.20892/j.issn.2095‑3941.2016.007528154775
    [Google Scholar]
  3. DavimJ.P. Machining: Fundamentals and recent advances.1st ed.LondonSpringer2008ixiii
    [Google Scholar]
  4. HullC.W. ArcadiaC. Apparatus for production of three- dimensional objects by stereolithography.U.S. Patent 4575330A1984
  5. Chuck Hull and Stereolithography2023Available from:https://spie.org/news/spie-professional-magazine-arc hive/2013-january/chuck-hull?SSO=1 (Accessed on : 04 Aug 2023).
  6. PandeyM. ChoudhuryH. FernJ.L.C. KeeA.T.K. KouJ. JingJ.L.J. HerH.C. YongH.S. MingH.C. BhattamisraS.K. GorainB. 3D printing for oral drug delivery: A new tool to customize drug delivery.Drug Deliv. Transl. Res.2020104986100110.1007/s13346‑020‑00737‑032207070
    [Google Scholar]
  7. FitzgeraldS. FDA approves first 3D-printed epilepsy drug experts assess the benefits and caveats.Neurol. Today20151518262710.1097/01.NT.0000472137.66046.b5
    [Google Scholar]
  8. ChenG. XuY. Chi Lip KwokP. KangL. Pharmaceutical applications of 3D printing.Addit. Manuf.20203410120910.1016/j.addma.2020.101209
    [Google Scholar]
  9. KalkalA. AllawadhiP. KumarP. SehgalA. VermaA. PawarK. PradhanR. PaitalB. PackirisamyG. Sensing and 3D printing technologies in personalized healthcare for the management of health crises including the COVID-19 outbreak.Sensors Int.2022310018010.1016/j.sintl.2022.10018035601184
    [Google Scholar]
  10. AgarwalR. The personal protective equipment fabricated via 3D printing technology during COVID-19.Ann. 3D Print. Med.20225100042
    [Google Scholar]
  11. NazirA. AzharA. NazirU. LiuY.F. QureshiW.S. ChenJ.E. AlanaziE. The rise of 3D printing entangled with smart computer aided design during COVID-19 era.J. Manuf. Syst.20216077478610.1016/j.jmsy.2020.10.00933106722
    [Google Scholar]
  12. IshackS. LipnerS.R. Applications of 3D printing technology to address COVID-19-related supply shortages.Am. J. Med.2020133777177310.1016/j.amjmed.2020.04.00232330492
    [Google Scholar]
  13. El AitaI. PonsarH. QuodbachJ. A critical review on 3D-printed dosage forms.Curr. Pharm. Des.201924424957497810.2174/138161282566618120612420630520369
    [Google Scholar]
  14. LitmanT. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases.Acta Pathol. Microbiol. Scand. Suppl.2019127538642410.1111/apm.1293431124204
    [Google Scholar]
  15. RaijadaD. WacK. GreisenE. RantanenJ. GeninaN. Integration of personalized drug delivery systems into digital health.Adv. Drug Deliv. Rev.202117611385710.1016/j.addr.2021.11385734389172
    [Google Scholar]
  16. ZhuX. LiH. HuangL. ZhangM. FanW. CuiL. 3D printing promotes the development of drugs.Biomed. Pharmacother.202013111064410.1016/j.biopha.2020.11064432853908
    [Google Scholar]
  17. ZhengY. DengF. WangB. WuY. LuoQ. ZuoX. LiuX. CaoL. LiM. LuH. ChengS. LiX. Melt extrusion deposition (MED™) 3D printing technology - A paradigm shift in design and development of modified release drug products.Int. J. Pharm.202160212063910.1016/j.ijpharm.2021.12063933901601
    [Google Scholar]
  18. RajuS. ReddyP.S. KumarV.A. DeepthiA. ReddyK.S. ReddyP.M.J.J.C.P.R. Flash release oral films of metoclopramide hydrochloride for pediatric use: Formulation and in-vitro evaluation.J. Chem. Pharm. Res.201134636646
    [Google Scholar]
  19. HsuM.N. LuoR. KwekK.Z. PorY.C. ZhangY. ChenC.H. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites.Biomicrofluidics20159505260110.1063/1.491623025825623
    [Google Scholar]
  20. KalepuS. NekkantiV. Insoluble drug delivery strategies: Review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.00326579474
    [Google Scholar]
  21. FuhrmannK. SchulzJ.D. GauthierM.A. LerouxJ.C. PEG nanocages as non-sheddable stabilizers for drug nanocrystals.ACS Nano2012621667167610.1021/nn204655422296103
    [Google Scholar]
  22. LarrañetaE. StewartS. ErvineM. Al-KasasbehR. DonnellyR.F. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications.J. Funct. Biomater.20189113
    [Google Scholar]
  23. GonzálezK. LarrazaI. BerraG. EceizaA. GabilondoN. 3D printing of customized all-starch tablets with combined release kinetics.Int. J. Pharm.202262212187210.1016/j.ijpharm.2022.12187235636631
    [Google Scholar]
  24. MathurS. SuttonJ. Personalized medicine could transform healthcare.Biomed. Rep.2017713510.3892/br.2017.92228685051
    [Google Scholar]
  25. SaviniA. SaviniG.G. A short history of 3D printing, a technological revolution just started.2015 ICOHTEC/IEEE International History of High-Technologies and their Socio-Cultural Contexts Conference (HISTELCON).Tel-Aviv, Israel 18-19 Aug 201518
    [Google Scholar]
  26. SuA. Al’ArefS.J. 3D Printing Applications in Cardiovascular Medicine. Al’ArefS.J. MosadeghB. DunhamS. MinJ.K. BostonAcademic Press2018110
    [Google Scholar]
  27. PrasadL.K. SmythH.III 3D Printing technologies for drug delivery: A review.Drug Dev. Ind. Pharm.20164271019103110.3109/03639045.2015.112074326625986
    [Google Scholar]
  28. VazV.M. KumarL. 3D printing as a promising tool in personalized medicine.AAPS PharmSciTech20212214910.1208/s12249‑020‑01905‑833458797
    [Google Scholar]
  29. MohapatraS. KarR.K. BiswalP.K. BindhaniS. Approaches of 3D printing in current drug delivery.Sensors Int.2022310014610.1016/j.sintl.2021.100146
    [Google Scholar]
  30. JiménezM. RomeroL. DomínguezI.A. EspinosaM.M. DomínguezM. Additive manufacturing technologies: An overview about 3D printing methods and future prospects.Complexity2019201913010.1155/2019/9656938
    [Google Scholar]
  31. WaterJ.J. BohrA. BoetkerJ. AhoJ. SandlerN. NielsenH.M. RantanenJ. Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material.J. Pharm. Sci.201510431099110710.1002/jps.2430525640314
    [Google Scholar]
  32. BallardD.H. TraceA.P. AliS. HodgdonT. ZygmontM.E. DeBenedectisC.M. SmithS.E. RichardsonM.L. PatelM.J. DeckerS.J. LenchikL. Clinical applications of 3D printing: Primer for radiologists.Acad. Radiol.2018251526510.1016/j.acra.2017.08.00429030285
    [Google Scholar]
  33. ISO/ASTM 52900:2015 - Additive manufacturing - General principles - TerminologyAvailable from: https://www.iso.org/standard/69669.html
  34. TrenfieldS.J. MadlaC.M. BasitA.W. GaisfordS. Binder jet printing in pharmaceutical manufacturing.3D Printing of Pharmaceuticals. BasitA.W. GaisfordS. ChamSpringer2018415410.1007/978‑3‑319‑90755‑0_3
    [Google Scholar]
  35. HsiaoW.K. LorberB. ReitsamerH. KhinastJ. 3D printing of oral drugs: A new reality or hype?Expert Opin. Drug Deliv.20181511410.1080/17425247.2017.137169828836459
    [Google Scholar]
  36. ChiaH.N. WuB.M. Recent advances in 3D printing of biomaterials.J. Biol. Eng.201591410.1186/s13036‑015‑0001‑425866560
    [Google Scholar]
  37. TabrizA.G. DouroumisD. Recent advances in 3D printing for wound healing: A systematic review.J. Drug Deliv. Sci. Technol.20227410356410.1016/j.jddst.2022.103564
    [Google Scholar]
  38. PetersonG.I. LarsenM.B. GanterM.A. StortiD.W. BoydstonA.J. 3D-printed mechanochromic materials.ACS Appl. Mater. Interfaces20157157758310.1021/am506745m25478746
    [Google Scholar]
  39. AnciauxS.K. GeigerM. BowserM.T. 3D printed micro free-flow electrophoresis device.Anal. Chem.201688157675768210.1021/acs.analchem.6b0157327377354
    [Google Scholar]
  40. VentolaC.L. Medical applications for 3D printing: Current and projected uses.Pharm. Ther.2014391070471125336867
    [Google Scholar]
  41. ChoH-W. BaekS-H. LeeB-J. JinH-E. Orodispersible polymer films with the poorly water-soluble drug, olanzapine: Hot-melt pneumatic extrusion for single-process 3D printing.Pharmaceutics2020128692
    [Google Scholar]
  42. AmbrosiA. PumeraM. 3D-printing technologies for electrochemical applications.Chem. Soc. Rev.201645102740275510.1039/C5CS00714C27048921
    [Google Scholar]
