Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Numerous studies demonstrated that the number of children with autism spectrum disorder (ASD) has increased remarkably in the past decade. A portion of ASD etiology, however, is attributed to environmental issues and genetic disorders. We highlighted a scoping review to principally evaluate the current information on mercury exposure in ASD children and to reveal knowledge gaps. Elevated porphyrins concentration in the urinary system related to mercury exposure, such as precoproporphyrin (prcP), coproporphyrin (cP), and pentacarboxyporphyrin (5cxP), was shown in comparison with controls. Moreover, high levels of urinary porphyrins have been elevated in response to heavy metal exposure. The related pattern (increased prcP, cP, and 5cxP) with Hg exposure may be used as biomarkers in the characteristics of ASD symptoms. However, this review highlighted the data gaps because the control groups were not gender- and age-matched for ASD children.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673259183231117073347
2023-11-29
2024-11-14
Loading full text...

Full text loading...

References

  1. WillseyH.R. WillseyA.J. WangB. StateM.W. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder.Nat. Rev. Neurosci.202223632334110.1038/s41583‑022‑00576‑735440779
    [Google Scholar]
  2. BaioJ. WigginsL. ChristensenD.L. MaennerM.J. DanielsJ. WarrenZ. Kurzius-SpencerM. ZahorodnyW. RobinsonC. Rosenberg WhiteT. DurkinM.S. ImmP. NikolaouL. Yeargin-AllsoppM. LeeL-C. HarringtonR. LopezM. FitzgeraldR.T. HewittA. PettygroveS. ConstantinoJ.N. VehornA. ShenoudaJ. Hall-LandeJ. VanK. Naarden Braun DowlingN.F. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, united states, 2014.MMWR Surveill. Summ.201867612310.15585/mmwr.ss6706a129701730
    [Google Scholar]
  3. ZeidanJ. FombonneE. ScorahJ. IbrahimA. DurkinM.S. SaxenaS. YusufA. ShihA. ElsabbaghM. Global prevalence of autism: A systematic review update.Autism Res.202215577879010.1002/aur.269635238171
    [Google Scholar]
  4. IndikaN.L.R. DeutzN.E.P. EngelenM.P.K.J. PeirisH. WijetungeS. PereraR. Sulfur amino acid metabolism and related metabotypes of autism spectrum disorder: A review of biochemical evidence for a hypothesis.Biochimie202118414315710.1016/j.biochi.2021.02.01833675854
    [Google Scholar]
  5. BowersM.A. AicherL.D. DavisH.A. WoodsJ.S. Quantitative determination of porphyrins in rat and human urine and evaluation of urinary porphyrin profiles during mercury and lead exposures.J. Lab. Clin. Med.199212022722811500825
    [Google Scholar]
  6. MarksG.S. Exposure to toxic agents: The heme biosynthetic pathway and hemoproteins as indicator.CRC Crit. Rev. Toxicol.198515215118010.3109/104084485090293233899520
    [Google Scholar]
  7. WoodsJ.S. Altered porphyrin metabolism as a biomarker of mercury exposure and toxicity.Can. J. Physiol. Pharmacol.199674221021510.1139/y96‑0108723034
    [Google Scholar]
  8. BjørklundG. PivinaL. DadarM. SemenovaY. ChirumboloS. AasethJ. Mercury exposure, epigenetic alterations and brain tumorigenesis: A possible relationship?Curr. Med. Chem.202027396596661010.2174/092986732666619093015015931566127
    [Google Scholar]
  9. BjørklundG. AntonyakH. PolishchukA. SemenovaY. LesivM. LysiukR. PeanaM. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals.Arch. Toxicol.202296123175319910.1007/s00204‑022‑03366‑336063174
    [Google Scholar]
  10. WangL. AngleyM.T. GerberJ.P. SorichM.J. A review of candidate urinary biomarkers for autism spectrum disorder.Biomarkers201116753755210.3109/1354750X.2011.59856422022826
    [Google Scholar]
  11. KernJ.K. GeierD.A. AdamsJ.B. MehtaJ.A. GrannemannB.D. GeierM.R. Toxicity biomarkers in autism spectrum disorder: A blinded study of urinary porphyrins.Pediatr. Int.201153214715310.1111/j.1442‑200X.2010.03196.x20626635
    [Google Scholar]
  12. HesselL. Mercury in vaccines.Bull. Acad Natl. Med.200318781501151010.1016/S0001‑4079(19)33886‑515146581
    [Google Scholar]
  13. KernJ.K. HookerB.S. KingP.G. SykesL.K. GeierM.R. GeierD. Thimerosal-containing hepatitis b vaccination and the risk for diagnosed specific delays in development in the united states: A case-control study in the vaccine safety datalink.N. Am. J. Med. Sci.201461051953110.4103/1947‑2714.14328425489565
    [Google Scholar]
  14. Encyclopedia of the Nations FranceEnergy and Power.Available from: http://www.nationsencyclopedia. com/Europe/ France-ENERGY-AND-POWER.html (Accessed on 1 April 2023).
