Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence.

Methods

This study conducted a systematic review to examine the genetic and epigenetic susceptibility to COVID-19 using a comprehensive approach. Through systematic searches and applying relevant keywords across prominent online databases, including Scopus, PubMed, Web of Science, and Science Direct, we compiled all pertinent papers and reports published in English between December 2019 and June 2023.

Results

The findings reveal that the host's HLA genotype plays a substantial role in determining how viral protein antigens are showcased and the subsequent immune system reaction to these antigens. Within females, genes responsible for immune system regulation are found on the X chromosome, resulting in reduced viral load and inflammation levels when contrasted with males. Possessing blood group A may contribute to an increased susceptibility to contracting COVID-19 as well as a heightened risk of mortality associated with the disease. The capacity of SARS-CoV-2 involves inhibiting the antiviral interferon (IFN) reactions, resulting in uncontrolled viral multiplication.

Conclusion

There is a notable absence of research into the gender-related predisposition to infection, necessitating a thorough examination. According to the available literature, a significant portion of individuals affected by the ailment or displaying severe ramifications already had suppressed immune systems, categorizing them as a group with elevated risk.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673267890231221100659
2024-01-19
2025-06-22
Loading full text...

Full text loading...

References

  1. RiouJ. AlthausC.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020.Euro Surveill.2020254200005810.2807/1560‑7917.ES.2020.25.4.200005832019669
    [Google Scholar]
  2. DhamaK. SharunK. TiwariR. DadarM. MalikY.S. SinghK.P. ChaicumpaW. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics.Hum. Vaccin. Immunother.20201661232123810.1080/21645515.2020.173522732186952
    [Google Scholar]
  3. MalikY.S. SircarS. BhatS. SharunK. DhamaK. DadarM. TiwariR. ChaicumpaW. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments.Vet. Q.2020401687610.1080/01652176.2020.172799332036774
    [Google Scholar]
  4. McGonagleD. SharifK. O’ReganA. BridgewoodC. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease.Autoimmun. Rev.202019610253710.1016/j.autrev.2020.10253732251717
    [Google Scholar]
  5. ChanJ.F.W. YuanS. KokK.H. ToK.K.W. ChuH. YangJ. XingF. LiuJ. YipC.C.Y. PoonR.W.S. TsoiH.W. LoS.K.F. ChanK.H. PoonV.K.M. ChanW.M. IpJ.D. CaiJ.P. ChengV.C.C. ChenH. HuiC.K.M. YuenK.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.Lancet20203951022351452310.1016/S0140‑6736(20)30154‑931986261
    [Google Scholar]
  6. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑732015507
    [Google Scholar]
  7. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel corona-virus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  8. GasmiA. PeanaM. PivinaL. SrinathS. Gasmi BenahmedA. SemenovaY. MenzelA. DadarM. BjørklundG. Interrelations between COVID-19 and other disorders.Clin. Immunol.202122410865110.1016/j.clim.2020.10865133333255
    [Google Scholar]
  9. GasmiA. TippairoteT. MujawdiyaP.K. Gasmi BenahmedA. MenzelA. DadarM. BjørklundG. Neurological involvements of SARS-CoV2 infection.Mol. Neurobiol.202158394494910.1007/s12035‑020‑02070‑633064267