  43. MendibilX. TenaG. DuqueA. UrangaN. CampaneroM.Á. AlonsoJ. Direct powder extrusion of paracetamol loaded mixtures for 3D printed pharmaceutics for personalized medicine via low temperature thermal processing.Pharmaceutics2021136907
    [Google Scholar]
  44. GültekinH.E. TortS. AcartürkF. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: Fused deposition modeling 3D printing.Pharm. Res.201936912810.1007/s11095‑019‑2655‑y31250313
    [Google Scholar]
  45. Bhusnure, O.G.; Gholve, S.V.; Sugave, B.K.; Dongre, R.C.; Gore, S.A.; Giram, P.S 3D printing & pharmaceutical manufacturing: Opportunities and challenges.Int. J. Bioassays201651472310.21746/ijbio.2016.01.006
    [Google Scholar]
  46. ZhaoZ. KuangX. YuanC. QiH.J. FangD. Hydrophilic/hydrophobic composite shape-shifting structures.ACS Appl. Mater. Interfaces20181023199321993910.1021/acsami.8b0244429737169
    [Google Scholar]
  47. WangJ. ZhangY. AghdaN.H. PillaiA.R. ThakkarR. NokhodchiA. ManiruzzamanM. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective.Adv. Drug Deliv. Rev.202117429431610.1016/j.addr.2021.04.01933895212
    [Google Scholar]
  48. BloomquistC.J. MechamM.B. ParadzinskyM.D. JanusziewiczR. WarnerS.B. LuftJ.C. MechamS.J. WangA.Z. DeSimoneJ.M. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.J. Control. Release201827892310.1016/j.jconrel.2018.03.02629596874
    [Google Scholar]
  49. XuX. AwadA. Robles-MartinezP. GaisfordS. GoyanesA. BasitA.W. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications.J. Control. Release202132974375710.1016/j.jconrel.2020.10.00833031881
    [Google Scholar]
  50. AwadA. TrenfieldS.J. GoyanesA. GaisfordS. BasitA.W. Reshaping drug development using 3D printing.Drug Discov. Today20182381547155510.1016/j.drudis.2018.05.02529803932
    [Google Scholar]
  51. VoetV.S.D. StratingT. SchneltingG.H.M. DijkstraP. TietemaM. XuJ. WoortmanA.J.J. LoosK. JagerJ. FolkersmaR. Biobased acrylate photocurable resin formulation for stereolithography 3D printing.ACS Omega2018321403140810.1021/acsomega.7b0164831458469
    [Google Scholar]
  52. LamichhaneS. BashyalS. KeumT. NohG. SeoJ.E. BastolaR. ChoiJ. SohnD.H. LeeS. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry?Asian J. Pharmaceut. Sci.201914546547910.1016/j.ajps.2018.11.00832104475
    [Google Scholar]
  53. Robles MartinezP. BasitA.W. GaisfordS. The history, developments and opportunities of stereolithography.3D Printing of Pharmaceuticals. BasitA.W. GaisfordS. ChamSpringer2018Vol. 31557910.1007/978‑3‑319‑90755‑0_4
    [Google Scholar]
  54. MartinezP.R. GoyanesA. BasitA.W. GaisfordS. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing.Int. J. Pharm.2017532131331710.1016/j.ijpharm.2017.09.00328888978
    [Google Scholar]
  55. MelchelsF.P.W. FeijenJ. GrijpmaD.W. A review on stereolithography and its applications in biomedical engineering.Biomaterials201031246121613010.1016/j.biomaterials.2010.04.05020478613
    [Google Scholar]
  56. HealyA.V. FuenmayorE. DoranP. GeeverL.M. HigginbothamC.L. LyonsJ.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography.Pharmaceutics20191112645
    [Google Scholar]
  57. MartinezP.R. GoyanesA. BasitA.W. GaisfordS. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets.AAPS PharmSciTech20181983355336110.1208/s12249‑018‑1075‑329948979
    [Google Scholar]
  58. EconomidouS.N. LamprouD.A. DouroumisD. 3D printing applications for transdermal drug delivery.Int. J. Pharm.2018544241542410.1016/j.ijpharm.2018.01.03129355656
    [Google Scholar]
  59. YeungC. ChenS. KingB. LinH. KingK. AkhtarF. DiazG. WangB. ZhuJ. SunW. KhademhosseiniA. EmaminejadS. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.Biomicrofluidics201913606412510.1063/1.512777831832123
    [Google Scholar]
  60. WangP. BerryD. MoranA. HeF. TamT. ChenL. ChenS. Controlled growth factor release in 3D-printed hydrogels.Adv. Healthc. Mater.2020915190097710.1002/adhm.20190097731697028
    [Google Scholar]
  61. WangZ. KumarH. TianZ. JinX. HolzmanJ.F. MenardF. KimK. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting.ACS Appl. Mater. Interfaces20181032268592686910.1021/acsami.8b0660730024722
    [Google Scholar]
  62. LiuS. YeoD.C. WirajaC. TeyH.L. MrksichM. XuC. Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect.Bioeng. Transl. Med.20172325826710.1002/btm2.1007029313035
    [Google Scholar]
  63. GooleJ. AmighiK. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems.Int. J. Pharm.20164991-237639410.1016/j.ijpharm.2015.12.07126757150
    [Google Scholar]
  64. LigonS.C. LiskaR. StampflJ. GurrM. MülhauptR. Polymers for 3D printing and customized additive manufacturing.Chem. Rev.201711715102121029010.1021/acs.chemrev.7b0007428756658
    [Google Scholar]
  65. YangY. ZhouY. LinX. YangQ. YangG. Printability of external and internal structures based on digital light processing 3D printing technique.Pharmaceutics2020123207
    [Google Scholar]
  66. ZhangJ. HuQ. WangS. TaoJ. GouM. Digital light processing based three-dimensional printing for medical applications.Int. J. Bioprint.19706124210.18063/ijb.v6i1.24232782984
    [Google Scholar]
  67. DeSimoneJ.M. SamulskiE.T. RollandJ.P. Methods and apparatus for continuous liquid interface production with rotation.U.S. Patent 10589512B22020
  68. TakiK. A simplified 2D numerical simulation of photopolymerization kinetics and oxygen diffusion-reaction for the continuous liquid interface production (CLIP) system.Polymers202012487510.3390/polym1204087532290249
    [Google Scholar]
  69. JanusziewiczR. TumblestonJ.R. QuintanillaA.L. MechamS.J. DeSimoneJ.M. Layerless fabrication with continuous liquid interface production.Proc. Natl. Acad. Sci.201611342117031170810.1073/pnas.160527111327671641
    [Google Scholar]
  70. CaudillC.L. PerryJ.L. TianS. LuftJ.C. DeSimoneJ.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.J. Control. Release201828412213210.1016/j.jconrel.2018.05.04229894710
    [Google Scholar]
  71. GengQ. WangD. ChenP. ChenS.C. Ultrafast multi- focus 3-D nano-fabrication based on two-photon polymerization.Nat. Commun.2019101217910.1038/s41467‑019‑10249‑231097713
    [Google Scholar]
  72. XingJ.F. ZhengM.L. DuanX.M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.Chem. Soc. Rev.201544155031503910.1039/C5CS00278H25992492
    [Google Scholar]
  73. ShavkutaB. BardakovaK. KhristidisY. MinaevN.V. FrolovaA. KotovaS. AksenovaN. HeydariZ. SemenovaE. KhlebnikovaT. GolubevaE.N. KostjukS. VosoughM. TimashevP.S. ShpichkaA.I. Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides.Mol. Syst. Des. Eng.20216320221310.1039/D0ME00157K
    [Google Scholar]
  74. CordeiroA.S. TekkoI.A. JomaaM.H. VoraL. McAlisterE. Volpe-ZanuttoF. NetheryM. BaineP.T. MitchellN. McNeillD.W. DonnellyR.F. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: Application in the development of polymeric drug delivery systems.Pharm. Res.202037917410.1007/s11095‑020‑02887‑932856172
    [Google Scholar]
  75. DoA.V. WorthingtonK.S. TuckerB.A. SalemA.K. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices.Int. J. Pharm.20185521-221722410.1016/j.ijpharm.2018.09.06530268853
    [Google Scholar]
  76. GiriB.R. SongE.S. KwonJ. LeeJ-H. ParkJ-B. KimD.W. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling.Pharmaceutics202012177
    [Google Scholar]
  77. AwadA. FinaF. GoyanesA. GaisfordS. BasitA.W. 3D printing: Principles and pharmaceutical applications of selective laser sintering.Int. J. Pharm.202058611959410.1016/j.ijpharm.2020.11959432622811
    [Google Scholar]
  78. JamrózW. SzafraniecJ. KurekM. JachowiczR. 3D printing in pharmaceutical and medical applications - Recent achievements and challenges.Pharm. Res.201835917610.1007/s11095‑018‑2454‑x29998405
    [Google Scholar]