    [Google Scholar]
  15. ParkY. LeeA. ChoiK. KimH.J. LeeJ.J. ChoiG. KimS. KimS.Y. ChoG.J. SuhE. KimS.K. EunS.H. EomS. KimS. KimG.H. MoonH.B. KimS. ChoiS. KimY.D. KimJ. ParkJ. Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study.Sci. Total Environ.201861287688310.1016/j.scitotenv.2017.08.07928886539
    [Google Scholar]
  16. KusanagiE. TakamuraH. ChenS.J. AdachiM. HoshiN. Children’s hair mercury concentrations and seafood consumption in five regions of japan.Arch. Environ. Contam. Toxicol.201874225927210.1007/s00244‑017‑0502‑x29313075
    [Google Scholar]
  17. WoodsJ.S. KardishR.M. Developmental aspects of hepatic heme biosynthetic capability and hematotoxicity—II. Studies on uroporphyrinogen decarboxylase.Biochem. Pharmacol.1983321737810.1016/0006‑2952(83)90655‑X6219675
    [Google Scholar]
  18. BožekP. HuttaM. HrivnákováB. Rapid analysis of porphyrins at low ng/l and μg/l levels in human urine by a gradient liquid chromatography method using octadecylsilica monolithic columns.J. Chromatogr. A200510841-2243210.1016/j.chroma.2005.06.00716114232
    [Google Scholar]
  19. BrewsterM.A. Biomarkers of xenobiotic exposures.Ann. Clin. Lab. Sci.19881843063173044268
    [Google Scholar]
  20. KhaledE.M. MeguidN.A. BjørklundG. GoudaA. BaharyM.H. HashishA. SallamN.M. ChirumboloS. El-BanaM.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder.Metab. Brain Dis.20163161419142610.1007/s11011‑016‑9870‑627406246
    [Google Scholar]
  21. ChernovaT. NicoteraP. SmithA.G. Heme deficiency is associated with senescence and causes suppression of N-methyl-D-aspartate receptor subunits expression in primary cortical neurons.Mol. Pharmacol.200669369770510.1124/mol.105.01667516306232
    [Google Scholar]
  22. SenguptaA. HonT. ZhangL. Heme deficiency suppresses the expression of key neuronal genes and causes neuronal cell death.Brain Res. Mol. Brain Res.20051371-2233010.1016/j.molbrainres.2005.02.00715950757
    [Google Scholar]
  23. LitmanD.A. CorreiaM.A. L-tryptophan: A common denominator of biochemical and neurological events of acute hepatic porphyria?Science198322246271031103310.1126/science.66485176648517
    [Google Scholar]
  24. LitmanD.A. CorreiaM.A. Elevated brain tryptophan and enhanced 5-hydroxytryptamine turnover in acute hepatic heme deficiency: clinical implications.J. Pharmacol. Exp. Ther.198523223373453968635
    [Google Scholar]
  25. AndersonB.M. Schnetz-BoutaudN.C. BartlettJ. WotawaA.M. WrightH.H. AbramsonR.K. CuccaroM.L. GilbertJ.R. Pericak-VanceM.A. HainesJ.L. Examination of association of genes in the serotonin system to autism.Neurogenetics200910320921610.1007/s10048‑009‑0171‑719184136
    [Google Scholar]
  26. BillB.R. GeschwindD.H. Genetic advances in autism: heterogeneity and convergence on shared pathways.Curr. Opin. Genet. Dev.200919327127810.1016/j.gde.2009.04.00419477629
    [Google Scholar]
  27. ChernovaT. SteinertJ.R. GuerinC.J. NicoteraP. ForsytheI.D. SmithA.G. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation.J. Neurosci.200727328475848510.1523/JNEUROSCI.0792‑07.200717687025
    [Google Scholar]
  28. ChernovaT. SteinertJ.R. RichardsP. MistryR. ChallissR.A.J. Jukes-JonesR. CainK. SmithA.G. ForsytheI.D. Early failure of N-methyl-D-aspartate receptors and deficient spine formation induced by reduction of regulatory heme in neurons.Mol. Pharmacol.201179584485410.1124/mol.110.06983121325018