    [Google Scholar]
  10. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  11. BottonJ. Dray-SpiraR. BaricaultB. DrouinJ. BertrandM. JabagiM.J. WeillA. ZureikM. Reduced risk of severe COVID-19 in more than 1.4 million elderly people aged 75 years and older vaccinated with mRNA-based vaccines.Vaccine202240341441710.1016/j.vaccine.2021.12.00934924220
    [Google Scholar]
  12. GoksevenY. OzturkG.Z. KaradenizE. SarıE. TasB.G. OzdemirH.M. The fear of COVID-19 infection in older people.J. Geriatr. Psychiatry Neurol.202235346046610.1177/0891988721100265133745357
    [Google Scholar]
  13. Romero StarkeK. Petereit-HaackG. SchubertM. KämpfD. SchliebnerA. HegewaldJ. SeidlerA. The age-related risk of severe outcomes due to COVID-19 infection: A rapid review, meta-analysis, and meta-regression.Int. J. Environ. Res. Public Health20201716597410.3390/ijerph1716597432824596
    [Google Scholar]
  14. WangT. DuZ. ZhuF. CaoZ. AnY. GaoY. JiangB. Comorbidities and multi-organ injuries in the treatment of COVID-19.Lancet202039510228e5210.1016/S0140‑6736(20)30558‑432171074
    [Google Scholar]
  15. LeeP.I. HuY.L. ChenP.Y. HuangY.C. HsuehP.R. Are children less susceptible to COVID-19?J. Microbiol. Immunol. Infect.202053337137210.1016/j.jmii.2020.02.01132147409
    [Google Scholar]
  16. PirolaC.J. SookoianS. COVID-19 and ACE2 in the liver and gastrointestinal tract: Putative biological explanations of sexual dimorphism.Gastroenterology202015941620162110.1053/j.gastro.2020.04.05032348773
    [Google Scholar]
  17. ElhabyanA. ElyaacoubS. SanadE. AbukhadraA. ElhabyanA. DinuV. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review.Virus Res.202028919816310.1016/j.virusres.2020.19816332918943
    [Google Scholar]
  18. MengY. WuP. LuW. LiuK. MaK. HuangL. CaiJ. ZhangH. QinY. SunH. DingW. GuiL. WuP. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients.PLoS Pathog.2020164e100852010.1371/journal.ppat.100852032343745
    [Google Scholar]
  19. ContiP. YounesA. Coronavirus COV-19/SARS-CoV-2 affects women less than men: Clinical response to viral infection.J. Biol. Regul. Homeost. Agents202034233934310.23812/Editorial‑Conti‑332253888
    [Google Scholar]
  20. GuanW. NiZ. HuY. LiangW. OuC. HeJ. LiuL. ShanH. LeiC. HuiD.S.C. DuB. LiL. ZengG. YuenK.Y. ChenR. TangC. WangT. ChenP. XiangJ. LiS. WangJ. LiangZ. PengY. WeiL. LiuY. HuY. PengP. WangJ. LiuJ. ChenZ. LiG. ZhengZ. QiuS. LuoJ. YeC. ZhuS. ZhongN. China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in china.N. Engl. J. Med.2020382181708172010.1056/NEJMoa200203232109013
    [Google Scholar]
  21. PeeriN.C. ShresthaN. RahmanM.S. ZakiR. TanZ. BibiS. BaghbanzadehM. AghamohammadiN. ZhangW. HaqueU. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned?Int. J. Epidemiol.202049371772610.1093/ije/dyaa03332086938
    [Google Scholar]
  22. ShiY. WangY. ShaoC. HuangJ. GanJ. HuangX. BucciE. PiacentiniM. IppolitoG. MelinoG. COVID-19 infection: The perspectives on immune responses.Cell Death Differ.20202751451145410.1038/s41418‑020‑0530‑332205856
    [Google Scholar]
  23. GuarnerJ. Three emerging coronaviruses in two decades.Am. J. Clin. Pathol.2020153442042110.1093/ajcp/aqaa02932053148
    [Google Scholar]
  24. HuangL. ShiY. GongB. Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19.medRxiv202010.1101/2020.03.15.20033472
