Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the “spell” that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673258913231019113814
2023-11-02
2025-06-22
Loading full text...

Full text loading...

References

  1. ZehirA. BenayedR. ShahR.H. SyedA. MiddhaS. KimH.R. SrinivasanP. GaoJ. ChakravartyD. DevlinS.M. HellmannM.D. BarronD.A. SchramA.M. HameedM. DoganS. RossD.S. HechtmanJ.F. DeLairD.F. YaoJ. MandelkerD.L. ChengD.T. ChandramohanR. MohantyA.S. PtashkinR.N. JayakumaranG. PrasadM. SyedM.H. RemaA.B. LiuZ.Y. NafaK. BorsuL. SadowskaJ. CasanovaJ. BacaresR. KieckaI.J. RazumovaA. SonJ.B. StewartL. BaldiT. MullaneyK.A. Al-AhmadieH. VakianiE. AbeshouseA.A. PensonA.V. JonssonP. CamachoN. ChangM.T. WonH.H. GrossB.E. KundraR. HeinsZ.J. ChenH.W. PhillipsS. ZhangH. WangJ. OchoaA. WillsJ. EubankM. ThomasS.B. GardosS.M. RealesD.N. GalleJ. DuranyR. CambriaR. AbidaW. CercekA. FeldmanD.R. GounderM.M. HakimiA.A. HardingJ.J. IyerG. JanjigianY.Y. JordanE.J. KellyC.M. LoweryM.A. MorrisL.G.T. OmuroA.M. RajN. RazaviP. ShoushtariA.N. ShuklaN. SoumeraiT.E. VargheseA.M. YaegerR. ColemanJ. BochnerB. RielyG.J. SaltzL.B. ScherH.I. SabbatiniP.J. RobsonM.E. KlimstraD.S. TaylorB.S. BaselgaJ. SchultzN. HymanD.M. ArcilaM.E. SolitD.B. LadanyiM. BergerM.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients.Nat. Med.201723670371310.1038/nm.433328481359
    [Google Scholar]
  2. ShihT.Y. WeeksM.O. YoungH.A. ScolnickE.M. Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus.Virology1979961647910.1016/0042‑6822(79)90173‑9223311
    [Google Scholar]
  3. DerC.J. KrontirisT.G. CooperG.M. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses.Proc. Natl. Acad. Sci. USA198279113637364010.1073/pnas.79.11.36376285355
    [Google Scholar]
  4. PopescuN.C. AmsbaughS.C. DiPaoloJ.A. TronickS.R. AaronsonS.A. SwanD.C. Chromosomal localization of three humanras genes by in situ molecular hybridization.Somat. Cell Mol. Genet.198511214915510.1007/BF015347033856955
    [Google Scholar]
  5. KarnoubA.E. WeinbergR.A. Ras oncogenes: Split personalities.Nat. Rev. Mol. Cell Biol.20089751753110.1038/nrm243818568040
    [Google Scholar]
  6. CaponD.J. SeeburgP.H. McGrathJ.P. HayflickJ.S. EdmanU. LevinsonA.D. GoeddelD.V. Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations.Nature1983304592650751310.1038/304507a06308467
    [Google Scholar]
  7. SequistL.V. YangJ.C.H. YamamotoN. O’ByrneK. HirshV. MokT. GeaterS.L. OrlovS. TsaiC.M. BoyerM. SuW.C. BennounaJ. KatoT. GorbunovaV. LeeK.H. ShahR. MasseyD. ZazulinaV. ShahidiM. SchulerM. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.J. Clin. Oncol.201331273327333410.1200/JCO.2012.44.280623816960
    [Google Scholar]
  8. KatayamaR. LovlyC.M. ShawA.T. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: A paradigm for precision cancer medicine.Clin. Cancer Res.201521102227223510.1158/1078‑0432.CCR‑14‑279125979929
    [Google Scholar]
  9. HuangL. GuoZ. WangF. FuL. KRAS mutation: from undruggable to druggable in cancer.Signal Transduct. Target. Ther.20216138610.1038/s41392‑021‑00780‑434776511
    [Google Scholar]
  10. SantosE. NebredaA.R. Structural and functional properties of ras proteins.FASEB J.19893102151216310.1096/fasebj.3.10.26662312666231
    [Google Scholar]
  11. VetterI.R. WittinghoferA. The guanine nucleotide-binding switch in three dimensions.Science200129455451299130410.1126/science.106202311701921
    [Google Scholar]
  12. BourneH.R. SandersD.A. McCormickF. The GTPase superfamily: Conserved structure and molecular mechanism.Nature1991349630511712710.1038/349117a01898771
    [Google Scholar]
  13. ParikhK. BannaG. LiuS.V. FriedlaenderA. DesaiA. SubbiahV. AddeoA. Drugging KRAS: Current perspectives and state-of-art review.J. Hematol. Oncol.202215115210.1186/s13045‑022‑01375‑436284306
    [Google Scholar]
  14. HallB.E. Bar-SagiD. NassarN. The structural basis for the transition from Ras-GTP to Ras-GDP.Proc. Natl. Acad. Sci. USA20029919121381214210.1073/pnas.19245319912213964
    [Google Scholar]
  15. SchererA. JohnJ. LinkeR. GoodyR.S. WittinghoferA. PaiE.F. HolmesK.C. Crystallization and preliminary X-ray analysis of the human c-H-ras-oncogene product p21 complexed with GTP analogues.J. Mol. Biol.1989206125725910.1016/0022‑2836(89)90540‑82649686
    [Google Scholar]
  16. SantosE. Martin-ZancaD. ReddyE.P. PierottiM.A. Della PortaG. BarbacidM. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient.Science1984223463766166410.1126/science.66951746695174
    [Google Scholar]
  17. NakanoH. YamamotoF. NevilleC. EvansD. MizunoT. PeruchoM. Isolation of transforming sequences of two human lung carcinomas: Structural and functional analysis of the activated c-K-ras oncogenes.Proc. Natl. Acad. Sci. USA1984811717510.1073/pnas.81.1.716320174