    [Google Scholar]
  29. WallD.P. EstebanF.J. DeLucaT.F. HuyckM. MonaghanT. Velez de MendizabalN. GoñíJ. KohaneI.S. Comparative analysis of neurological disorders focuses genome-wide search for autism genes.Genomics200993212012910.1016/j.ygeno.2008.09.01518950700
    [Google Scholar]
  30. ChungC. HaS. KangH. LeeJ. UmS.M. YanH. YooY.E. YooT. JungH. LeeD. LeeE. LeeS. KimJ. KimR. KwonY. KimW. KimH. DuffneyL. KimD. MahW. WonH. MoS. KimJ.Y. LimC.S. KaangB.K. BoeckersT.M. ChungY. KimH. JiangY. KimE. Early correction of N-Methyl-D-Aspartate receptor function improves autistic-like social behaviors in adult shank2−/− Mice.Biol. Psychiatry201985753454310.1016/j.biopsych.2018.09.02530466882
    [Google Scholar]
  31. BallH.J. FedelisF.F. BakmiwewaS.M. HuntN.H. YuasaH.J. Tryptophan-catabolizing enzymes - party of three.Front. Immunol.2014548510.3389/fimmu.2014.0048525346733
    [Google Scholar]
  32. ChuganiD.C. MuzikO. BehenM. RothermelR. JanisseJ.J. LeeJ. ChuganiH.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children.Ann. Neurol.199945328729510.1002/1531‑8249(199903)45:3<287::AID‑ANA3>3.0.CO;2‑910072042
    [Google Scholar]
  33. CookE.H.Jr LeventhalB.L. The serotonin system in autism.Curr. Opin. Pediatr.19968434835410.1097/00008480‑199608000‑000089053096
    [Google Scholar]
  34. LeboyerM. PhilippeA. BouvardM. Guilloud-BatailleM. BondouxD. TabuteauF. FeingoldJ. Mouren-SimeoniM.C. LaunayJ.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives.Biol. Psychiatry199945215816310.1016/S0006‑3223(97)00532‑59951562
    [Google Scholar]
  35. OwleyT. LeventhalB.L. CookE.H. Childhood disorders: The autism spectrum disorders.Psychiatry.2nd ed TasmanA. KayJ. LiebermanJ.A. ChichesterWiley, USA2003757770
    [Google Scholar]
  36. GeierD.A. GeierM.R. A prospective assessment of porphyrins in autistic disorders: A potential marker for heavy metal exposure.Neurotox. Res.2006101576310.1007/BF0303333417000470
    [Google Scholar]
  37. KernJ.K. GeierD.A. SykesL. GeierM. Urinary porphyrins in autism spectrum disorders.In Comprehensive Guide to AutismSpringer New York, USA20141333134810.1007/978‑1‑4614‑4788‑7_72
    [Google Scholar]
  38. AdamsJ.B. BaralM. GeisE. MitchellJ. IngramJ. HensleyA. ZappiaI. NewmarkS. GehnE. RubinR.A. MitchellK. BradstreetJ. El-DahrJ.M. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels.J. Toxicol.200920091710.1155/2009/53264020107587
    [Google Scholar]
  39. WoodsJ.S. Porphyrin metabolism as indicator of metal exposure and toxicity.Toxicology of Metals: Biochemical Aspects. GoyerR.A. CherianM.G. Handbook of Experimental PharmacologyBerlin, GermanySpringer-Verlag1995159210.1007/978‑3‑642‑79162‑8_2
    [Google Scholar]
  40. Macedoni-LukšičM. GosarD. BjørklundG. OražemJ. KodričJ. Lešnik-MusekP. ZupančičM. France-ŠtiglicA. Sešek-BriškiA. NeubauerD. OsredkarJ. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders.Biol. Trace Elem. Res.20151631-221010.1007/s12011‑014‑0121‑625234471
    [Google Scholar]
  41. PingreeS.D. SimmondsP.L. WoodsJ.S. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on tissue and urine mercury levels following prolonged methylmercury exposure in rats.Toxicol. Sci.2001a61222423310.1093/toxsci/61.2.22411353131