    [Google Scholar]
  25. Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe., 2020 ,27(3),325-328. 10.1016/j.chom.2020.02.00132035028PMC7154514
  26. CascellaM. RajnikM. AleemA. Features, evaluation, and treatment of coronavirus.StatPearls PublishingTreasure Island2022https://www.ncbi.nlm.nih.gov/books/NBK554776/
    [Google Scholar]
  27. SuS. WongG. ShiW. LiuJ. LaiA.C.K. ZhouJ. LiuW. BiY. GaoG.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.00327012512
    [Google Scholar]
  28. RothanH.A. ByrareddyS.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J. Autoimmun.202010910243310.1016/j.jaut.2020.10243332113704
    [Google Scholar]
  29. RitchieA.I. SinganayagamA. Immunosuppression for hyperinflammation in COVID-19: A double-edged sword?Lancet202039510230111110.1016/S0140‑6736(20)30691‑732220278
    [Google Scholar]
  30. SawalhaA.H. ZhaoM. CoitP. LuQ. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients.Clin. Immunol.202021510841010.1016/j.clim.2020.10841032276140
    [Google Scholar]
  31. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. HLH Across Speciality Collaboration, UK COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑032192578
    [Google Scholar]
  32. BlackwellJ.M. JamiesonS.E. BurgnerD. HLA and infectious diseases.Clin. Microbiol. Rev.200922237038510.1128/CMR.00048‑08
    [Google Scholar]
  33. RajaeiS. DabbaghA. The immunologic basis of COVID-19: A clinical approach.J. Cell Mol. Anesth. [Internet]2020513742https://journals.sbmu.ac.ir/jcma/article/view/29778
    [Google Scholar]
  34. QiaoR. TranN.H. ShanB. Personalized workflow to identify optimal T-cell epitopes for peptide-based vaccines against COVID-19.arXiv200310650202010.48550/arXiv.2003.10650
    [Google Scholar]
  35. MatzarakiV. KumarV. WijmengaC. ZhernakovaA. The MHC locus and genetic susceptibility to autoimmune and infectious diseases.Genome Biol.20171817610.1186/s13059‑017‑1207‑128449694
    [Google Scholar]
  36. LisziewiczJ. LoriF. Precision COVID-19 vaccine with companion diagnostics.Precis. Nanomed.20203248749410.33218/001c.12561
    [Google Scholar]
  37. DuttaM. DuttaP. MedhiS. BorkakotyB. BiswasD. Polymorphism of HLA class I and class II alleles in influenza A(H1N1)pdm09 virus infected population of Assam, Northeast India.J. Med. Virol.201890585486010.1002/jmv.2501829315655
    [Google Scholar]
  38. AstburyS. ReynoldsC.J. ButlerD.K. Muñoz-SandovalD.C. LinK.M. PieperF.P. OtterA. KourakiA. CusinL. NightingaleJ. VijayA. CraxfordS. AithalG.P. TigheP.J. GibbonsJ.M. PadeC. JoyG. MainiM. ChainB. SemperA. BrooksT. OllivereB.J. McKnightÁ. NoursadeghiM. TreibelT.A. ManistyC. MoonJ.C. ValdesA.M. BoytonR.J. AltmannD.M. COVIDsortium Investigators* HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19.Immunology20221661687710.1111/imm.1345035156709
    [Google Scholar]
  39. OvsyannikovaI.G. HaralambievaI.H. CrookeS.N. PolandG.A. KennedyR.B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity.Immunol. Rev.2020296120521910.1111/imr.1289732658335
    [Google Scholar]
  40. KleinJ. SatoA. The HLA system.N. Engl. J. Med.20003431070270910.1056/NEJM20000907343100610974135
    [Google Scholar]
  41. IwasakiA. GrubaughN.D. Why does Japan have so few cases of COVID-19?EMBO Mol. Med.2020125e1248110.15252/emmm.20201248132275804