  79. LeongK.F. ChuaC.K. GuiW.S. Verani Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering.Int. J. Adv. Manuf. Technol.2006315-648348910.1007/s00170‑005‑0217‑4
    [Google Scholar]
  80. FinaF. GoyanesA. GaisfordS. BasitA.W. Selective laser sintering (SLS) 3D printing of medicines.Int. J. Pharm.20175291-228529310.1016/j.ijpharm.2017.06.08228668582
    [Google Scholar]
  81. TolochkoN. MozzharovS. LaouiT. FroyenL. Selective laser sintering of single- and two-component metal powders.Rapid Prototyping J.200392687810.1108/13552540310467077
    [Google Scholar]
  82. WilliamsJ.M. AdewunmiA. SchekR.M. FlanaganC.L. KrebsbachP.H. FeinbergS.E. HollisterS.J. DasS. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.Biomaterials200526234817482710.1016/j.biomaterials.2004.11.05715763261
    [Google Scholar]
  83. ShiY. PanT. ZhuW. YanC. XiaZ. Artificial bone scaffolds of coral imitation prepared by selective laser sintering.J. Mech. Behav. Biomed. Mater.202010410366410.1016/j.jmbbm.2020.10366432174422
    [Google Scholar]
  84. ShuaiC. GaoC. NieY. HuH. ZhouY. PengS. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system.Nanotechnology2011222828570310.1088/0957‑4484/22/28/28570321642759
    [Google Scholar]
  85. BertrandP. BayleF. CombeC. GoeuriotP. SmurovI. Ceramic components manufacturing by selective laser sintering.Appl. Surf. Sci.2007254498999210.1016/j.apsusc.2007.08.085
    [Google Scholar]
  86. HamedR. MohamedE.M. RahmanZ. KhanM.A. 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models.Int. J. Pharm.202159212005910.1016/j.ijpharm.2020.12005933171261
    [Google Scholar]
  87. CuiM. PanH. SuY. FangD. QiaoS. DingP. PanW. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development.Acta Pharm. Sin. B20211182488250410.1016/j.apsb.2021.03.01534567958
    [Google Scholar]
  88. ThakkarR. PillaiA.R. ZhangJ. ZhangY. KulkarniV. ManiruzzamanM. Novel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling tool.Polymers20201291872
    [Google Scholar]
  89. BeckR.C.R. ChavesP.S. GoyanesA. VukosavljevicB. BuanzA. WindbergsM. BasitA.W. GaisfordS. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems.Int. J. Pharm.20175281-226827910.1016/j.ijpharm.2017.05.07428583328
    [Google Scholar]
  90. MelocchiA. PariettiF. LoretiG. MaroniA. GazzanigaA. ZemaL. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs.J. Drug Deliv. Sci. Technol.20153036036710.1016/j.jddst.2015.07.016
    [Google Scholar]
  91. GoyanesA. BuanzA.B.M. BasitA.W. GaisfordS. Fused-filament 3D printing (3DP) for fabrication of tablets.Int. J. Pharm.20144761-2889210.1016/j.ijpharm.2014.09.04425275937
    [Google Scholar]
  92. KhorasaniM. EdingerM. RaijadaD. BøtkerJ. AhoJ. RantanenJ. Near-infrared chemical imaging (NIR-CI) of 3D printed pharmaceuticals.Int. J. Pharm.20165151-232433010.1016/j.ijpharm.2016.09.07527720877
    [Google Scholar]
  93. MelocchiA. PariettiF. MaroniA. FoppoliA. GazzanigaA. ZemaL. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.Int. J. Pharm.20165091-225526310.1016/j.ijpharm.2016.05.03627215535
    [Google Scholar]
  94. ShaqourB. ReigadaI. GóreckaŻ. ChoińskaE. VerleijeB. BeyersK. ŚwięszkowskiW. FallareroA. CosP. 3D-printed drug delivery systems: The effects of drug incorporation methods on their release and antibacterial efficiency.Materials202013153364
    [Google Scholar]
  95. ZhangJ. FengX. PatilH. TiwariR.V. RepkaM.A. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.Int. J. Pharm.20175191-218619710.1016/j.ijpharm.2016.12.04928017768
    [Google Scholar]
  96. VerstraeteG. SamaroA. GrymonpréW. VanhoorneV. Van SnickB. BooneM.N. HellemansT. Van HoorebekeL. RemonJ.P. VervaetC. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.Int. J. Pharm.2018536131832510.1016/j.ijpharm.2017.12.00229217471
    [Google Scholar]
  97. AwadA. TrenfieldS.J. GaisfordS. BasitA.W. 3D printed medicines: A new branch of digital healthcare.Int. J. Pharm.2018548158659610.1016/j.ijpharm.2018.07.02430033380
    [Google Scholar]
  98. AraújoM.R.P. Sa-BarretoL.L. GratieriT. GelfusoG.M. Cunha-FilhoM. The digital pharmacies era: How 3D printing technology using fused deposition modeling can become a reality.Pharmaceutics2019113128
    [Google Scholar]
  99. GoyanesA. BuanzA.B.M. HattonG.B. GaisfordS. BasitA.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets.Eur. J. Pharm. Biopharm.20158915716210.1016/j.ejpb.2014.12.00325497178
    [Google Scholar]
  100. KollamaramG. CrokerD.M. WalkerG.M. GoyanesA. BasitA.W. GaisfordS. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs.Int. J. Pharm.20185451-214415210.1016/j.ijpharm.2018.04.05529705104
    [Google Scholar]
  101. PereiraB.C. IsrebA. ForbesR.T. DoresF. HabashyR. PetitJ.B. AlhnanM.A. OgaE.F. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures.Eur. J. Pharm. Biopharm.20191359410310.1016/j.ejpb.2018.12.00930579852
    [Google Scholar]
  102. KempinW. DomstaV. GrathoffG. BrechtI. SemmlingB. TillmannS. WeitschiesW. SeidlitzA. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug.Pharm. Res.201835612410.1007/s11095‑018‑2405‑629679157
    [Google Scholar]
  103. FanousM. GoldS. MullerS. HirschS. OgorkaJ. ImanidisG. Simplification of fused deposition modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage form production.Int. J. Pharm.202057811912410.1016/j.ijpharm.2020.11912432035253
    [Google Scholar]
  104. El AitaI. BreitkreutzJ. QuodbachJ. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing.Eur. J. Pharm. Biopharm.2019134293610.1016/j.ejpb.2018.11.00830439504
    [Google Scholar]
  105. ChengY. QinH. AcevedoN.C. JiangX. ShiX. 3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels.Int. J. Pharm.202059111998310.1016/j.ijpharm.2020.11998333065220
    [Google Scholar]
  106. KhaledS.A. BurleyJ.C. AlexanderM.R. RobertsC.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.Int. J. Pharm.20144611-210511110.1016/j.ijpharm.2013.11.02124280018
    [Google Scholar]
  107. ZemaL. MelocchiA. MaroniA. GazzanigaA. Three- dimensional printing of medicinal products and the challenge of personalized therapy.J. Pharm. Sci.201710671697170510.1016/j.xphs.2017.03.02128347731
    [Google Scholar]
  108. DoresF. KuźmińskaM. SoaresC. BohusM. A ShervingtonL. HabashyR. PereiraB.C. PeakM. IsrebA. AlhnanM.A. Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals.Eur. J. Pharm. Sci.202015210543010.1016/j.ejps.2020.10543032562691
    [Google Scholar]
  109. KottaS. NairA. AlsabeelahN. 3D printing technology in drug delivery: Recent progress and application.Curr. Pharm. Des.201924425039504810.2174/138161282566618120612382830520368
    [Google Scholar]
  110. Azizi MachekposhtiS. MohavedS. NarayanR.J. Inkjet dispensing technologies: Recent advances for novel drug discovery.Expert Opin. Drug Discov.201914210111310.1080/17460441.2019.156748930676831
    [Google Scholar]
  111. DalyR. HarringtonT.S. MartinG.D. HutchingsI.M. Inkjet printing for pharmaceutics - A review of research and manufacturing.Int. J. Pharm.2015494255456710.1016/j.ijpharm.2015.03.01725772419
    [Google Scholar]
  112. IçtenE. GiridharA. TaylorL.S. NagyZ.K. ReklaitisG.V. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.J. Pharm. Sci.201510451641164910.1002/jps.2436725639605
    [Google Scholar]
  113. AlomariM. MohamedF.H. BasitA.W. GaisfordS. personalized dosing: Printing a dose of one’s own medicine.Int. J. Pharm.2015494256857710.1016/j.ijpharm.2014.12.00625498157
    [Google Scholar]
  114. Acosta-VélezG.F. WuB. 3D pharming: Direct printing of personalized pharmaceutical tablets.Polym. Sci.20162111
    [Google Scholar]
  115. VadodariaS. MillsT. Jetting-based 3D printing of edible materials.Food Hydrocoll.202010610585710.1016/j.foodhyd.2020.105857
    [Google Scholar]
  116. KollamaramG. HopkinsS.C. GlowackiB.A. CrokerD.M. WalkerG.M. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.Eur. J. Pharm. Sci.201811524825710.1016/j.ejps.2018.01.03629366961