    [Google Scholar]
  42. PingreeS.D. SimmondsP.L. RummelK.T. WoodsJ.S. Quantitative evaluation of urinary porphyrins as a measure of kidney mercury content and mercury body burden during prolonged methylmercury exposure in rats.Toxicol. Sci.2001b61223424010.1093/toxsci/61.2.23411353132
    [Google Scholar]
  43. LiuX. LiuX. TaoM. ZhangW. A highly selective and sensitive recyclable colorimetric Hg 2+ sensor based on the porphyrin-functionalized polyacrylonitrile fiber.J. Mater. Chem. A Mater. Energy Sustain.2015325132541326210.1039/C5TA02491A
    [Google Scholar]
  44. ZhangL. WangZ.W. XiaoS.J. PengD. ChenJ.Q. LiangR.P. JiangJ. QiuJ.D. Fluorescent molybdenum oxide quantum dots and Hg II synergistically accelerate cobalt porphyrin formation: A new strategy for trace Hg II analysis.ACS Appl. Nano Mater.2018141484149110.1021/acsanm.7b00351
    [Google Scholar]
  45. NatafR. SkorupkaC. AmetL. LamA. SpringbettA. LatheR. Porphyrinuria in childhood autistic disorder: Implications for environmental toxicity.Toxicol. Appl. Pharmacol.200621429910810.1016/j.taap.2006.04.00816782144
    [Google Scholar]
  46. GeierD.A. GeierM.R. A prospective study of mercury toxicity biomarkers in autistic spectrum disorders.J. Toxicol. Environ. Health A200770201723173010.1080/1528739070145771217885929
    [Google Scholar]
  47. GeierD.A. KernJ.K. GarverC.R. AdamsJ.B. AudhyaT. NatafR. GeierM.R. Biomarkers of environmental toxicity and susceptibility in autism.J. Neurol. Sci.2009a2801-210110810.1016/j.jns.2008.08.02118817931
    [Google Scholar]
  48. AustinD.W. ShandleyK. An investigation of porphyrinuria in Australian children with autism.J. Toxicol. Environ. Health A200871201349135110.1080/1528739080227172318704827
    [Google Scholar]
  49. SkogheimT.S. WeydeK.V.F. EngelS.M. AaseH. SurénP. ØieM.G. BieleG. Reichborn-KjennerudT. CaspersenI.H. HornigM. HaugL.S. VillangerG.D. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children.Environ. Int.202115210646810.1016/j.envint.2021.10646833765546
    [Google Scholar]
  50. BajJ. FliegerW. FliegerM. FormaA. SitarzE. Skórzyńska-DziduszkoK. GrochowskiC. MaciejewskiR. Karakuła-JuchnowiczH. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms.Neurosci. Biobehav. Rev.202112911713210.1016/j.neubiorev.2021.07.02934339708
    [Google Scholar]
  51. ZhangJ. LiX. ShenL. KhanN.U. ZhangX. ChenL. ZhaoH. LuoP. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies.J. Trace Elem. Med. Biol.20216712678210.1016/j.jtemb.2021.12678234049201
    [Google Scholar]
  52. GeierD.A. KernJ.K. GeierM.R. A prospective blinded evaluation of urinary porphyrins verses the clinical severity of autism spectrum disorders.J. Toxicol. Environ. Health A2009b72241585159110.1080/1528739090323247520077233
    [Google Scholar]
  53. ShandleyK. AustinD.W. BhowmikJ.L. Are urinary porphyrins a valid diagnostic biomarker of autism spectrum disorder?Autism Res.20147553554210.1002/aur.138524756868
    [Google Scholar]
  54. HarutyunyanA.A. HarutyunyanH.A. YenkoyanK.B. Novel probable glance at inflammatory scenario development in autistic pathology.Front. Psychiatry20211278877910.3389/fpsyt.2021.78877935002805