    [Google Scholar]
  42. RuanQ. YangK. WangW. JiangL. SongJ. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.Intensive Care Med.202046584684810.1007/s00134‑020‑05991‑x32125452
    [Google Scholar]
  43. ChenJ. JiangQ. XiaX. LiuK. YuZ. TaoW. GongW. HanJ.D.J. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation.Aging Cell2020197e1316810.1111/acel.1316832558150
    [Google Scholar]
  44. QiaoY. WangX.M. MannanR. PitchiayaS. ZhangY. WotringJ.W. XiaoL. RobinsonD.R. WuY.M. TienJ.C.Y. CaoX. SimkoS.A. ApelI.J. BawaP. KregelS. NarayananS.P. RaskindG. EllisonS.J. ParoliaA. Zelenka-WangS. McMurryL. SuF. WangR. ChengY. DelektaA.D. MeiZ. PrettoC.D. WangS. MehraR. SextonJ.Z. ChinnaiyanA.M. Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2.Proc. Natl. Acad. Sci.20211181e202145011810.1073/pnas.202145011833310900
    [Google Scholar]
  45. WeiX. XiaoY.T. WangJ. ChenR. Sex differences in severity and mortality among patients with COVID-19: evidence from pooled literature analysis and insights from integrated bioinformatic analysis.arXiv:2003135472020
    [Google Scholar]
  46. CDC WeeklyC. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) — China, 2020.China CDC Weekly20202811312210.46234/ccdcw2020.03234594836
    [Google Scholar]
  47. NicastriE. PetrosilloN. Ascoli BartoliT. LeporeL. MondiA. PalmieriF. D’OffiziG. MarchioniL. MurachelliS. IppolitoG. Antinori for ICOTREGA. National institute for the infectious diseases “L. Spallanzani” IRCCS. Recommendations for COVID-19 Clinical management.Infect. Dis. Rep.2020121854310.4081/idr.2020.854332218915
    [Google Scholar]
  48. AcheampongD.O. BarffourI.K. BoyeA. AninagyeiE. OcanseyS. MornaM.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects.Biomed. Pharmacother.202013111074810.1016/j.biopha.2020.11074833152916
    [Google Scholar]
  49. QianJ. ZhaoL. YeR.Z. LiX.J. LiuY.L. Age-dependent gender differences in COVID-19 in mainland China: Comparative study.Clin. Infect. Dis.2020719ciaa68310.1093/cid/ciaa68332473009
    [Google Scholar]
  50. MizumotoK. KagayaK. ZarebskiA. ChowellG. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020.Euro Surveill.20202510200018010.2807/1560‑7917.ES.2020.25.10.200018032183930
    [Google Scholar]
  51. BayeT.M. Butsch KovacicM. Biagini MyersJ.M. MartinL.J. LindseyM. PattersonT.L. HeH. EricksenM.B. GuptaJ. TsorasA.M. LindsleyA. RothenbergM.E. Wills-KarpM. EissaN.T. BorishL. Khurana HersheyG.K. Differences in candidate gene association between European ancestry and African American asthmatic children.PLoS One201162e1652210.1371/journal.pone.001652221387019
    [Google Scholar]
  52. OberC. McKennanC.G. MagnayeK.M. AltmanM.C. WashingtonC.III StanhopeC. NaughtonK.A. RosascoM.G. BacharierL.B. BillheimerD. GoldD.R. GressL. HartertT. HavstadS. Khurana HersheyG.K. HallmarkB. HogarthD.K. JacksonD.J. JohnsonC.C. KattanM. LemanskeR.F. LynchS.V. MendoncaE.A. MillerR.L. NaureckasE.T. O’ConnorG.T. SeroogyC.M. WegienkaG. WhiteS.R. WoodR.A. WrightA.L. ZorattiE.M. MartinezF.D. OwnbyD. NicolaeD.L. LevinA.M. GernJ.E. AchtenN. AinsworthJ. AkkermanN. AndersonE. AndersonL.J. AndrewsH. ArmagostE. AubuchonM.A. BachJ. BacharierL. BarnesK.L. BaroneC. BauerI. BeamerP. BeckerP. BednarekA. BellemoreS. BendixsenC.G. Biagini