    [Google Scholar]
  18. HunterJ.C. ManandharA. CarrascoM.A. GurbaniD. GondiS. WestoverK.D. Biochemical and structural analysis of common cancer-associated KRAS mutations.Mol. Cancer Res.20151391325133510.1158/1541‑7786.MCR‑15‑020326037647
    [Google Scholar]
  19. WoodK. HensingT. MalikR. SalgiaR. Prognostic and predictive value in KRAS in non–small-cell lung cancer.JAMA Oncol.20162680581210.1001/jamaoncol.2016.040527100819
    [Google Scholar]
  20. O’BryanJ.P. Pharmacological targeting of RAS: Recent success with direct inhibitors.Pharmacol. Res.201913950351110.1016/j.phrs.2018.10.02130366101
    [Google Scholar]
  21. ZhangZ. GuileyK.Z. ShokatK.M. Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S).Nat. Chem. Biol.202218111177118310.1038/s41589‑022‑01065‑935864332
    [Google Scholar]
  22. ZhangZ. MorsteinJ. EckerA.K. GuileyK.Z. ShokatK.M. Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile.J. Am. Chem. Soc.202214435159161592110.1021/jacs.2c0537736001446
    [Google Scholar]
  23. FengH. ZhangY. BosP.H. ChambersJ.M. DupontM.M. StockwellB.R. K-Ras G12D has a potential allosteric small molecule binding site.Biochemistry201958212542255410.1021/acs.biochem.8b0130031042025
    [Google Scholar]
  24. WangX. AllenS. BlakeJ.F. BowcutV. BriereD.M. CalinisanA. DahlkeJ.R. FellJ.B. FischerJ.P. GunnR.J. HallinJ. LaguerJ. LawsonJ.D. MedwidJ. NewhouseB. NguyenP. O’LearyJ.M. OlsonP. PajkS. RahbaekL. RodriguezM. SmithC.R. TangT.P. ThomasN.C. VanderpoolD. VigersG.P. ChristensenJ.G. MarxM.A. Identification of MRTX1133, a noncovalent, potent, and selective kras G12D inhibitor.J. Med. Chem.20226543123313310.1021/acs.jmedchem.1c0168834889605
    [Google Scholar]
  25. SchramA.M. GandhiL. MitaM.M. DamstrupL. CampanaF. HidalgoM. GrandeE. HymanD.M. HeistR.S. A phase Ib dose-escalation and expansion study of the oral MEK inhibitor pimasertib and PI3K/MTOR inhibitor voxtalisib in patients with advanced solid tumours.Br. J. Cancer2018119121471147610.1038/s41416‑018‑0322‑430425349
    [Google Scholar]
  26. LiuW. YinY. WangJ. ShiB. ZhangL. QianD. LiC. ZhangH. WangS. ZhuJ. GaoL. ZhangQ. JiaB. HaoL. WangC. ZhangB. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC.Oncotarget20178117919010.18632/oncotarget.1016227329725
    [Google Scholar]
  27. PuyolM. MartínA. DubusP. MuleroF. PizcuetaP. KhanG. GuerraC. SantamaríaD. BarbacidM. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma.Cancer Cell2010181637310.1016/j.ccr.2010.05.02520609353
    [Google Scholar]
  28. AdjeiA.A. MauerA. BruzekL. MarksR.S. HillmanS. GeyerS. HansonL.J. WrightJ.J. ErlichmanC. KaufmannS.H. VokesE.E. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer.J. Clin. Oncol.20032191760176610.1200/JCO.2003.09.07512721252
    [Google Scholar]
  29. KatoK. CoxA.D. HisakaM.M. GrahamS.M. BussJ.E. DerC.J. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity.Proc. Natl. Acad. Sci. USA199289146403640710.1073/pnas.89.14.64031631135
    [Google Scholar]
  30. XiongY. LuJ. HunterJ. LiL. ScottD. ChoiH.G. LimS.M. ManandharA. GondiS. SimT. WestoverK.D. GrayN.S. Covalent guanosine mimetic inhibitors of G12C KRAS.ACS Med. Chem. Lett.201781616610.1021/acsmedchemlett.6b0037328105276
    [Google Scholar]
  31. Rude VoldborgB. DamstrupL. Spang-ThomsenM. Skovgaard PoulsenH. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials.Ann. Oncol.19978121197120610.1023/A:10082097205269496384
    [Google Scholar]
  32. BudayL. DownwardJ. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor.Cell199373361162010.1016/0092‑8674(93)90146‑H8490966
    [Google Scholar]
  33. ChardinP. CamonisJ.H. GaleN.W. van AelstL. SchlessingerJ. WiglerM.H. Bar-SagiD. Human Sos1: A guanine nucleotide exchange factor for Ras that binds to GRB2.Science199326051121338134310.1126/science.84935798493579
    [Google Scholar]
  34. GaleN.W. KaplanS. LowensteinE.J. SchlessingerJ. Bar-SagiD. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras.Nature19933636424889210.1038/363088a08386805
    [Google Scholar]
  35. ZhuG. XieJ. KongW. XieJ. LiY. DuL. ZhengQ. SunL. GuanM. LiH. ZhuT. HeH. LiuZ. XiaX. KanC. TaoY. ShenH.C. LiD. WangS. YuY. YuZ.H. ZhangZ.Y. LiuC. ZhuJ. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation.Cell20201832490502.e1810.1016/j.cell.2020.09.00233002410
    [Google Scholar]
  36. ChenY.N.P. LaMarcheM.J. ChanH.M. FekkesP. Garcia-FortanetJ. AckerM.G. AntonakosB. ChenC.H.T. ChenZ. CookeV.G. DobsonJ.R. DengZ. FeiF. FirestoneB. FodorM. FridrichC. GaoH. GrunenfelderD. HaoH.X. JacobJ. HoS. HsiaoK. KangZ.B. KarkiR. KatoM. LarrowJ. La BonteL.R. LenoirF. LiuG. LiuS. MajumdarD. MeyerM.J. PalermoM. PerezL. PuM. PriceE. QuinnC. ShakyaS. ShultzM.D. SliszJ. VenkatesanK. WangP. WarmuthM. WilliamsS. YangG. YuanJ. ZhangJ.H. ZhuP. RamseyT. KeenN.J. SellersW.R. StamsT. FortinP.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.Nature2016535761014815210.1038/nature1862127362227