    [Google Scholar]
  55. AdamsJ. HowsmonD.P. KrugerU. GeisE. GehnE. FimbresV. PollardE. MitchellJ. IngramJ. HellmersR. QuigD. HahnJ. Significant association of urinary toxic metals and autism-related symptoms—A nonlinear statistical analysis with cross validation.PLoS One2017121e016952610.1371/journal.pone.016952628068407
    [Google Scholar]
  56. YounS.I. JinS.H. KimS.H. LimS. Porphyrinuria in Korean children with autism: Correlation with oxidative stress.J. Toxicol. Environ. Health A2010731070171010.1080/1528739100361400020391113
    [Google Scholar]
  57. FujiwaraT. MorisakiN. HondaY. SampeiM. TaniY. Chemicals, nutrition, and autism spectrum disorder: A mini-review.Front. Neurosci.20162017410.3389/fnins.2016.00174
    [Google Scholar]
  58. HeyerN.J. EcheverriaD. WoodsJ.S. Disordered porphyrin metabolism: A potential biological marker for autism risk assessment.Autism Res.201252849210.1002/aur.23622298513
    [Google Scholar]
  59. AdrienJ.L. BarthélémyC. LelordG. MuhJ.P. Use of bioclinical markers for the assessment and treatment of children with pervasive developmental disorders.Neuropsychobiology198922311712410.1159/0001186042485858
    [Google Scholar]
  60. BaileyW.J. UlrichR. Molecular profiling approaches for identifying novel biomarkers.Expert Opin. Drug Saf.20043213715110.1517/14740338.3.2.13715006720
    [Google Scholar]
  61. PardoC.A. EberhartC.G. The neurobiology of autism.Brain Pathol.200717443444710.1111/j.1750‑3639.2007.00102.x17919129
    [Google Scholar]
  62. ŽigmanT. Petković RamadžaD. ŠimićG. BarićI. Inborn errors of metabolism associated with autism spectrum disorders: Approaches to intervention.Front. Neurosci.20211567360010.3389/fnins.2021.67360034121999
    [Google Scholar]
  63. MoravejH. InalooS. NahidS. MazloumiS. NematiH. MoosavianT. NasiriJ. GhasemiF. AlaeiM.R. DaliliS. AminzadehM. KatibehP. AmirhakimiA. YazdaniN. IlkhanipoorH. AfsharZ. HadipourF. HadipourZ. Inborn errors of metabolism associated with autism among children: A multicenter study from iran.Indian Pediatr.202360319319610.1007/s13312‑023‑2833‑136604934
    [Google Scholar]
  64. AhmadabadiF. NematiH. AbdolmohammadzadehA. AhadiA. Autistic feature as a presentation of inborn errors of metabolism.Iran. J. Child. Neurol.2020144172833193781
    [Google Scholar]
  65. WoodsJ.S. ArmelS.E. FultonD.I. AllenJ. WesselsK. SimmondsP.L. GranpeeshehD. MumperE. BradstreetJ.J. EcheverriaD. HeyerN.J. RooneyJ.P.K. Urinary porphyrin excretion in neurotypical and autistic children.Environ. Health Perspect.2010118101450145710.1289/ehp.090171320576582
    [Google Scholar]
  66. OgunA.S. JoyN.V. ValentineM. Biochemistry, heme synthesis.StatPearls.InternetTreasure Island, FLStatPearls Publishing2023https://www.ncbi.nlm.nih.gov/books/NBK537329/
    [Google Scholar]
  67. ShianiA. SharafiK. OmerA.K. KianiA. KaramimatinB. MassahiT. EbrahimzadehG. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder.Sci. Total Environ.2023857Pt 215924610.1016/j.scitotenv.2022.15924636220469
    [Google Scholar]
  68. RossignolD. The use of urinary porphyrins analysis in autism.Medical Veritas200741610.1588/medver.2007.04.00140
    [Google Scholar]
  69. DuttS. HamzaI. BartnikasT.B. Molecular mechanisms of iron and heme metabolism.Annu. Rev. Nutr.202242131133510.1146/annurev‑nutr‑062320‑11262535508203