MyersJ.M. BillheimerD. BillstrandC. BirgG. BlockiS. BloombergG. BobbittK. BochkovY. BourgeoisK. BousheyH. Brockman-SchneiderR. BrunwasserS.M. BudrevichR. BurkleJ.W. BusseW. CalatroniA. CampbellJ. Carlson-DakesK. Cassidy-BushrowA. ChappellJ.D. ChasmanD. ChippsT.M. ChirkovaT. ColeD. ConnollyA. CootaucoM. CootaucoM. CostelloK. CouchP. CoullB. CravenM. CrisafiG. CruikshankW. CurtsingerK. CustovicA. DasS.R. DaSilvaD. DattaS. DavidsonB. De La OssaL. DeVriesM. DiQ. DixonS. DonnerbauerE. DorstM. DoyleS. DresenA. DupontW.D. DurrangeJ. EricksonH. EvansM.D. EzellJ. FarnhamL. Filardo-CollinsR. FinazzoS. FlegeZ. FleuratC. FloerkeH. FloerkeD. FossT. FreieA. FromeW. FyeS. GagalisL. GammellR. GangnonR.E. GeJ.E. GebretsadikT. GergenP. GernJ.E. GibsonH. GjerasiE. GoldD.R. GonzalezN. GoodmanK. GressL. GrindleK. GroeschenT. HallmarkB. HalonenM. HartJ. HartertT.V. HavstadS. HeinritzP. Hensley AlfordS. HerbstmanJ. HernandezK. HoepnerL. JacksonD.J. JadhaoS.J. JaffeeK. JamesP. JezioroJ. Jimenez PescadorM. JohnsonC.C. JohnsonT. JohnsonC. JonesA. JonesK. JonesP. JordanC. JosephC.L.M. KattanM. KeidelK. KeiferM.C. KelleyR. Khurana HersheyG.K. KimH. KloogI. KoepelT.K. KoerkenmeierC. LadickL. LammC. LarkinE. LedermanH. Lee-ParritzA. LeimenstollS. LemanskeR.F.Jr LeMastersG.K. LevinA.M. LevineJ. LiuX. LiuZ. LopezS. LothropN. Lovinsky-DesirS. LukacsN. LynchS. LynchC. MannE. MartinJ. MartinL. MartinezF.D. MatsuiE. McCauleyK. MccollumM. McCulloughJ. McKennonC.G. MeeceJ. MendoncaE. MikusL. MillerR.L. MintonP. MitchellH. MoonV. MooreP.E. MorganW. MorganV. MorganD. MurrisonL. NicholasC. NicolaeD. NunezA. O’ConnorG. O’TooleS. OberC. OlsonB.F. OngI. OsmundsonS. OwnbyD. PappasT. PereraF. PerzanowskiM. PetersonE. PierceM. Price-JohnsonP. RajamanickamV. RamirezJ. RayK. RennebergM. RequiaW. RileyK. RiveraJ. RiversN. RobergK. RogersT. Rosas-SalazarC. RussellP. RyanP.H. SadovskyY. SalazarL. SampsonH. SandelM. SchoettlerN. SchwartzJ. ScottD. SeroogyC.M. SharpR. ShiltsM.H. SigelmanS. SinghA.M. SitarikA. SmarttE. SorknessR. SorknessC. SpangenbergA. SperlingR. SpiesD. SternD.A. StoffelB. PeeblesR.S. StoufferG. Strauchman BoyerC. SuddeuthC. TachinardiU. TangD. TangZ. TateJ. TaylorW. TensingK. TessonE. ThompsonK. ThompsonE. TislerC. TogiasA. TuriK. TurnerV. TuzovaM. VanWormerJ.J. VisnessC.M. VrtisR. WahlmanA. WangL. WegienkaG. WellsK. Wentworth-SheildsW. WheatleyL. WhitneyN. WilliamsL.K. WitterF. WolfeC. WoodR.A. WoodcroftK. WoodwardK.B. WrightA.L. WrightR. WuP. YaegerM. YanivP. ZanobettiA. ZhangS. ZookP. ZorattiE.M. Environmental Influences on Child Health Outcomes-Children’s Respiratory Research Workgroup Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: A genetic association and gene expression study.Lancet Respir. Med.20208548249210.1016/S2213‑2600(20)30011‑432380068
    [Google Scholar]
  53. KhuntiK. SinghA.K. PareekM. HanifW. Is ethnicity linked to incidence or outcomes of covid-19?BMJ2020369m154810.1136/bmj.m154832312785
    [Google Scholar]
  54. CasadevallA. PirofskiL. The convalescent sera option for containing COVID-19.J. Clin. Invest.202013041545154810.1172/JCI13800332167489
    [Google Scholar]
  55. ZhaoJ. YangY. HuangH. LiD. GuD. LuX. ZhangZ. LiuL. LiuT. LiuY. HeY. SunB. WeiM. YangG. WangX. ZhangL. ZhouX. XingM. WangP.G. Relationship between the ABO blood group and the coronavirus disease 2019 (COVID-19) susceptibility.Clin. Infect. Dis.202173232833110.1093/cid/ciaa115032750119
    [Google Scholar]