    [Google Scholar]
  37. BundaS. BurrellK. HeirP. ZengL. AlamsahebpourA. KanoY. RaughtB. ZhangZ.Y. ZadehG. OhhM. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis.Nat. Commun.201561885910.1038/ncomms985926617336
    [Google Scholar]
  38. BrambillaR. GnesuttaN. MinichielloL. WhiteG. RoylanceA.J. HerronC.E. RamseyM. WolferD.P. CestariV. Rossi-ArnaudC. GrantS.G.N. ChapmanP.F. LippH-P. SturaniE. KleinR. A role for the Ras signalling pathway in synaptic transmission and long-term memory.Nature1997390665728128610.1038/36849
    [Google Scholar]
  39. FarnsworthC.L. FreshneyN.W. RosenL.B. GhoshA. GreenbergM.E. FeigL.A. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF.Nature1995376654052452710.1038/376524a07637786
    [Google Scholar]
  40. CullenP.J. LockyerP.J. Integration of calcium and RAS signalling.Nat. Rev. Mol. Cell Biol.20023533934810.1038/nrm80811988768
    [Google Scholar]
  41. TakácsT. KudlikG. KurillaA. SzederB. BudayL. VasV. The effects of mutant Ras proteins on the cell signalome.Cancer Metastasis Rev.20203941051106510.1007/s10555‑020‑09912‑832648136
    [Google Scholar]
  42. JonesG.G. del RíoI.B. SariS. SekerimA. YoungL.C. HartigN. Areso ZubiaurI. El-BahrawyM.A. HyndsR.E. LeiW. Molina-ArcasM. DownwardJ. Rodriguez-VicianaP. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers.Nat. Commun.2019101253210.1038/s41467‑019‑10367‑x31182717
    [Google Scholar]
  43. BonsorD.A. AlexanderP. SneadK. HartigN. DrewM. MessingS. FinciL.I. NissleyD.V. McCormickF. EspositoD. Rodriguez-VicianaP. StephenA.G. SimanshuD.K. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome.Nat. Struct. Mol. Biol.2022291096697710.1038/s41594‑022‑00841‑436175670
    [Google Scholar]
  44. KomatsuzakiS. AokiY. NiihoriT. OkamotoN. HennekamR.C.M. HopmanS. OhashiH. MizunoS. WatanabeY. KamasakiH. KondoI. MoriyamaN. KurosawaK. KawameH. OkuyamaR. ImaizumiM. RikiishiT. TsuchiyaS. KureS. MatsubaraY. Mutation analysis of the SHOC2 gene in Noonan-like syndrome and in hematologic malignancies.J. Hum. Genet.2010551280180910.1038/jhg.2010.11620882035
    [Google Scholar]
  45. VaraJ.Á.F. CasadoE. de CastroJ. CejasP. Belda-IniestaC. González-BarónM. PI3K/Akt signalling pathway and cancer.Cancer Treat. Rev.200430219320410.1016/j.ctrv.2003.07.00715023437
    [Google Scholar]
  46. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.02928802037
    [Google Scholar]
  47. KilicU. CaglayanA.B. BekerM.C. GunalM.Y. CaglayanB. YalcinE. KelestemurT. GundogduR.Z. YulugB. YılmazB. KermanB.E. KilicE. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin’s neuroprotective activity after focal cerebral ischemia in mice.Redox Biol.20171265766510.1016/j.redox.2017.04.00628395173
    [Google Scholar]
  48. YanoT. FerlitoM. AponteA. KunoA. MiuraT. MurphyE. SteenbergenC. Pivotal role of mTORC2 and involvement of ribosomal protein S6 in cardioprotective signaling.Circ. Res.201411481268128010.1161/CIRCRESAHA.114.30356224557881
    [Google Scholar]
  49. SheQ.B. SolitD.B. YeQ. O’ReillyK.E. LoboJ. RosenN. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells.Cancer Cell20058428729710.1016/j.ccr.2005.09.00616226704
    [Google Scholar]
  50. VigilD. CherfilsJ. RossmanK.L. DerC.J. Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy?Nat. Rev. Cancer2010101284285710.1038/nrc296021102635
    [Google Scholar]
  51. LambertJ.M. LambertQ.T. ReutherG.W. MalliriA. SiderovskiD.P. SondekJ. CollardJ.G. DerC.J. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism.Nat. Cell Biol.20024862162510.1038/ncb83312134164
    [Google Scholar]
  52. ArakiM. ShimaF. YoshikawaY. MuraokaS. IjiriY. NagaharaY. ShironoT. KataokaT. TamuraA. Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers.J. Biol. Chem.201128645396443965310.1074/jbc.M111.22707421930707
    [Google Scholar]
  53. EndoT. M-ras is muscle-ras, moderate-ras, mineral-ras, migration-ras, and many more-ras.Exp. Cell Res.2020397111234210.1016/j.yexcr.2020.11234233130177
    [Google Scholar]
  54. AfonsoA. BauerB.E. BrownJ.E. CarrD. CatinoJ. CesarzD. De FreesS. Del RosarioJ.D. DollR.J. EvansC.A. GangulyA.K. GirijavallabhanV. HuangE.C. HeimarkL. JamesL. KellyJ. KirschmeierP. NashC. MullinsD. PerkinsL. PramanikB.N. RemiszewskiS.W. SeniorM. SilvermanL. SnowM. TaverasA.G. VilbulbhanB. WangD. WangY. WolinR. AustR. BrownE. DelisleD. FuhrmanS. HendricksonT. KissingerC. LoveR. SissonW. VillafrancaE. Ras oncoprotein inhibitors: The discovery of potent, ras nucleotide exchange inhibitors and the structure determination of a drug-protein complex.Abstr. Pap.19962111-287
    [Google Scholar]