    [Google Scholar]
  117. EhtezaziT. DempsterN.M. MartinG.D. HoathS.D. HutchingsI.M. Development of high-throughput glass inkjet devices for pharmaceutical applications.J. Pharm. Sci.2014103113733374210.1002/jps.2419225266398
    [Google Scholar]
  118. ClarkE.A. AlexanderM.R. IrvineD.J. RobertsC.J. WallaceM.J. SharpeS. YooJ. HagueR.J.M. TuckC.J. WildmanR.D. 3D printing of tablets using inkjet with UV photoinitiation.Int. J. Pharm.20175291-252353010.1016/j.ijpharm.2017.06.08528673860
    [Google Scholar]
  119. YuanS. ShenF. ChuaC.K. ZhouK. Polymeric composites for powder-based additive manufacturing: Materials and applications.Prog. Polym. Sci.20199114116810.1016/j.progpolymsci.2018.11.001
    [Google Scholar]
  120. AultonM.E. TaylorK. Aulton’s pharmaceutics: The design and manufacture of medicines.Elsevier2013894
    [Google Scholar]
  121. YuD.G. ZhuL.M. Branford-WhiteC.J. YangX.L. Three-dimensional printing in pharmaceutics: Promises and problems.J. Pharm. Sci.20089793666369010.1002/jps.2128418257041
    [Google Scholar]
  122. VithaniK. GoyanesA. JanninV. BasitA.W. GaisfordS. BoydB.J. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems.Pharm. Res.2019361410.1007/s11095‑018‑2531‑130406349
    [Google Scholar]
  123. WangC-C. Tejwani MotwaniM.R. RoachW.J. KayJ.L. YooJ. SurprenantH.L. MonkhouseD.C. PryorT.J. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology.Drug Dev. Ind. Pharm.200632336737610.1080/0363904050051930016556541
    [Google Scholar]
  124. KolakovicR. ViitalaT. IhalainenP. GeninaN. PeltonenJ. SandlerN. Printing technologies in fabrication of drug delivery systems.Expert Opin. Drug Deliv.201310121711172310.1517/17425247.2013.85913424256326
    [Google Scholar]
  125. BuanzA.B.M. SaundersM.H. BasitA.W. GaisfordS. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing.Pharm. Res.201128102386239210.1007/s11095‑011‑0450‑521544688
    [Google Scholar]
  126. WiltsE.M. MaD. BaiY. WilliamsC.B. LongT.E. Comparison of linear and 4-Arm star poly(vinyl pyrrolidone) for aqueous binder jetting additive manufacturing of personalized dosage tablets.ACS Appl. Mater. Interfaces20191127239382394710.1021/acsami.9b0811631252452
    [Google Scholar]
  127. InfangerS. HaemmerliA. IlievS. BaierA. StoyanovE. QuodbachJ. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.Int. J. Pharm.201955519820610.1016/j.ijpharm.2018.11.04830458260
    [Google Scholar]
  128. TrenfieldS.J. AwadA. MadlaC.M. HattonG.B. FirthJ. GoyanesA. GaisfordS. BasitA.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare.Expert Opin. Drug Deliv.201916101081109410.1080/17425247.2019.166031831478752
    [Google Scholar]
  129. EleleE. ShenY. SusarlaR. KhusidB. KeyvanG. Michniak-KohnB. Electrodeless electrohydrodynamic drop-on-demand encapsulation of drugs into porous polymer films for fabrication of personalized dosage units.J. Pharm. Sci.201210172523253310.1002/jps.2316522527973
    [Google Scholar]
  130. MeléndezP.A. KaneK.M. AshvarC.S. AlbrechtM. SmithP.A. Thermal inkjet application in the preparation of oral dosage forms: Dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques.J. Pharm. Sci.20089772619263610.1002/jps.2118917876767
    [Google Scholar]
  131. GoodallS. ChewN. ChanK. AuriacD. WatersM.J. Aerosolization of protein solutions using thermal inkjet technology.J. Aerosol Med.200215335135710.1089/08942680276029271712396425
    [Google Scholar]
  132. LeeK.J. KangA. DelfinoJ.J. WestT.G. ChettyD. MonkhouseD.C. YooJ. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form.Drug Dev. Ind. Pharm.200329996797910.1081/DDC‑12002545414606661
    [Google Scholar]
  133. WangB. WuS. AhmadZ. LiJ. ChangM.W. Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing.Eur. Polym. J.2018104818910.1016/j.eurpolymj.2018.05.005
    [Google Scholar]
  134. WuS. AhmadZ. LiJ.S. ChangM.W. Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing.Mater. Sci. Eng. C202010811039310.1016/j.msec.2019.11039331923982
    [Google Scholar]
  135. YaoZ.C. WangJ.C. AhmadZ. LiJ.S. ChangM.W. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches.Mater. Sci. Eng. C20199777678310.1016/j.msec.2018.12.11030678967
    [Google Scholar]
  136. LiX. ZhangC. WuS. ChenX. MaiJ. ChangM.W. Precision printing of customized cylindrical capsules with multifunctional layers for oral drug delivery.ACS Appl. Mater. Interfaces20191142391793919110.1021/acsami.9b1356831573786
    [Google Scholar]
  137. WangB. ChenX. AhmadZ. HuangJ. ChangM.W. Engineering on-demand magnetic core-shell composite wound dressing matrices via electrohydrodynamic micro-scale printing.Adv. Eng. Mater.20192110190069910.1002/adem.201900699
    [Google Scholar]
  138. MuwaffakZ. GoyanesA. ClarkV. BasitA.W. HiltonS.T. GaisfordS. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings.Int. J. Pharm.20175271-216117010.1016/j.ijpharm.2017.04.07728461267
    [Google Scholar]
  139. WangB. ChenX. AhmadZ. HuangJ. ChangM.W. 3D electrohydrodynamic printing of highly aligned dual- core graphene composite matrices.Carbon201915328529710.1016/j.carbon.2019.07.030
    [Google Scholar]
  140. WangJ.C. ZhengH. ChangM.W. AhmadZ. LiJ.S. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing.Sci. Rep.2017714392410.1038/srep4392428272513
    [Google Scholar]
  141. YaoZ.C. WangJ.C. WangB. AhmadZ. LiJ.S. ChangM.W. A novel approach for tailored medicines: Direct writing of Janus fibers.J. Drug Deliv. Sci. Technol.20195037237910.1016/j.jddst.2019.02.006
    [Google Scholar]
  142. ChoonaraY.E. du ToitL.C. KumarP. KondiahP.P.D. PillayV. 3D-printing and the effect on medical costs: A new era?Expert Rev. Pharmacoecon. Outcomes Res.2016161233210.1586/14737167.2016.113886026817398
    [Google Scholar]
  143. PaloM. HolländerJ. SuominenJ. YliruusiJ. SandlerN. 3D printed drug delivery devices: perspectives and technical challenges.Expert Rev. Med. Devices201714968569610.1080/17434440.2017.136364728774216
    [Google Scholar]
  144. MertzL. Dream it, design it, print it in 3D: what can 3D printing do for you?IEEE Pulse201346152110.1109/MPUL.2013.227961624233186
    [Google Scholar]
  145. KuM.S. DulinW. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-in-human to clinical Proof-of-Concept.Pharm. Dev. Technol.201217328530210.3109/10837450.2010.53582621121705
    [Google Scholar]
  146. HayM. ThomasD.W. CraigheadJ.L. EconomidesC. RosenthalJ. Clinical development success rates for investigational drugs.Nat. Biotechnol.2014321405110.1038/nbt.278624406927
    [Google Scholar]
  147. KwongE. Oral formulation roadmap from early drug discovery to development.John Wiley Sons201727210.1002/9781118907894
    [Google Scholar]
  148. GuvendirenM. MoldeJ. SoaresR.M.D. KohnJ. Designing biomaterials for 3D printing.ACS Biomater. Sci. Eng.20162101679169310.1021/acsbiomaterials.6b0012128025653
    [Google Scholar]
  149. GioumouxouzisC.I. KaravasiliC. FatourosD.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies.Drug Discov. Today201924263664310.1016/j.drudis.2018.11.01930503803
    [Google Scholar]
  150. AlhnanM.A. OkwuosaT.C. SadiaM. WanK.W. AhmedW. ArafatB. Emergence of 3D printed dosage forms: Opportunities and challenges.Pharm. Res.20163381817183210.1007/s11095‑016‑1933‑127194002
    [Google Scholar]
  151. GrossB.C. ErkalJ.L. LockwoodS.Y. ChenC. SpenceD.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.Anal. Chem.20148673240325310.1021/ac403397r24432804
    [Google Scholar]
  152. PravinS. SudhirA. Integration of 3D printing with dosage forms: A new perspective for modern healthcare.Biomed. Pharmacother.201810714615410.1016/j.biopha.2018.07.16730086461
    [Google Scholar]