  56. KomalA. NoreenM. AkhtarJ. ImranM. JamalM. AtifM. KhanJ. RomanM. Ul HaqF. AftabU. GhaffarA. WaheedY. Analyses of ABO blood groups with susceptibility and symptomatic variations of COVID-19 infection, a questionnaire-based survey.Acta Pathol. Microbiol. Scand. Suppl.20211291057958610.1111/apm.1316934342074
    [Google Scholar]
  57. FanB.E. ChongV.C.L. ChanS.S.W. LimG.H. LimK.G.E. TanG.B. MucheliS.S. KuperanP. OngK.H. Hematologic parameters in patients with COVID-19 infection.Am. J. Hematol.2020956E131E13410.1002/ajh.2577432129508
    [Google Scholar]
  58. PereiraE. FelipeS. de FreitasR. AraújoV. SoaresP. RibeiroJ. Henrique dos SantosL. AlvesJ.O. CanabravaN. van TilburgM. GuedesM.I. CeccattoV. ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms.Microb. Pathog.202216910565810.1016/j.micpath.2022.10565835764188
    [Google Scholar]
  59. ChenT. WuD. ChenH. YanW. YangD. ChenG. MaK. XuD. YuH. WangH. WangT. GuoW. ChenJ. DingC. ZhangX. HuangJ. HanM. LiS. LuoX. ZhaoJ. NingQ. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study.BMJ2020368m109110.1136/bmj.m109132217556
    [Google Scholar]
  60. Gutiérrez-ValenciaM. LeacheL. LibreroJ. JericóC. Enguita GermánM. García-ErceJ.A. ABO blood group and risk of COVID -19 infection and complications: A systematic review and meta-analysis.Transfusion202262249350510.1111/trf.1674834773411
    [Google Scholar]
  61. NehmeZ. PasquereauS. HerbeinG. Control of viral infections by epigenetic-targeted therapy.Clin. Epigenetics20191115510.1186/s13148‑019‑0654‑930917875
    [Google Scholar]
  62. BurleyM. RobertsS. ParishJ.L. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle.Semin. Immunopathol.202042215917110.1007/s00281‑019‑00773‑031919577
    [Google Scholar]
  63. GoldbergA.D. BanaszynskiL.A. NohK.M. LewisP.W. ElsaesserS.J. StadlerS. DewellS. LawM. GuoX. LiX. WenD. ChapgierA. DeKelverR.C. MillerJ.C. LeeY.L. BoydstonE.A. HolmesM.C. GregoryP.D. GreallyJ.M. RafiiS. YangC. ScamblerP.J. GarrickD. GibbonsR.J. HiggsD.R. CristeaI.M. UrnovF.D. ZhengD. AllisC.D. Distinct factors control histone variant H3.3 localization at specific genomic regions.Cell2010140567869110.1016/j.cell.2010.01.00320211137
    [Google Scholar]
  64. BoykoA. KovalchukI. Genome instability and epigenetic modification-heritable responses to environmental stress?Curr. Opin. Plant Biol.201114326026610.1016/j.pbi.2011.03.00321440490
    [Google Scholar]
  65. LauC.M. AdamsN.M. GearyC.D. WeizmanO.E. RappM. PritykinY. LeslieC.S. SunJ.C. Epigenetic control of innate and adaptive immune memory.Nat. Immunol.201819996397210.1038/s41590‑018‑0176‑130082830
    [Google Scholar]
  66. EggerG. LiangG. AparicioA. JonesP.A. Epigenetics in human disease and prospects for epigenetic therapy.Nature2004429699045746310.1038/nature0262515164071
    [Google Scholar]
  67. LiX. GengM. PengY. MengL. LuS. Molecular immune pathogenesis and diagnosis of COVID-19.J. Pharm. Anal.202010210210810.1016/j.jpha.2020.03.00132282863
    [Google Scholar]
  68. ZhangQ. CaoX. Epigenetic regulation of the innate immune response to infection.Nat. Rev. Immunol.201919741743210.1038/s41577‑019‑0151‑630918351
    [Google Scholar]
  69. RiveraC.M. RenB. Mapping human epigenomes.Cell20131551395510.1016/j.cell.2013.09.01124074860
    [Google Scholar]
  70. BalakrishnanL. MilavetzB. Epigenetic regulation of viral biological processes.Viruses201791134610.3390/v911034629149060