  55. GangulyA.K. PramanikB.N. HuangE.C. LiberlesS. HeimarkL. LiuY.H. TsarbopoulosA. DollR.J. TaverasA.G. RemiszewskiS. SnowM.E. WangY.S. VibulbhanB. CesarzD. BrownJ.E. del RosarioJ. JamesL. KirschmeierP. GirijavallabhanV. Detection and structural characterization of ras oncoprotein-inhibitors complexes by electrospray mass spectrometry.Bioorg. Med. Chem.19975581782010.1016/S0968‑0896(97)00021‑79208093
    [Google Scholar]
  56. GanemB. LiY.T. HenionJ.D. Detection of noncovalent receptor-ligand complexes by mass spectrometry.J. Am. Chem. Soc.1991113166294629610.1021/ja00016a069
    [Google Scholar]
  57. GangulyA.K. WangY.S. PramanikB.N. DollR.J. SnowM.E. TaverasA.G. RemiszewskiS. CesarzD. del RosarioJ. VibulbhanB. BrownJ.E. KirschmeierP. HuangE.C. HeimarkL. TsarbopoulosA. GirijavallabhanV.M. AustR.M. BrownE.L. DeLisleD.M. FuhrmanS.A. HendricksonT.F. KissingerC.R. LoveR.A. SissonW.A. VillafrancaJ.E. WebberS.E. Interaction of a novel GDP exchange inhibitor with the Ras protein.Biochemistry19983745156311563710.1021/bi98056919843367
    [Google Scholar]
  58. PalmioliA. SaccoE. AbrahamS. ThomasC.J. DomizioA.D. GioiaL.D. GaponenkoV. VanoniM. PeriF. First experimental identification of Ras-inhibitor binding interface using a water-soluble Ras ligand.Bioorg. Med. Chem. Lett.200919154217422210.1016/j.bmcl.2009.05.10719515561
    [Google Scholar]
  59. Fernández-MedardeA. SantosE. The RasGrf family of mammalian guanine nucleotide exchange factors.Biochim. Biophys. Acta20111815217018821111786
    [Google Scholar]
  60. Boriack-SjodinP.A. MargaritS.M. Bar-SagiD. KuriyanJ. The structural basis of the activation of Ras by Sos.Nature1998394669133734310.1038/285489690470
    [Google Scholar]
  61. ShimaF. YoshikawaY. MatsumotoS. KataokaT. Discovery of small-molecule Ras inhibitors that display antitumor activity by interfering with Ras·GTP-effector interaction.Enzymes201334Pt. B12310.1016/B978‑0‑12‑420146‑0.00001‑925034098
    [Google Scholar]
  62. ShimaF. YoshikawaY. YeM. ArakiM. MatsumotoS. LiaoJ. HuL. SugimotoT. IjiriY. TakedaA. NishiyamaY. SatoC. MuraokaS. TamuraA. OsodaT. TsudaK. MiyakawaT. FukunishiH. ShimadaJ. KumasakaT. YamamotoM. KataokaT. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction.Proc. Natl. Acad. Sci. USA2013110208182818710.1073/pnas.121773011023630290
    [Google Scholar]
  63. YeM. ShimaF. MuraokaS. LiaoJ. OkamotoH. YamamotoM. TamuraA. YagiN. UekiT. KataokaT. Crystal structure of M-Ras reveals a GTP-bound “off” state conformation of Ras family small GTPases.J. Biol. Chem.200528035312673127510.1074/jbc.M50550320015994326
    [Google Scholar]
  64. ShimaF. IjiriY. MuraokaS. LiaoJ. YeM. ArakiM. MatsumotoK. YamamotoN. SugimotoT. YoshikawaY. KumasakaT. YamamotoM. TamuraA. KataokaT. Structural basis for conformational dynamics of GTP-bound Ras protein.J. Biol. Chem.201028529226962270510.1074/jbc.M110.12516120479006
    [Google Scholar]
  65. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd213017016424
    [Google Scholar]
  66. YoshikawaY. TakanoO. KatoI. TakahashiY. ShimaF. KataokaT. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway.Cancer Lett.2017410829110.1016/j.canlet.2017.09.01728951129
    [Google Scholar]
  67. SunQ. BurkeJ.P. PhanJ. BurnsM.C. OlejniczakE.T. WatersonA.G. LeeT. RossaneseO.W. FesikS.W. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation.Angew. Chem. Int. Ed.201251256140614310.1002/anie.20120135822566140
    [Google Scholar]
  68. ShukerS.B. HajdukP.J. MeadowsR.P. FesikS.W. Discovering high-affinity ligands for proteins: SAR by NMR.Science199627452921531153410.1126/science.274.5292.15318929414
    [Google Scholar]
  69. WadaC.K. HolmsJ.H. CurtinM.L. DaiY. FlorjancicA.S. GarlandR.B. GuoY. HeymanH.R. StaceyJ.R. SteinmanD.H. AlbertD.H. BouskaJ.J. ElmoreI.N. GoodfellowC.L. MarcotteP.A. TapangP. MorganD.W. MichaelidesM.R. DavidsenS.K. Phenoxyphenyl sulfone N-formylhydroxylamines (retrohydroxamates) as potent, selective, orally bioavailable matrix metalloproteinase inhibitors.J. Med. Chem.200245121923210.1021/jm010392011754593
    [Google Scholar]
  70. PetrosA.M. DingesJ. AugeriD.J. BaumeisterS.A. BetebennerD.A. BuresM.G. ElmoreS.W. HajdukP.J. JosephM.K. LandisS.K. NettesheimD.G. RosenbergS.H. ShenW. ThomasS. WangX. ZanzeI. ZhangH. FesikS.W. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis.J. Med. Chem.200649265666310.1021/jm050753216420051
    [Google Scholar]
  71. HajdukP.J. GreerJ. A decade of fragment-based drug design: Strategic advances and lessons learned.Nat. Rev. Drug Discov.20076321121910.1038/nrd222017290284
    [Google Scholar]
  72. OstremJ.M. PetersU. SosM.L. WellsJ.A. ShokatK.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.Nature2013503747754855110.1038/nature1279624256730
    [Google Scholar]