  153. AlamM.S. AkhtarA. AhsanI. Shafiq-un-NabiS. Pharmaceutical product development exploiting 3D printing technology: Conventional to novel drug delivery system.Curr. Pharm. Des.201924425029503810.2174/138161282566619020619580830727872
    [Google Scholar]
  154. WarsiM.H. YusufM. Al RobaianM. KhanM. MuheemA. KhanS. 3D printing methods for pharmaceutical manufacturing: Opportunity and challenges.Curr. Pharm. Des.201924424949495610.2174/138161282566618120612170130520367
    [Google Scholar]
  155. Robles-MartinezP. XuX. TrenfieldS.J. AwadA. GoyanesA. TelfordR. BasitA.W. GaisfordS. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method.Pharmaceutics2019116274
    [Google Scholar]
  156. LimS.H. KathuriaH. TanJ.J.Y. KangL. 3D printed drug delivery and testing systems - A passing fad or the future?Adv. Drug Deliv. Rev.201813213916810.1016/j.addr.2018.05.00629778901
    [Google Scholar]
  157. NormanJ. MaduraweR.D. MooreC.M.V. KhanM.A. KhairuzzamanA. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.Adv. Drug Deliv. Rev.2017108395010.1016/j.addr.2016.03.00127001902
    [Google Scholar]
  158. Ameeduzzafar AlruwailiN.K. RizwanullahM. Abbas BukhariS.N. AmirM. AhmedM.M. FazilM. 3D printing technology in design of pharmaceutical products.Curr. Pharm. Des.201924425009501810.2174/138161282566619011610462030652636
    [Google Scholar]
  159. WangX. ZhouJ. YangW. PangJ. ZhangW. ChenG. DongX. ZhengZ. LinW. FengW. ZhouG. ZhuW. YangF. Warpage optimization and influence factors analysis of 3D printing personalized JJY tablets.Drug Dev. Ind. Pharm.202046338839410.1080/03639045.2020.172412932081054
    [Google Scholar]
  160. KaravasiliC. GkaragkounisA. MoschakisT. RitzoulisC. FatourosD.G. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing.Eur. J. Pharm. Sci.202014710529110.1016/j.ejps.2020.10529132135271
    [Google Scholar]
  161. SandlerN. PreisM. Printed drug-delivery systems for improved patient treatment.Trends Pharmacol. Sci. Rep.2016371210701080
    [Google Scholar]
  162. HaleemA. JavaidM. KhanR.H. SumanR. 3D printing applications in bone tissue engineering.J. Clin. Orthop. Trauma202011Suppl. 1S118S12410.1016/j.jcot.2019.12.00231992931
    [Google Scholar]
  163. HuangW. ZhangX. 3D Printing: Print the future of ophthalmology.Invest. Ophthalmol. Vis. Sci.20145585380538110.1167/iovs.14‑1523125159591
    [Google Scholar]
  164. JammalamadakaU. TappaK. Recent advances in biomaterials for 3D printing and tissue engineering.J. Funct. Biomater.2018912210.3390/jfb901002229494503
    [Google Scholar]
  165. SoutoE.B. CamposJ.C. FilhoS.C. TeixeiraM.C. Martins-GomesC. ZielinskaA. CarboneC. SilvaA.M. 3D printing in the design of pharmaceutical dosage forms.Pharm. Dev. Technol.20192481044105310.1080/10837450.2019.163042631180272
    [Google Scholar]
  166. KhatriP. ShahM.K. VoraN. Formulation strategies for solid oral dosage form using 3D printing technology: A mini-review.J. Drug Deliv. Sci. Technol.20184614815510.1016/j.jddst.2018.05.009
    [Google Scholar]
  167. KempinW. FranzC. KosterL.C. SchneiderF. BogdahnM. WeitschiesW. SeidlitzA. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.Eur. J. Pharm. Biopharm.2017115849310.1016/j.ejpb.2017.02.01428232106
    [Google Scholar]
  168. AllenE.A. O’MahonyC. CroninM. O’MahonyT. MooreA.C. CreanA.M. Dissolvable microneedle fabrication using piezoelectric dispensing technology.Int. J. Pharm.20165001-211010.1016/j.ijpharm.2015.12.05226721722
    [Google Scholar]
  169. ArshadM.S. ShahzadA. AbbasN. AlAsiriA. HussainA. KucukI. ChangM.W. BukhariN.I. AhmadZ. Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: A personalized medication approach.Pharm. Dev. Technol.202025219720510.1080/10837450.2019.168452031638453
    [Google Scholar]
  170. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/1071754100366779820297904
    [Google Scholar]
  171. van Riet-NalesD.A. de NeefB.J. SchobbenA.F.A.M. FerreiraJ.A. EgbertsT.C.G. RademakerC.M.A. Acceptability of different oral formulations in infants and preschool children.Arch. Dis. Child.201398972573110.1136/archdischild‑2012‑30330323853004
    [Google Scholar]
  172. GoyanesA. MadlaC.M. UmerjiA. Duran PiñeiroG. Giraldez MonteroJ.M. Lamas DiazM.J. Gonzalez BarciaM. TaheraliF. Sánchez-PintosP. CouceM.L. GaisfordS. BasitA.W. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients.Int. J. Pharm.201956711849710.1016/j.ijpharm.2019.11849731279771
    [Google Scholar]
  173. ScoutarisN. RossS.A. DouroumisD. 3D printed “starmix” drug loaded dosage forms for paediatric applications.Pharm. Res.20183523410.1007/s11095‑017‑2284‑229368113
    [Google Scholar]
  174. WangH. DumpaN. BandariS. DurigT. RepkaM.A. Fabrication of taste-masked donut-shaped tablets via fused filament fabrication 3D printing paired with hot-melt extrusion techniques.AAPS PharmSciTech202021724310.1208/s12249‑020‑01783‑032856144
    [Google Scholar]
  175. BoatengJ. Drug delivery innovations to address global health challenges for pediatric and geriatric populations (through improvements in patient compliance).J. Pharm. Sci.2017106113188319810.1016/j.xphs.2017.07.00928734784
    [Google Scholar]
  176. FastøM.M. GeninaN. KaaeS. Kälvemark SporrongS. Perceptions, preferences and acceptability of patient designed 3D printed medicine by polypharmacy patients: A pilot study.Int. J. Clin. Pharm.20194151290129810.1007/s11096‑019‑00892‑631444687
    [Google Scholar]
  177. LeeC. AbelsethE. de la VegaL. WillerthS.M. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening.Mater. Today Chem.201912788410.1016/j.mtchem.2018.12.005
    [Google Scholar]
  178. HaoW. ZhengZ. ZhuL. PangL. MaJ. ZhuS. DuL. JinY. 3D printing-based drug-loaded implanted prosthesis to prevent breast cancer recurrence post-conserving surgery.Asian J. Pharmaceut. Sci.2021161869610.1016/j.ajps.2020.06.00233613732
    [Google Scholar]
  179. ChenJ. LiuC.Y. WangX. SweetE. LiuN. GongX. LinL. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation.Biosens. Bioelectron.202015011190010.1016/j.bios.2019.11190031767348
    [Google Scholar]
  180. BhuskuteH. ShendeP. PrabhakarB. 3D printed personalized medicine for cancer: Applications for betterment of diagnosis, prognosis and treatment.AAPS PharmSciTech2021231810.1208/s12249‑021‑02153‑034853934
    [Google Scholar]
  181. HaleemA. JavaidM. 3D printed medical parts with different materials using additive manufacturing.Clin. Epidemiol. Glob. Health20208121522310.1016/j.cegh.2019.08.002
    [Google Scholar]
  182. RobertsS. PeymanS. SpeirsV. Current and emerging 3D models to study breast cancer.Breast Cancer Metastasis and Drug Resistance: Challenges and Progress. AhmadA. ChamSpringer201941342710.1007/978‑3‑030‑20301‑6_22
    [Google Scholar]
  183. TagamiT. GotoE. KidaR. HiroseK. NodaT. OzekiT. Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer.Int. J. Pharm.202261712144810.1016/j.ijpharm.2022.12144835066116
    [Google Scholar]
  184. TanG. IoannouN. MathewE. TagalakisA.D. LamprouD.A. Yu-Wai-ManC. 3D printing in Ophthalmology: From medical implants to personalized medicine.Int. J. Pharm.202262512209410.1016/j.ijpharm.2022.12209435952803
    [Google Scholar]
  185. AwadA. YaoA. TrenfieldS.J. GoyanesA. GaisfordS. BasitA.W. 3D printed tablets (printlets) with braille and moon patterns for visually impaired patients.Pharmaceutics2020122172
    [Google Scholar]
  186. SorkioA. KochL. KoivusaloL. DeiwickA. MiettinenS. ChichkovB. SkottmanH. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.Biomaterials2018171577110.1016/j.biomaterials.2018.04.03429684677
    [Google Scholar]
  187. TemirelM. HawxhurstC. TasogluS. Shape fidelity of 3D-bioprinted biodegradable patches.Micromachines2021122195
    [Google Scholar]
  188. MilojevićM. HarihG. ViharB. VajdaJ. GradišnikL. ZidaričT. Stana KleinschekK. MaverU. MaverT. Hybrid 3D printing of advanced hydrogel-based wound dressings with tailorable properties.Pharmaceutics2021134564