    [Google Scholar]
  70. GeierD. KernJ. KingP. SykesL. GeierM. Hair toxic metal concentrations and autism spectrum disorder severity in young children.Int. J. Environ. Res. Public Health20129124486449710.3390/ijerph912448623222182
    [Google Scholar]
  71. RoyS. GuptaS.K. PrakashJ. HabibG. KumarP. A global perspective of the current state of heavy metal contamination in road dust.Environ. Sci. Pollut. Res. Int.20222922332303325110.1007/s11356‑022‑18583‑735022986
    [Google Scholar]
  72. GrandjeanP. LandriganP.J. Neurobehavioural effects of developmental toxicity.Lancet Neurol.201413333033810.1016/S1474‑4422(13)70278‑324556010
    [Google Scholar]
  73. FaríasP. Hernández-BonillaD. Moreno-MacíasH. Montes-LópezS. SchnaasL. Texcalac-SangradorJ.L. RíosC. Riojas-RodríguezH. Prenatal co-exposure to manganese, mercury, and lead, and neurodevelopment in children during the first year of life.Int. J. Environ. Res. Public Health202219201302010.3390/ijerph19201302036293596
    [Google Scholar]
  74. JangidA.P. JohnP.J. YadavD. MishraS. SharmaP. Impact of chronic lead exposure on selected biological markers.Indian J. Clin. Biochem.2012271838910.1007/s12291‑011‑0163‑x23277717
    [Google Scholar]
  75. SunJ. WangJ. LiuJ. Effects of lead exposure on porphyrin metabolism indicators in smelter workers.Biomed. Environ. Sci.19925176851586470
    [Google Scholar]
  76. LefeverS. PeersmanN. MeerssemanW. CassimanD. VermeerschP. Development and validation of diagnostic algorithms for the laboratory diagnosis of porphyrias.J. Inherit. Metab. Dis.20224561151116210.1002/jimd.1254536053909
    [Google Scholar]
  77. JamesM.F.M. HiftR.J. Porphyrias.Br. J. Anaesth.200085114315310.1093/bja/85.1.14310928003
    [Google Scholar]
  78. RuhaA.M. Recommendations for provoked challenge urine testing.J. Med. Toxicol.20139431832510.1007/s13181‑013‑0350‑724113861
    [Google Scholar]
  79. PoliA. SchmittC. MoulouelB. MirmiranA. PuyH. LefèbvreT. GouyaL. Iron, heme synthesis and erythropoietic porphyrias: A complex interplay.Metabolites2021111279810.3390/metabo1112079834940556
    [Google Scholar]
  80. Di PierroE. De CanioM. MercadanteR. SavinoM. GranataF. TavazziD. NicolliA.M. TrevisanA. MarchiniS. FustinoniS. Laboratory diagnosis of porphyria.Diagnostics2021118134310.3390/diagnostics1108134334441276
    [Google Scholar]
  81. BaraskewichJ. von RansonK.M. McCrimmonA. McMorrisC.A. Feeding and eating problems in children and adolescents with autism: A scoping review.Autism20212561505151910.1177/136236132199563133653157
    [Google Scholar]
  82. Di PierroE. GranataF. Nutrients and porphyria: An intriguing crosstalk.Int. J. Mol. Sci.20202110346210.3390/ijms2110346232422947
    [Google Scholar]
  83. HirotaT. KingB.H. Autism spectrum disorder.JAMA2023329215716810.1001/jama.2022.2366136625807
    [Google Scholar]
  84. Plaza-DiazJ. Flores-RojasK. Torre-AguilarM.J. Gomez-FernándezA.R. Martín-BorregueroP. Perez-NaveroJ.L. GilA. Gil-CamposM. Dietary patterns, eating behavior, and nutrient intakes of spanish preschool children with autism spectrum disorders.Nutrients20211310355110.3390/nu1310355134684552
    [Google Scholar]