  73. ErlansonD.A. BraistedA.C. RaphaelD.R. RandalM. StroudR.M. GordonE.M. WellsJ.A. Site-directed ligand discovery.Proc. Natl. Acad. Sci. USA200097179367937210.1073/pnas.97.17.936710944209
    [Google Scholar]
  74. BurlingameM.A. TomC.T.M.B. RensloA.R. Simple one-pot synthesis of disulfide fragments for use in disulfide-exchange screening.ACS Comb. Sci.201113320520810.1021/co200038g21500860
    [Google Scholar]
  75. SadowskyJ.D. BurlingameM.A. WolanD.W. McClendonC.L. JacobsonM.P. WellsJ.A. Turning a protein kinase on or off from a single allosteric site via disulfide trapping.Proc. Natl. Acad. Sci. USA2011108156056606110.1073/pnas.110237610821430264
    [Google Scholar]
  76. MilburnM.V. TongL. deVosA.M. BrüngerA. YamaizumiZ. NishimuraS. KimS.H. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins.Science1990247494593994510.1126/science.24069062406906
    [Google Scholar]
  77. JohnJ. RenslandH. SchlichtingI. VetterI. BorasioG.D. GoodyR.S. WittinghoferA. Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras.J. Biol. Chem.1993268292392910.1016/S0021‑9258(18)54022‑98419371
    [Google Scholar]
  78. FarnsworthC.L. FeigL.A. Dominant inhibitory mutations in the Mg(2+)-binding site of RasH prevent its activation by GTP.Mol. Cell. Biol.199111104822482910.1128/MCB.11.10.48221922022
    [Google Scholar]
  79. ZengM. LuJ. LiL. FeruF. QuanC. GeroT.W. FicarroS.B. XiongY. AmbrogioC. ParanalR.M. CatalanoM. ShaoJ. WongK.K. MartoJ.A. FischerE.S. JänneP.A. ScottD.A. WestoverK.D. GrayN.S. Potent and selective covalent quinazoline inhibitors of KRAS G12C.Cell Chem. Biol.201724810051016.e310.1016/j.chembiol.2017.06.01728781124
    [Google Scholar]
  80. LitoP. SolomonM. LiL.-S. HansenR. RosenN. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.science.20163516273604608
    [Google Scholar]
  81. RenP. LiuY. LiL. FengJ. Irreversible covalent inhibitors of the GTPase K-Ras G12C.Patent WO2014143659 A12014
  82. NiesenF.H. BerglundH. VedadiM. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability.Nat. Protoc.2007292212222110.1038/nprot.2007.32117853878
    [Google Scholar]
  83. PatricelliM.P. JanesM.R. LiL.S. HansenR. PetersU. KesslerL.V. ChenY. KucharskiJ.M. FengJ. ElyT. ChenJ.H. FirdausS.J. BabbarA. RenP. LiuY. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state.Cancer Discov.20166331632910.1158/2159‑8290.CD‑15‑110526739882
    [Google Scholar]
  84. WangC. WeerapanaE. BlewettM.M. CravattB.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles.Nat. Methods2014111798510.1038/nmeth.275924292485
    [Google Scholar]
  85. OhC.K. HaM. HanM.E. HeoH.J. MyungK. LeeY. OhS.O. KimY.H. FAM213A is linked to prognostic significance in acute myeloid leukemia through regulation of oxidative stress and myelopoiesis.Hematol. Oncol.202038338138910.1002/hon.272832124993
    [Google Scholar]
  86. ZhaoH. SuW. ZhuC. ZengT. YangS. WuW. WangD. Cell fate regulation by reticulon‐4 in human prostate cancers.J. Cell. Physiol.20192347103721038510.1002/jcp.2770430480803
    [Google Scholar]
  87. MargaritS.M. SondermannH. HallB.E. NagarB. HoelzA. PirruccelloM. Bar-SagiD. KuriyanJ. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS.Cell2003112568569510.1016/S0092‑8674(03)00149‑112628188
    [Google Scholar]
  88. SondermannH. SoissonS.M. BoykevischS. YangS.S. Bar-SagiD. KuriyanJ. Structural analysis of autoinhibition in the Ras activator Son of sevenless.Cell2004119339340510.1016/j.cell.2004.10.00515507210
    [Google Scholar]
  89. JanesM.R. ZhangJ. LiL.S. HansenR. PetersU. GuoX. ChenY. BabbarA. FirdausS.J. DarjaniaL. FengJ. ChenJ.H. LiS. LiS. LongY.O. ThachC. LiuY. ZariehA. ElyT. KucharskiJ.M. KesslerL.V. WuT. YuK. WangY. YaoY. DengX. ZarrinkarP.P. BrehmerD. DhanakD. LorenziM.V. Hu-LoweD. PatricelliM.P. RenP. LiuY. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor.Cell20181723578589.e1710.1016/j.cell.2018.01.00629373830
    [Google Scholar]
  90. PerreaultS. ChandrasekharJ. PatelL. Atropisomerism in drug discovery: A medicinal chemistry perspective inspired by Atropisomeric class I PI3K inhibitors.Acc. Chem. Res.202255182581259310.1021/acs.accounts.2c0048536069734
    [Google Scholar]
  91. MossG.P. Basic terminology of stereochemistry (IUPAC Recommendations 1996).Pure Appl. Chem.199668122193222210.1351/pac199668122193
    [Google Scholar]
  92. LanmanB.A. AllenJ.R. AllenJ.G. AmegadzieA.K. AshtonK.S. BookerS.K. ChenJ.J. ChenN. FrohnM.J. GoodmanG. KopeckyD.J. LiuL. LopezP. LowJ.D. MaV. MinattiA.E. NguyenT.T. NishimuraN. PickrellA.J. ReedA.B. ShinY. SiegmundA.C. TamayoN.A. TegleyC.M. WaltonM.C. WangH.L. WurzR.P. XueM. YangK.C. AchantaP. BartbergerM.D. CanonJ. HollisL.S. McCarterJ.D. MohrC. RexK. SaikiA.Y. San MiguelT. VolakL.P. WangK.H. WhittingtonD.A. ZechS.G. LipfordJ.R. CeeV.J. Discovery of a covalent inhibitor of KRAS G12C (AMG 510) for the treatment of solid tumors.J. Med. Chem.2020631526510.1021/acs.jmedchem.9b0118031820981