    [Google Scholar]
  71. PaschosK. AlldayM.J. Epigenetic reprogramming of host genes in viral and microbial pathogenesis.Trends Microbiol.2010181043944710.1016/j.tim.2010.07.00320724161
    [Google Scholar]
  72. JiaH.P. LookD.C. ShiL. HickeyM. PeweL. NetlandJ. FarzanM. Wohlford-LenaneC. PerlmanS. McCrayP.B.Jr ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia.J. Virol.20057923146141462110.1128/JVI.79.23.14614‑14621.200516282461
    [Google Scholar]
  73. Gracia-RamosA.E. Is the ACE2 overexpression a risk factor for COVID-19 infection?Arch. Med. Res.202051434534610.1016/j.arcmed.2020.03.01132279908
    [Google Scholar]
  74. DanserA.H.J. EpsteinM. BatlleD. Renin-angiotensin system blockers and the COVID-19 pandemic.Hypertension20207561382138510.1161/HYPERTENSIONAHA.120.1508232208987
    [Google Scholar]
  75. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  76. BittmannS. WeissensteinA. LuchterE. ACE-2-receptors of the epidermis, dermal vascular walls and sebaceous gland cells: The way of COVID-19 entry into the body?J. Reg. Bio. Med.2020231310.37191/Mapsci‑2582‑385X‑2(3)‑029
    [Google Scholar]
  77. TortoriciM.A. VeeslerD. Structural insights into coronavirus entry.Adv. Virus Res.20191059311610.1016/bs.aivir.2019.08.00231522710
    [Google Scholar]
  78. PeronJ.P.S. NakayaH. Susceptibility of the elderly to SARS-CoV-2 Infection: ACE-2 overexpression, shedding, and antibody-dependent enhancement (ADE).Clinics202075e191210.6061/clinics/2020/e191232428113
    [Google Scholar]
  79. FangL. KarakiulakisG. RothM. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?Lancet Respir. Med.202084e2110.1016/S2213‑2600(20)30116‑832171062
    [Google Scholar]
  80. ZhengY.Y. MaY.T. ZhangJ.Y. XieX. COVID-19 and the cardiovascular system.Nat. Rev. Cardiol.202017525926010.1038/s41569‑020‑0360‑532139904
    [Google Scholar]
  81. SiddiqiH.K. MehraM.R. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal.J. Heart Lung Transplant.202039540540710.1016/j.healun.2020.03.01232362390
    [Google Scholar]
  82. GuoY.R. CaoQ.D. HongZ.S. TanY.Y. ChenS.D. JinH.J. TanK.S. WangD.Y. YanY. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status.Mil. Med. Res.2020711110.1186/s40779‑020‑00240‑032169119
    [Google Scholar]
  83. PrompetcharaE. KetloyC. PalagaT. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac. J. Allergy Immunol.20203811910.12932/AP‑200220‑077232105090
    [Google Scholar]
  84. AbdulamirA.S. HafidhR.R. The possible immunological pathways for the variable immunopathogenesis of covid—19 infections among healthy adults, elderly and children.Electronic J. Gen. Med.2020174em20210.29333/ejgm/7850
    [Google Scholar]
  85. LurieN. SavilleM. HatchettR. HaltonJ. Developing Covid-19 vaccines at pandemic speed.N. Engl. J. Med.2020382211969197310.1056/NEJMp200563032227757
    [Google Scholar]
  86. WuT.H. HsiehS.C. LiT.H. LuC.H. LiaoH.T. ShenC.Y. LiK.J. WuC.H. KuoY.M. TsaiC.Y. YuC.L. Molecular basis for paradoxical activities of polymorphonuclear neutrophils in inflammation/anti-inflammation, bactericide/autoimmunity, pro-cancer/anticancer, and antiviral infection/sars-cov-ii-induced immunothrombotic dysregulation.Biomedicines202210477310.3390/biomedicines1004077335453523
    [Google Scholar]
  87. WuD. YangX.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib.J. Microbiol. Immunol. Infect.202053336837010.1016/j.jmii.2020.03.00532205092