    [Google Scholar]
  189. WangS. XiongY. ChenJ. GhanemA. WangY. YangJ. SunB. Biotechnology, Three dimensional printing bilayer membrane scaffold promotes wound healing.Front. Bioeng. Biotechnol.2019734810.3389/fbioe.2019.0034831803738
    [Google Scholar]
  190. DodziukH. Applications of 3D printing in healthcare.Kardiochir. Torakochirurgia Pol.20163328329310.5114/kitp.2016.6262527785150
    [Google Scholar]
  191. KattadiyilM.T. MursicZ. AlRumaihH. GoodacreC.J. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication.J. Prosthet. Dent.2014112344444810.1016/j.prosdent.2014.03.02224882595
    [Google Scholar]
  192. SevensonB. Stratasys Announces Two New Dental Wax Based 3D Printers, CrownWorx and FrameWorx.Available from: https://3dprint.com/3711/stratasys-crownworx-frameworx/
  193. Singh MalikD. MitalN. KaurG. Topical drug delivery systems: A patent review.Expert Opin. Ther. Pat.201626221322810.1517/13543776.2016.113126726651499
    [Google Scholar]
  194. RzhevskiyA.S. SinghT.R.R. DonnellyR.F. AnissimovY.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues.J. Control. Release201827018420210.1016/j.jconrel.2017.11.04829203415
    [Google Scholar]
  195. FariasC. LymanR. HemingwayC. ChauH. MahacekA. BouzosE. Mobed-MiremadiM. Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion.Bioengineering20185359
    [Google Scholar]
  196. EconomidouS.N. PereC.P.P. ReidA. UddinM.J. WindmillJ.F.C. LamprouD.A. DouroumisD. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery.Mater. Sci. Eng. C201910274375510.1016/j.msec.2019.04.06331147046
    [Google Scholar]
  197. HanD. MordeR.S. MarianiS. La MattinaA.A. VignaliE. YangC. BarillaroG. LeeH. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion.Adv. Funct. Mater.20203011190919710.1002/adfm.201909197
    [Google Scholar]
  198. KärrholmJ. The swedish hip arthroplasty register.Acta Orthop.20108113410.3109/1745367100363591820170435
    [Google Scholar]
  199. WuW. ZhengQ. GuoX. SunJ. LiuY. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy.Biomed. Mater.20094606500510.1088/1748‑6041/4/6/06500519901446
    [Google Scholar]
  200. HerbertN. SimpsonD. SpenceW.D. IonW. A preliminary investigation into the development of 3D printing of prosthetic sockets.J. Rehabil. Res. Dev.200542214114610.1682/JRRD.2004.08.013415944878
    [Google Scholar]
  201. BanksJ. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization.IEEE Pulse201346222610.1109/MPUL.2013.227961724233187
    [Google Scholar]
  202. NawrothJ.C. LeeH. FeinbergA.W. RipplingerC.M. McCainM.L. GrosbergA. DabiriJ.O. ParkerK.K. A tissue-engineered jellyfish with biomimetic propulsion.Nat. Biotechnol.201230879279710.1038/nbt.226922820316
    [Google Scholar]
  203. FeinbergA.W. Biological soft robotics.Annu. Rev. Biomed. Eng.201517124326510.1146/annurev‑bioeng‑071114‑04063226643022
    [Google Scholar]
  204. PhillipsR. PurohitP.K. KondevJ. Nanotribology and Nanomechanics: An Introduction. BhushanB. Berlin, HeidelbergSpringer200569372910.1007/3‑540‑28248‑3_14
    [Google Scholar]
  205. WilliamsB.J. AnandS.V. RajagopalanJ. SaifM.T.A. A self-propelled biohybrid swimmer at low Reynolds number.Nat. Commun.201451308110.1038/ncomms408124435099
    [Google Scholar]
  206. ZhangY.F. ZhangN. HingoraniH. DingN. WangD. YuanC. ZhangB. GuG. GeQ. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing.Adv. Funct. Mater.20192915180669810.1002/adfm.201806698
    [Google Scholar]
  207. KatseliV. ThomaidisN. EconomouA. KokkinosC. Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg(II) determination.Sens. Actuators B Chem.202030812771510.1016/j.snb.2020.127715
    [Google Scholar]
  208. DiasA.A. ChagasC.L.S. Silva-NetoH.A. Lobo-JuniorE.O. SgobbiL.F. de AraujoW.R. PaixãoT.R.L.C. ColtroW.K.T. Environmentally friendly manufacturing of flexible graphite electrodes for a wearable device monitoring zinc in sweat.ACS Appl. Mater. Interfaces20191143394843949210.1021/acsami.9b1279731524381
    [Google Scholar]
  209. SilvaA.L. SalvadorG.M.d.S. CastroS.V.F. CarvalhoN.M.F. MunozR.A.A. A 3D printer guide for the development and application of electrochemical cells and devices.Front. Chem.20219684256
    [Google Scholar]
  210. KrejcovaL. NejdlL. RodrigoM.A.M. ZurekM. MatousekM. HynekD. ZitkaO. KopelP. AdamV. KizekR. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots.Biosens. Bioelectron.20145442142710.1016/j.bios.2013.10.03124296063
    [Google Scholar]
  211. TasogluS. Cumhur TekinH. InciF. KnowltonS. WangS.Q. Wang-JohanningF. JohanningG. ColevasD. DemirciU. Advances in nanotechnology and microfluidics for human papillomavirus diagnostics.Proc. IEEE2015103216117810.1109/JPROC.2014.2384836
    [Google Scholar]
  212. JoB.H. Van LerbergheL.M. MotsegoodK.M. BeebeD.J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer.J. Microelectromech. Syst.200091768110.1109/84.825780
    [Google Scholar]
  213. ChenC. MehlB.T. MunshiA.S. TownsendA.D. SpenceD.M. MartinR.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations - A mini review.Anal. Methods20168316005601210.1039/C6AY01671E27617038
    [Google Scholar]
  214. BeebeD.J. MensingG.A. WalkerG.M. Physics and applications of microfluidics in biology.Annu. Rev. Biomed. Eng.20024126128610.1146/annurev.bioeng.4.112601.12591612117759
    [Google Scholar]
  215. ChoongY.Y.C. TanH.W. PatelD.C. ChoongW.T.N. ChenC.H. LowH.Y. TanM.J. PatelC.D. ChuaC.K. The global rise of 3D printing during the COVID-19 pandemic.Nat. Rev. Mater.20205963763910.1038/s41578‑020‑00234‑335194517
    [Google Scholar]
  216. DaviesA. ThompsonK.A. GiriK. KafatosG. WalkerJ. BennettA. Testing the efficacy of homemade masks: would they protect in an influenza pandemic?Disaster Med. Public Health Prep.20137441341810.1017/dmp.2013.4324229526
    [Google Scholar]
  217. AhmedA. AzamA. Aslam BhuttaM.M. KhanF.A. AslamR. TahirZ. Discovering the technology evolution pathways for 3D printing (3DP) using bibliometric investigation and emerging applications of 3DP during COVID-19.Cleaner Environmen. Syst.2021310004210.1016/j.cesys.2021.100042
    [Google Scholar]
  218. ShokraniA. LoukaidesE.G. EliasE. LuntA.J.G. Exploration of alternative supply chains and distributed manufacturing in response to COVID-19; A case study of medical face shields.Mater. Des.202019210874910.1016/j.matdes.2020.10874932341616
    [Google Scholar]
  219. PetsiukA. TanikellaN.G. DertingerS. PringleA. OberloierS. PearceJ.M. Partially RepRapable automated open source bag valve mask-based ventilator.HardwareX20208e0013110.1016/j.ohx.2020.e0013132835141
    [Google Scholar]
  220. MandryckyC. WangZ. KimK. KimD.H. 3D bioprinting for engineering complex tissues.Biotechnol. Adv.201634442243410.1016/j.biotechadv.2015.12.01126724184
    [Google Scholar]
  221. FreedmanB.R. MooneyD.J. Biomaterials to mimic and heal connective tissues.Adv. Mater.20193119180669510.1002/adma.20180669530908806
    [Google Scholar]
  222. LutolfM.P. HubbellJ.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat. Biotechnol.2005231475510.1038/nbt105515637621
    [Google Scholar]
  223. RobbK.P. ShridharA. FlynnL.E. Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration.ACS Biomater. Sci. Eng.20184113627364310.1021/acsbiomaterials.7b0061933429606
    [Google Scholar]
  224. Gonzalez-FernandezT. SikorskiP. LeachJ.K. Bio-instructive materials for musculoskeletal regeneration.Acta Biomater.201996203410.1016/j.actbio.2019.07.01431302298
    [Google Scholar]
  225. ViswanathanP. ChirasatitsinS. NgamkhamK. EnglerA.J. BattagliaG. Cell instructive microporous scaffolds through interface engineering.J. Am. Chem. Soc.201213449201032010910.1021/ja308523f23163574
    [Google Scholar]