    [Google Scholar]
  93. CanonJ. RexK. SaikiA.Y. MohrC. CookeK. BagalD. GaidaK. HoltT. KnutsonC.G. KoppadaN. LanmanB.A. WernerJ. RapaportA.S. San MiguelT. OrtizR. OsgoodT. SunJ.R. ZhuX. McCarterJ.D. VolakL.P. HoukB.E. FakihM.G. O’NeilB.H. PriceT.J. FalchookG.S. DesaiJ. KuoJ. GovindanR. HongD.S. OuyangW. HenaryH. ArvedsonT. CeeV.J. LipfordJ.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.Nature2019575778121722310.1038/s41586‑019‑1694‑131666701
    [Google Scholar]
  94. XieM. XuX. FanY. KRAS-mutant non-small cell lung cancer: An emerging promisingly treatable subgroup.Front. Oncol.20211167261210.3389/fonc.2021.67261234012925
    [Google Scholar]
  95. KitazawaM. MiyagawaY. KoyamaM. NakamuraS. HondoN. MiyazakiS. MuranakaF. TokumaruS. YamamotoY. EharaT. KuroiwaM. TanakaH. KomatsuD. TakeokaM. SoejimaY. Drug sensitivity profile of minor KRAS mutations in colorectal cancer using mix culture assay: The effect of AMG‑510, a novel KRAS G12C selective inhibitor, on colon cancer cells is markedly enhanced by the combined inhibition of MEK and BCL‑XL.Mol. Clin. Oncol.202115114810.3892/mco.2021.231034094546
    [Google Scholar]
  96. PadmanabhanJ. SahaB. PowellC. MoQ. PerezB.A. ChellappanS. Inhibitors targeting CDK9 show high efficacy against osimertinib and AMG510 resistant lung adenocarcinoma cells.Cancers20211315390610.3390/cancers1315390634359807
    [Google Scholar]
  97. ShinY. JeongJ.W. WurzR.P. AchantaP. ArvedsonT. BartbergerM.D. CampuzanoI.D.G. FuciniR. HansenS.K. IngersollJ. IwigJ.S. LipfordJ.R. MaV. KopeckyD.J. McCarterJ. San MiguelT. MohrC. SabetS. SaikiA.Y. SawayamaA. SethoferS. TegleyC.M. VolakL.P. YangK. LanmanB.A. ErlansonD.A. CeeV.J. Discovery of N -(1-Acryloylazetidin-3-yl)-2-(1 H -indol-1-yl)acetamides as covalent inhibitors of KRAS G12C.ACS Med. Chem. Lett.20191091302130810.1021/acsmedchemlett.9b0025831531201
    [Google Scholar]
  98. GentileD.R. RathinaswamyM.K. JenkinsM.L. MossS.M. SiempelkampB.D. RensloA.R. BurkeJ.E. ShokatK.M. Ras binder induces a modified switch-II pocket in GTP and GDP states.Cell Chem. Biol.2017241214551466.e1410.1016/j.chembiol.2017.08.02529033317
    [Google Scholar]
  99. SchorppK. RothenaignerI. SalminaE. ReinshagenJ. LowT. BrenkeJ.K. GopalakrishnanJ. TetkoI.V. GulS. HadianK. Identification of small-molecule frequent hitters from alphascreen high-throughput screens.SLAS Discov.201419571572610.1177/108705711351686124371213
    [Google Scholar]
  100. SalomeK.S. TormenaC.F. Enantiodiscrimination by matrix-assisted DOSY NMR.Chem. Commun.201955598611861410.1039/C9CC04268G31281910
    [Google Scholar]
  101. RotzlerJ. GsellingerH. BihlmeierA. GantenbeinM. VonlanthenD. HäussingerD. KlopperW. MayorM. Atropisomerization of di-para-substituted propyl-bridged biphenyl cyclophanes.Org. Biomol. Chem.201311111011810.1039/C2OB26243F23059962
    [Google Scholar]
  102. LaPlanteS.R. FaderL.D. FandrickK.R. FandrickD.R. HuckeO. KemperR. MillerS.P.F. EdwardsP.J. Assessing atropisomer axial chirality in drug discovery and development.J. Med. Chem.201154207005702210.1021/jm200584g21848318
    [Google Scholar]
  103. KogaT. SudaK. FujinoT. OharaS. HamadaA. NishinoM. ChibaM. ShimojiM. TakemotoT. AritaT. GmachlM. HofmannM.H. SohJ. MitsudomiT. KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, Sotorasib and Adagrasib, and overcoming strategies: Insights from in vitro experiments.J. Thorac. Oncol.20211681321133210.1016/j.jtho.2021.04.01533971321
    [Google Scholar]
  104. TanakaN. LinJ.J. LiC. RyanM.B. ZhangJ. KiedrowskiL.A. MichelA.G. SyedM.U. FellaK.A. SakhiM. BaievI. JuricD. GainorJ.F. KlempnerS.J. LennerzJ.K. SiravegnaG. Bar-PeledL. HataA.N. HeistR.S. CorcoranR.B. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS Switch-II pocket mutation and polyclonal alterations converging on RAS–MAPK reactivation.Cancer Discov.20211181913192210.1158/2159‑8290.CD‑21‑036533824136
    [Google Scholar]
  105. ZhuangH. FanJ. LiM. ZhangH. YangX. LinL. LuS. WangQ. LiuY. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C.Front. Oncol.20221291551210.3389/fonc.2022.91551236033504
    [Google Scholar]
  106. KalgutkarA.S. DalvieD.K. Drug discovery for a new generation of covalent drugs.Expert Opin. Drug Discov.20127756158110.1517/17460441.2012.68874422607458
    [Google Scholar]
  107. CeeV.J. VolakL.P. ChenY. BartbergerM.D. TegleyC. ArvedsonT. McCarterJ. TaskerA.S. FotschC. Systematic Study of the Glutathione (GSH) reactivity of N -arylacrylamides: 1. effects of aryl substitution.J. Med. Chem.201558239171917810.1021/acs.jmedchem.5b0101826580091
    [Google Scholar]