  85. MizejewskiG.J. Lindau-ShepardB. PassK.A. Newborn screening for autism: in search of candidate biomarkers.Biomarkers Med.20137224726010.2217/bmm.12.10823547820
    [Google Scholar]
  86. MelmanS.T. NimehJ.W. AnbarR.D. Prevalence of elevated blood lead levels in an inner-city pediatric clinic population.Environ. Health Perspect.19981061065565710.1289/ehp.106‑15331719755141
    [Google Scholar]
  87. BełdowskaM. FalkowskaL. Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the Southern Baltic.Water Air Soil Pollut.201622725210.1007/s11270‑015‑2735‑526806985
    [Google Scholar]
  88. GradeT. CampbellP. CooleyT. KneelandM. LeslieE. MacDonaldB. MelottiJ. OkoniewskiJ. ParmleyE.J. PerryC. VogelH. PokrasM. Lead poisoning from ingestion of fishing gear: A review.Ambio20194891023103810.1007/s13280‑019‑01179‑w31020613
    [Google Scholar]
  89. van RossumH.H. Technical quality assurance and quality control for medical laboratories: a review and proposal of a new concept to obtain integrated and validated QA/QC plans.Crit. Rev. Clin. Lab. Sci.202259858660010.1080/10408363.2022.208868535758201
    [Google Scholar]
  90. BölteS. GirdlerS. MarschikP.B. The contribution of environmental exposure to the etiology of autism spectrum disorder.Cell. Mol. Life Sci.20197671275129710.1007/s00018‑018‑2988‑430570672
    [Google Scholar]
  91. JamesS. StevensonS.W. SiloveN. WilliamsK. Chelation for autism spectrum disorder (ASD).Cochrane Libr.2015201610CD01076610.1002/14651858.CD010766.pub226114777
    [Google Scholar]
  92. FloraS.J.S. PachauriV. Chelation in metal intoxication.Int. J. Environ. Res. Public Health2010772745278810.3390/ijerph707274520717537
    [Google Scholar]
  93. Blaucok-BuschE. AminO.R. DessokiH.H. RabahT. Efficacy of DMSA therapy in a sample of arab children with autistic spectrum disorder.Maedica 20127321422123400264
    [Google Scholar]
  94. GeierD.A. GeierM.R. A clinical trial of combined anti-androgen and anti-heavy metal therapy in autistic disorders.Neuroendocrinol. Lett.200627683383817187010
    [Google Scholar]
  95. FDA Warns Seller of Pills Used to Treat AutismAvailable from: https://www.consumerlab.com/recalls/10204/fda-warns-seller-of-pills-used-to-treat-autism/ (Accessed on 30 August 2023).
  96. BeauchampR.A. WillisT.M. BetzT.G. VillanacciJ. LeikerR.D. RozinL. Deaths associated with hypocalcemia from chelation therapy – Texas, Pennsylvania, and Oregon, 2003–2005.JAMA2006295182131213310.1001/jama.295.18.2131
    [Google Scholar]
  97. MitkaM. Chelation therapy trials halted.JAMA200830019223610.1001/jama.2008.60719017902
    [Google Scholar]
  98. DavisT.N. O’ReillyM. KangS. LangR. RispoliM. SigafoosJ. LancioniG. CopelandD. AttaiS. MulloyA. Chelation treatment for autism spectrum disorders: A systematic review.Res. Autism Spectr. Disord.201371495510.1016/j.rasd.2012.06.005
    [Google Scholar]
  99. AdamsJ.B. BaralM. GeisE. MitchellJ. IngramJ. HensleyA. ZappiaI. NewmarkS. GehnE. RubinR.A. MitchellK. BradstreetJ. El-DahrJ. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results.BMC Clin. Pharmacol.2009911610.1186/1472‑6904‑9‑16
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673259183231117073347
Loading
/content/journals/cmc/10.2174/0109298673259183231117073347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test