  226. MierkeC.T. Mechanical cues affect migration and invasion of cells from three different directions.Front. Cell Dev. Biol.2020858322610.3389/fcell.2020.583226
    [Google Scholar]
  227. HiguchiA. LingQ.D. ChangY. HsuS.T. UmezawaA. Physical cues of biomaterials guide stem cell differentiation fate.Chem. Rev.201311353297332810.1021/cr300426x23391258
    [Google Scholar]
  228. CastilhoM. van MilA. MaherM. MetzC.H.G. HochleitnerG. GrollJ. DoevendansP.A. ItoK. SluijterJ.P.G. MaldaJ. Melt electrowriting allows tailored microstructural and mechanical design of scaffolds to advance functional human myocardial tissue formation.Adv. Funct. Mater.20182840180315110.1002/adfm.201803151
    [Google Scholar]
  229. DasS. KimS.W. ChoiY.J. LeeS. LeeS.H. KongJ.S. ParkH.J. ChoD.W. JangJ. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro.Acta Biomater.20199518820010.1016/j.actbio.2019.04.02630986526
    [Google Scholar]
  230. CastilhoM. FeyenD. Flandes-IparraguirreM. HochleitnerG. GrollJ. DoevendansP.A.F. VermondenT. ItoK. SluijterJ.P.G. MaldaJ. Melt electrospinning writing of poly-hydroxymethylglycolide-co-ε-caprolactone-based scaffolds for cardiac tissue engineering.Adv. Healthc. Mater.2017618170031110.1002/adhm.201700311
    [Google Scholar]
  231. JiS. GuvendirenM. 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis.Micromachines202011131
    [Google Scholar]
  232. KimY.B. KimG.H. PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities.ACS Comb. Sci.2015172879910.1021/co500033h25541639
    [Google Scholar]
  233. TeixeiraB.N. AprileP. MendonçaR.H. KellyD.J. ThiréR.M.S.M. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen.J. Biomed. Mater. Res. B Appl. Biomater.20191071374910.1002/jbm.b.3409329480562
    [Google Scholar]
  234. HeF.L. LiD.W. HeJ. LiuY.Y. AhmadF. LiuY.L. DengX. YeY.J. YinD.C. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.Mater. Sci. Eng. C201886182710.1016/j.msec.2017.12.01629525092
    [Google Scholar]
  235. ZhangB. WangL. SongP. PeiX. SunH. WuL. ZhouC. WangK. FanY. ZhangX. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations.Mater. Des.202120110949010.1016/j.matdes.2021.109490
    [Google Scholar]
  236. ChenX. GaoC. JiangJ. WuY. ZhuP. ChenG. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.Biomed. Mater.201914606500310.1088/1748‑605X/ab388d31382255
    [Google Scholar]
  237. ChenG. ChenN. WangQ. Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering.Compos. Sci. Technol.2019172172810.1016/j.compscitech.2019.01.004
    [Google Scholar]
  238. PierantozziD. ScalzoneA. JindalS. StīpnieceL. Šalma-AncāneK. DalgarnoK. GentileP. MancusoE. 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering.Compos. Sci. Technol.202019110806910.1016/j.compscitech.2020.108069
    [Google Scholar]
  239. KolanK.C.R. LiJ. RobertsS. SemonJ.A. ParkJ. DayD.E. LeuM.C. Near-field electrospinning of a polymer/bioactive glass composite to fabricate 3D biomimetic structures.Int. J. Bioprinting20185116310.18063/ijb.v5i1.16332782977
    [Google Scholar]
  240. GrémareA. GuduricV. BareilleR. HeroguezV. LatourS. L’heureuxN. FricainJ.C. CatrosS. Le NihouannenD. Characterization of printed PLA scaffolds for bone tissue engineering.J. Biomed. Mater. Res. A2018106488789410.1002/jbm.a.3628929105943
    [Google Scholar]
  241. FengX. MaL. LiangH. LiuX. LeiJ. LiW. WangK. SongY. WangB. LiG. LiS. YangC. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes.ACS Omega2020541266552666610.1021/acsomega.0c0348933110992
    [Google Scholar]
  242. GwiazdaM. KumarS. ŚwieszkowskiW. IvanovskiS. VaquetteC. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering.J. Mech. Behav. Biomed. Mater.202010410363110.1016/j.jmbbm.2020.10363132174392
    [Google Scholar]
  243. PaxtonN.C. LanaroM. BoA. CrooksN. RossM.T. GreenN. TetsworthK. AllenbyM.C. GuY. WongC.S. PowellS.K. WoodruffM.A. Design tools for patient specific and highly controlled melt electrowritten scaffolds.J. Mech. Behav. Biomed. Mater.202010510369510.1016/j.jmbbm.2020.10369532090895
    [Google Scholar]
  244. SuY. ZhangZ. WanY. ZhangY. WangZ. KlausenL.H. HuangP. DongM. HanX. CuiB. ChenM. A hierarchically ordered compacted coil scaffold for tissue regeneration.NPG Asia Mater.20201215510.1038/s41427‑020‑0234‑7
    [Google Scholar]
  245. CastilhoM. MouserV. ChenM. MaldaJ. ItoK. Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration.Acta Biomater.20199529730610.1016/j.actbio.2019.06.03031233890
    [Google Scholar]
  246. RossM.T. KilianD. LodeA. RenJ. AllenbyM.C. GelinskyM. WoodruffM.A. Using melt-electrowritten microfibres for tailoring scaffold mechanics of 3D bioprinted chondrocyte-laden constructs.Bioprinting202123e0015810.1016/j.bprint.2021.e00158
    [Google Scholar]
  247. LiH. LiaoZ. YangZ. GaoC. FuL. LiP. ZhaoT. CaoF. ChenW. YuanZ. SuiX. LiuS. GuoQ. 3D printed poly(ε-caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering.Front. Bioeng. Biotechnol.2021966238110.3389/fbioe.2021.66238133996783
    [Google Scholar]
  248. HanY. LianM. SunB. JiaB. WuQ. QiaoZ. DaiK. Preparation of high precision multilayer scaffolds based on melt electro-writing to repair cartilage injury.Theranostics20201022102141023010.7150/thno.4790932929344
    [Google Scholar]
  249. HanY. JiaB. LianM. SunB. WuQ. SunB. QiaoZ. DaiK. High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury.Bioact. Mater.2021672173218610.1016/j.bioactmat.2020.12.01833511315
    [Google Scholar]
  250. VijayavenkataramanS. ThaharahS. ZhangS. LuW.F. FuhJ.Y.H. 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair.Artif. Organs201943551552310.1111/aor.1336030229979
    [Google Scholar]
  251. ZhangZ. JørgensenM.L. WangZ. AmagatJ. WangY. LiQ. DongM. ChenM. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration.Biomaterials202025312010810.1016/j.biomaterials.2020.12010832428776
    [Google Scholar]
  252. ReitmaierS. KovtunA. SchuelkeJ. KanterB. LemmM. HoessA. HeinemannS. NiesB. IgnatiusA. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds.J. Orthop. Res.201836110611710.1002/jor.2362328574614
    [Google Scholar]
  253. VijayavenkataramanS. LuW.F. FuhJ.Y.H. 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes.Biofabrication20168303200110.1088/1758‑5090/8/3/03200127606434
    [Google Scholar]
  254. LavrentievaA. FleischhammerT. EndersA. PirmahboubH. BahnemannJ. PepelanovaI. Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer.Macromol. Biosci.2020207200010710.1002/mabi.20200010732537875
    [Google Scholar]
  255. ZhangJ. WehrleE. AdamekP. PaulG.R. QinX.H. RubertM. MüllerR. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.Acta Biomater.202011430732210.1016/j.actbio.2020.07.01632673752
    [Google Scholar]
  256. ZhangJ. WehrleE. VetschJ.R. PaulG.R. RubertM. MüllerR. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.Biomed. Mater.201914606500910.1088/1748‑605X/ab3c7431426033
    [Google Scholar]
  257. HewittE. MrosS. McconnellM. CabralJ. AliA. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.Biomed. Mater.201914505501310.1088/1748‑605X/ab334431318339
    [Google Scholar]
  258. LinF-S. LeeJ.Jr LeeA.K. HoC-C. LiuY-T. ShieM-Y. Calcium silicate-activated gelatin methacrylate hydrogel for accelerating human dermal fibroblast proliferation and differentiation.Polymers202113170
    [Google Scholar]
  259. DistlerT. SolisitoA.A. SchneidereitD. FriedrichO. DetschR. BoccacciniA.R. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting.Biofabrication202012404500510.1088/1758‑5090/ab98e432485696
    [Google Scholar]
  260. ChaeS. SunY. ChoiY.J. HaD.H. JeonI. ChoD.W. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair.Biofabrication202113303500510.1088/1758‑5090/abd15933285539
    [Google Scholar]
  261. KimW. KimG. 3D bioprinting of functional cell-laden bioinks and its application for cell-alignment and maturation.Appl. Mater. Today20201910058810.1016/j.apmt.2020.100588