  108. FellJ.B. FischerJ.P. BaerB.R. BallardJ. BlakeJ.F. BouhanaK. BrandhuberB.J. BriereD.M. BurgessL.E. BurkardM.R. ChiangH. ChicarelliM.J. DavidsonK. GaudinoJ.J. HallinJ. HansonL. HeeK. HickenE.J. HinklinR.J. MarxM.A. MejiaM.J. OlsonP. SavechenkovP. SudhakarN. TangT.P. VigersG.P. ZeccaH. ChristensenJ.G. Discovery of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity.ACS Med. Chem. Lett.20189121230123410.1021/acsmedchemlett.8b0038230613331
    [Google Scholar]
  109. HannesschlaegerC. HornerA. PohlP. Intrinsic membrane permeability to small molecules.Chem. Rev.201911995922595310.1021/acs.chemrev.8b0056030951292
    [Google Scholar]
  110. FellJ.B. FischerJ.P. BaerB.R. BlakeJ.F. BouhanaK. BriereD.M. BrownK.D. BurgessL.E. BurnsA.C. BurkardM.R. ChiangH. ChicarelliM.J. CookA.W. GaudinoJ.J. HallinJ. HansonL. HartleyD.P. HickenE.J. HingoraniG.P. HinklinR.J. MejiaM.J. OlsonP. OttenJ.N. RhodesS.P. RodriguezM.E. SavechenkovP. SmithD.J. SudhakarN. SullivanF.X. TangT.P. VigersG.P. WollenbergL. ChristensenJ.G. MarxM.A. Identification of the clinical development candidate MRTX849, a covalent KRAS G12C inhibitor for the treatment of cancer.J. Med. Chem.202063136679669310.1021/acs.jmedchem.9b0205232250617
    [Google Scholar]
  111. HallinJ. CalinisanA. HargisL. ArandaR. EngstromL.D. BriereD.M. MarxM.A. OlsonP. ChristensenJ.G. Abstract LB-098: The anti-tumor activity of the KRAS G12C inhibitor MRTX849 is augmented by cetuximab in CRC tumor models.Cancer Res.20208016_SupplementLB-09810.1158/1538‑7445.AM2020‑LB‑098
    [Google Scholar]
  112. HallinJ. EngstromL.D. HargisL. CalinisanA. ArandaR. BriereD.M. SudhakarN. BowcutV. BaerB.R. BallardJ.A. BurkardM.R. FellJ.B. FischerJ.P. VigersG.P. XueY. GattoS. Fernandez-BanetJ. PavlicekA. VelastaguiK. ChaoR.C. BartonJ. PierobonM. BaldelliE. PatricoinE.F.III CassidyD.P. MarxM.A. RybkinI.I. JohnsonM.L. OuS.H.I. LitoP. PapadopoulosK.P. JänneP.A. OlsonP. ChristensenJ.G. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov.2020101547110.1158/2159‑8290.CD‑19‑116731658955
    [Google Scholar]
  113. PapadopoulosK.P. OuS.H.I. JohnsonM.L. ChristensenJ. VelasteguiK. PotvinD. FaltaosD. ChaoR.C. A phase I/II multiple expansion cohort trial of MRTX849 in patients with advanced solid tumors with KRAS G12C mutation.J. Clin. Oncol.20193715_supplTPS316110.1200/JCO.2019.37.15_suppl.TPS3161
    [Google Scholar]
  114. WeissJ. YaegerR.D. JohnsonM.L. SpiraA. KlempnerS.J. BarveM.A. ChristensenJ.G. ChiA. Der-TorossianH. VelasteguiK. KheohT. OuS-H.I. LBA6 KRYSTAL-1: Adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation.Ann. Oncol.202132S1294S129410.1016/j.annonc.2021.08.2093
    [Google Scholar]
  115. BriereD.M. LiS. CalinisanA. SudhakarN. ArandaR. HargisL. PengD.H. DengJ. EngstromL.D. HallinJ. GattoS. Fernandez-BanetJ. PavlicekA. WongK.K. ChristensenJ.G. OlsonP. The KRASG12C inhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy.Mol. Cancer Ther.202120697598510.1158/1535‑7163.MCT‑20‑046233722854
    [Google Scholar]
  116. BerenbomM. YoungL. Biochemical studies of toxic agents. 3. The isolation of 1- and 2-naphthylsulphuric acid and 1- and 2-naphthylglucuronide from the urine of rats dosed with 1- and 2-naphthol.Biochem. J.195149216516910.1042/bj049016514858304
    [Google Scholar]
  117. XuY. ChenG. XiongT. PengY. RuanT. WangG. SunJ. Research progress of P-glycoprotein induction.Zhongguo Yaoke Daxue Xuebao20184912633
    [Google Scholar]
  118. MichelJ. Tirado-RivesJ. JorgensenW.L. Energetics of displacing water molecules from protein binding sites: Consequences for ligand optimization.J. Am. Chem. Soc.200913142154031541110.1021/ja906058w19778066
    [Google Scholar]
  119. MahmoodI. Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development.Adv. Drug Deliv. Rev.200759111177119210.1016/j.addr.2007.05.01517826864
    [Google Scholar]
  120. ShibataY. ChibaM. The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib.Drug Metab. Dispos.201543337538410.1124/dmd.114.06142425504185
    [Google Scholar]
  121. LeungL. YangX. StrelevitzT.J. MontgomeryJ. BrownM.F. ZientekM.A. BanfieldC. GilbertA.M. ThorarensenA. DowtyM.E. Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms.Drug Metab. Dispos.20174511710.1124/dmd.116.07298327784718
    [Google Scholar]
  122. XiaG. ChenW. ZhangJ. ShaoJ. ZhangY. HuangW. ZhangL. QiW. SunX. LiB. XiangZ. MaC. XuJ. DengH. LiY. LiP. MiaoH. HanJ. LiuY. ShenJ. YuY. A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles.J. Med. Chem.201457239889990010.1021/jm501465925409491
    [Google Scholar]
  123. ZhaoB. XiaoZ. QiJ. LuoR. LanZ. ZhangY. HuX. TangQ. ZhengP. XuS. ZhuW. Design, synthesis and biological evaluation of AZD9291 derivatives as selective and potent EGFRL858R/T790M inhibitors.Eur. J. Med. Chem.201916336738010.1016/j.ejmech.2018.11.06930530173