    [Google Scholar]
  88. SouthA.M. DizD.I. ChappellM.C. COVID-19, ACE2, and the cardiovascular consequences.Am. J. Physiol. Heart Circ. Physiol.20203185H1084H109010.1152/ajpheart.00217.202032228252
    [Google Scholar]
  89. InciardiR.M. LupiL. ZacconeG. ItaliaL. RaffoM. TomasoniD. CaniD.S. CeriniM. FarinaD. GavazziE. MaroldiR. AdamoM. AmmiratiE. SinagraG. LombardiC.M. MetraM. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781982410.1001/jamacardio.2020.109632219357
    [Google Scholar]
  90. MooijP. NieuwenhuisI.G. KnoopC.J. DomsR.W. BogersW.M.J.M. ten HaaftP.J.F. NiphuisH. KoornstraW. BielerK. KöstlerJ. MoreinB. CafaroA. EnsoliB. WagnerR. HeeneyJ.L. Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection.J. Virol.20047873333334210.1128/JVI.78.7.3333‑3342.200415016855
    [Google Scholar]
  91. YeQ. WangB. MaoJ. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19.J. Infect.202080660761310.1016/j.jinf.2020.03.03732283152
    [Google Scholar]
  92. MonteleoneG. ArdizzoneS. Are patients with inflammatory bowel disease at increased risk for Covid-19 infection?J. Crohn’s Colitis20201491334133610.1093/ecco‑jcc/jjaa06132215548
    [Google Scholar]
  93. SongW. GuiM. WangX. XiangY. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2.PLoS Pathog.2018148e100723610.1371/journal.ppat.100723630102747
    [Google Scholar]
  94. YangX. YuY. XuJ. ShuH. XiaJ. LiuH. WuY. ZhangL. YuZ. FangM. YuT. WangY. PanS. ZouX. YuanS. ShangY. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑532105632
    [Google Scholar]
  95. BhatrajuP.K. GhassemiehB.J. NicholsM. KimR. JeromeK.R. NallaA.K. GreningerA.L. PipavathS. WurfelM.M. EvansL. KritekP.A. WestT.E. LuksA. GerbinoA. DaleC.R. GoldmanJ.D. O’MahonyS. MikacenicC. Covid-19 in critically Ill patients in the seattle region - case series.N. Engl. J. Med.2020382212012202210.1056/NEJMoa200450032227758
    [Google Scholar]
  96. UedaM MartinsR HendriePC Managing cancer care during the COVID-19 pandemic: Agility and collaboration toward a common goal.J. Natl. Compr. Canc. Netw.202011410.6004/jnccn.2020.7560
    [Google Scholar]
  97. de WildeA.H. SnijderE.J. KikkertM. van HemertM.J. Host factors in coronavirus replication.Curr. Top. Microbiol. Immunol.201741914210.1007/82_2017_2528643204
    [Google Scholar]
  98. van der MadeC.I. NeteaM.G. van der VeerdonkF.L. HoischenA. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19.Genome Med.20221419610.1186/s13073‑022‑01100‑335986347
    [Google Scholar]
  99. TahaA. SaadB. EnodienB. BachmannM. FreyD.M. Taha-MehlitzS. The development of telemedicine and ehealth in surgery during the SARS-CoV-2 pandemic.Int. J. Environ. Res. Public Health202118221196910.3390/ijerph18221196934831725
    [Google Scholar]
  100. GachabayovM. LatifiL.A. ParsikiaA. LatifiR. The role of telemedicine in surgical specialties during the COVID-19 Pandemic: A scoping review.World J. Surg.2022461101810.1007/s00268‑021‑06348‑134743242
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673267890231221100659
Loading
/content/journals/cmc/10.2174/0109298673267890231221100659
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): comorbidities; COVID-19; epigenetic; genetic; molecular mechanisms; Novel coronavirus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test