    [Google Scholar]
  262. BergJ. WeberZ. Fechler-BittetiM. HockeA.C. HippenstielS. ElomaaL. WeinhartM. KurreckJ. Bioprinted multi-cell type lung model for the study of viral inhibitors.Viruses20211381590
    [Google Scholar]
  263. FranksT.J. ColbyT.V. TravisW.D. TuderR.M. ReynoldsH.Y. BrodyA.R. CardosoW.V. CrystalR.G. DrakeC.J. EngelhardtJ. FridM. HerzogE. MasonR. PhanS.H. RandellS.H. RoseM.C. StevensT. SergeJ. SundayM.E. VoynowJ.A. WeinsteinB.M. WhitsettJ. WilliamsM.C. Resident cellular components of the human lung: Current knowledge and goals for research on cell phenotyping and function.Proc. Am. Thorac. Soc.20085776376610.1513/pats.200803‑025HR18757314
    [Google Scholar]
  264. BhattacharjeeM. CoburnJ. CentolaM. MurabS. BarberoA. KaplanD.L. MartinI. GhoshS. Tissue engineering strategies to study cartilage development, degeneration and regeneration.Adv. Drug Deliv. Rev.20158410712210.1016/j.addr.2014.08.01025174307
    [Google Scholar]
  265. ChawlaS. GhoshS. Establishment of in vitro model of corneal scar pathophysiology.J. Cell. Physiol.201823353817383010.1002/jcp.2607128657193
    [Google Scholar]
  266. RoyS. YadavS. DasguptaT. ChawlaS. TandonR. GhoshS. Interplay between hereditary and environmental factors to establish an in vitro disease model of keratoconus.Drug Discov. Today201924240341610.1016/j.drudis.2018.10.01730408528
    [Google Scholar]
  267. DasS. PatiF. ChoiY.J. RijalG. ShimJ.H. KimS.W. RayA.R. ChoD.W. GhoshS. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.Acta Biomater.20151123324610.1016/j.actbio.2014.09.02325242654
    [Google Scholar]
  268. Technical Considerations for Additive Manufactured Medical DevicesGuidance for Industry and Food and Drug Administration Staff.Available form: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices (Accessed on : 04 Aug 2023). 2023
  269. CDER Researchers Explore the Promise and Potential of 3D Printed PharmaceuticalsAvailable from: https://www.fda.gov/drugs/news-events-human-drugs/cder-researchers -explore-promise-and-potential-3d-printed-pharmaceuticals
  270. BegS. AlmalkiW.H. MalikA. FarhanM. AatifM. RahmanZ. AlruwailiN.K. AlrobaianM. TariqueM. RahmanM. 3D printing for drug delivery and biomedical applications.Drug Discov. Today20202591668168110.1016/j.drudis.2020.07.00732687871
    [Google Scholar]
  271. HuangS.H. LiuP. MokasdarA. HouL. Additive manufacturing and its societal impact: A literature review.Int. J. Adv. Manuf. Technol.2013675-81191120310.1007/s00170‑012‑4558‑5
    [Google Scholar]
  272. VargheseR. SoodP. SalviS. KarsiyaJ. KumarD. 3D printing in the pharmaceutical sector: Advances and evidences.Sensors Int.2022310017710.1016/j.sintl.2022.100177
    [Google Scholar]
  273. PhamD.T. GaultR.S. A comparison of rapid prototyping technologies.Int. J. Mach. Tools Manuf.19983810-111257128710.1016/S0890‑6955(97)00137‑5
    [Google Scholar]
  274. CuiM. PanH. FangD. QiaoS. WangS. PanW. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing.J. Drug Deliv. Sci. Technol.20205710168310.1016/j.jddst.2020.101683
    [Google Scholar]
  275. NaseriE. ButlerH. MacNevinW. AhmedM. AhmadiA. Low-temperature solvent-based 3D printing of PLGA: A parametric printability study.Drug Dev. Ind. Pharm.202046217317810.1080/03639045.2019.171138931931645
    [Google Scholar]
  276. AnnajiM. RameshS. PoudelI. GovindarajuluM. ArnoldR.D. DhanasekaranM. BabuR.J. Application of extrusion-based 3D printed dosage forms in the treatment of chronic diseases.J. Pharm. Sci.2020109123551356810.1016/j.xphs.2020.09.04233035541
    [Google Scholar]
  277. ZhengF. HuangS. Advances in study on three-dimensional printing in pharmaceutics.Chin. Herb. Med.20168212112510.1016/S1674‑6384(16)60020‑5
    [Google Scholar]
  278. TrenfieldS.J. Xian TanH. AwadA. BuanzA. GaisfordS. BasitA.W. GoyanesA. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks.Int. J. Pharm.201956711844310.1016/j.ijpharm.2019.06.03431212052
    [Google Scholar]
  279. Rivera-TarazonaL.K. CampbellZ.T. WareT.H. Stimuli-responsive engineered living materials.Soft Matter202117478580910.1039/D0SM01905D33410841
    [Google Scholar]
  280. KhooZ.X. TeohJ.E.M. LiuY. ChuaC.K. YangS. AnJ. LeongK.F. YeongW.Y. 3D printing of smart materials: A review on recent progresses in 4D printing.Virtual Phys. Prototyp.201510310312210.1080/17452759.2015.1097054
    [Google Scholar]
  281. ConstanteG. ApsiteI. AlkhamisH. DulleM. SchwarzerM. CaspariA. SynytskaA. SalehiS. IonovL. 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers.ACS Appl. Mater. Interfaces20211311127671277610.1021/acsami.0c1860833389997
    [Google Scholar]
  282. WangY. CuiH. WangY. XuC. EsworthyT.J. HannS.Y. BoehmM. ShenY.L. MeiD. ZhangL.G. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration.ACS Appl. Mater. Interfaces20211311127461275810.1021/acsami.0c1761033405502
    [Google Scholar]
  283. HuangJ. XiaS. LiZ. WuX. RenJ. Applications of four-dimensional printing in emerging directions: Review and prospects.J. Mater. Sci. Technol.20219110512010.1016/j.jmst.2021.02.040
    [Google Scholar]
  284. SaskaS. PilattiL. BlayA. ShibliJ.A. Bioresorbable polymers: Advanced materials and 4D printing for tissue engineering.Polymers2021134563
    [Google Scholar]
  285. TamayD.G. Dursun UsalT. AlagozA.S. YucelD. HasirciN. HasirciV. 3D and 4D printing of polymers for tissue engineering applications.Front. Bioeng. Biotechnol.2019716410.3389/fbioe.2019.0016431338366
    [Google Scholar]
  286. GuB.K. ChoiD.J. ParkS.J. KimM.S. KangC.M. KimC.H. 3-dimensional bioprinting for tissue engineering applications.Biomater. Res.20162011210.1186/s40824‑016‑0058‑227114828
    [Google Scholar]
  287. PaulG.M. RezaieniaA. WenP. CondoorS. ParkarN. KingW. KorakianitisT. Medical applications for 3D printing: Recent developments.Mo. Med.20181151758130228688
    [Google Scholar]
  288. AlgahtaniM.S. Assessment of pharmacist’s knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation.Pharmacy2021916810.3390/pharmacy901006833807103
    [Google Scholar]
  289. Al-DulimiZ. WallisM. TanD.K. ManiruzzamanM. NokhodchiA. 3D printing technology as innovative solutions for biomedical applications.Drug Discov. Today202126236038310.1016/j.drudis.2020.11.01333212234
    [Google Scholar]
  290. WangY. SunL. MeiZ. ZhangF. HeM. FletcherC. WangF. YangJ. BiD. JiangY. LiuP. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma.Mater. Des.202018610833610.1016/j.matdes.2019.108336
    [Google Scholar]
  291. MalebariA.M. KaraA. KhayyatA.N. MohammadK.A. SerranoD.R. Development of advanced 3D-printed solid dosage pediatric formulations for HIV treatment.Pharmaceuticals2022154435
    [Google Scholar]
  292. JamrózW. KurekM. ŁyszczarzE. SzafraniecJ. Knapik-KowalczukJ. SyrekK. PaluchM. JachowiczR. 3D printed orodispersible films with Aripiprazole.Int. J. Pharm.2017533241342010.1016/j.ijpharm.2017.05.05228552800
    [Google Scholar]
  293. GoyanesA. Det-AmornratU. WangJ. BasitA.W. GaisfordS. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.J. Control. Release2016234414810.1016/j.jconrel.2016.05.03427189134
    [Google Scholar]
  294. LiuJ. ZhengX. HuangY. ShanH. HuangJ. Successful use of methylprednisolone for treating severe COVID-19.J. Allergy Clin. Immunol.2020146232532710.1016/j.jaci.2020.05.02132479759
    [Google Scholar]
  295. ZielińskiP.S. GudetiP.K.R. RikmanspoelT. Włodarczyk-BiegunM.K. 3D printing of bio-instructive materials: Toward directing the cell.Bioact. Mater.20231929232710.1016/j.bioactmat.2022.04.00835574057
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673262300231129102520
Loading
/content/journals/cmc/10.2174/0109298673262300231129102520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test