    [Google Scholar]
  124. IssahakuA.R. SalifuE.Y. SolimanM.E.S. Inside the cracked kernel: Establishing the molecular basis of AMG510 and MRTX849 in destabilising KRASG12C mutant switch I and II in cancer treatment.J. Biomol. Struct. Dyn.202211310.1080/07391102.2022.207414135543250
    [Google Scholar]
  125. MaurerT. GarrentonL.S. OhA. PittsK. AndersonD.J. SkeltonN.J. FauberB.P. PanB. MalekS. StokoeD. LudlamM.J.C. BowmanK.K. WuJ. GiannettiA.M. StarovasnikM.A. MellmanI. JacksonP.K. RudolphJ. WangW. FangG. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity.Proc. Natl. Acad. Sci. USA2012109145299530410.1073/pnas.111651010922431598
    [Google Scholar]
  126. BrökerJ. WatersonA.G. SmethurstC. KesslerD. BöttcherJ. MayerM. GmaschitzG. PhanJ. LittleA. AbbottJ.R. SunQ. GmachlM. RudolphD. ArnhofH. RumpelK. SavareseF. GerstbergerT. MischerikowN. TreuM. HerdeisL. WunbergT. GollnerA. WeinstablH. MantoulidisA. KrämerO. McConnellD.B. W FesikS. Fragment optimization of reversible binding to the switch II pocket on KRAS leads to a potent, in vivo active KRASG12C inhibitor.J. Med. Chem.20226521146141462910.1021/acs.jmedchem.2c0112036300829
    [Google Scholar]
  127. SunQ. PhanJ. FribergA.R. CamperD.V. OlejniczakE.T. FesikS.W. A method for the second-site screening of K-Ras in the presence of a covalently attached first-site ligand.J. Biomol. NMR2014601111410.1007/s10858‑014‑9849‑825087006
    [Google Scholar]
  128. WilliamsonM.P. Using chemical shift perturbation to characterise ligand binding.Prog. Nucl. Magn. Reson. Spectrosc.20137311610.1016/j.pnmrs.2013.02.00123962882
    [Google Scholar]
  129. KettleJ.G. BagalS.K. BickertonS. BodnarchukM.S. BoydS. BreedJ. CarbajoR.J. CassarD.J. ChakrabortyA. CosulichS. CummingI. DaviesM. DaviesN.L. EathertonA. EvansL. FeronL. FilleryS. GleaveE.S. GoldbergF.W. HansonL. HarlfingerS. HowardM. HowellsR. JacksonA. KemmittP. LamontG. LamontS. LewisH.J. LiuL. NiedbalaM.J. PhillipsC. PolanskiR. RauboP. RobbG. RobinsonD.M. RossS. SandersM.G. TongeM. WhiteleyR. WilkinsonS. YangJ. ZhangW. Discovery of AZD4625, a covalent allosteric inhibitor of the mutant GTPase KRAS G12C.J. Med. Chem.20226596940695210.1021/acs.jmedchem.2c0036935471939
    [Google Scholar]
  130. KettleJ.G. BagalS.K. BickertonS. BodnarchukM.S. BreedJ. CarbajoR.J. CassarD.J. ChakrabortyA. CosulichS. CummingI. DaviesM. EathertonA. EvansL. FeronL. FilleryS. GleaveE.S. GoldbergF.W. HarlfingerS. HansonL. HowardM. HowellsR. JacksonA. KemmittP. KingstonJ.K. LamontS. LewisH.J. LiS. LiuL. OggD. PhillipsC. PolanskiR. RobbG. RobinsonD. RossS. SmithJ.M. TongeM. WhiteleyR. YangJ. ZhangL. ZhaoX. Structure-based design and pharmacokinetic optimization of covalent allosteric inhibitors of the mutant GTPase KRAS G12C.J. Med. Chem.20206394468448310.1021/acs.jmedchem.9b0172032023060
    [Google Scholar]
  131. RossG.A. BodnarchukM.S. EssexJ.W. Water sites, networks, and free energies with grand Canonical Monte Carlo.J. Am. Chem. Soc.201513747149301494310.1021/jacs.5b0794026509924
    [Google Scholar]
  132. BodnarchukM.S. VinerR. MichelJ. EssexJ.W. Strategies to calculate water binding free energies in protein-ligand complexes.J. Chem. Inf. Model.20145461623163310.1021/ci400674k24684745
    [Google Scholar]
  133. BodnarchukM.S. Water, water, everywhere… It’s time to stop and think.Drug Discov. Today20162171139114610.1016/j.drudis.2016.05.00927210724
    [Google Scholar]
  134. WeissA. LorthioisE. BarysL. BeyerK.S. Bomio-ConfagliaC. BurksH. ChenX. CuiX. de KanterR. DharmarajanL. FedeleC. GerspacherM. GuthyD.A. HeadV. JaegerA. NúñezE.J. KearnsJ.D. LeblancC. MairaS.M. MurphyJ. OakmanH. OstermannN. OttlJ. RigollierP. RomanD. SchnellC. SedraniR. ShimizuT. StringerR. VaupelA. VosholH. WesselsP. WidmerT. WilckenR. XuK. ZecriF. FaragoA.F. CotestaS. BrachmannS.M. Discovery, preclinical characterization, and early clinical activity of JDQ443, a structurally novel, potent, and selective covalent oral inhibitor of KRASG12C.Cancer Discov.20221261500151710.1158/2159‑8290.CD‑22‑015835404998
    [Google Scholar]
  135. LorthioisE. GerspacherM. BeyerK.S. VaupelA. LeblancC. StringerR. WeissA. WilckenR. GuthyD.A. LingelA. Bomio-ConfagliaC. MachauerR. RigollierP. OttlJ. ArzD. BernetP. DesjonqueresG. DussaugeS. Kazic-LegueuxM. Lozac’hM.A. MuraC. SorgeM. TodorovM. WarinN. ZinkF. VosholH. ZecriF.J. SedraniR.C. OstermannN. BrachmannS.M. CotestaS. JDQ443, a structurally novel, pyrazole-based, covalent inhibitor of KRAS G12C for the treatment of solid tumors.J. Med. Chem.20226524161731620310.1021/acs.jmedchem.2c0143836399068
    [Google Scholar]
  136. MoS.P. CoulsonJ.M. PriorI.A. RAS variant signalling.Biochem. Soc. Trans.20184651325133210.1042/BST2018017330287508
    [Google Scholar]
  137. LaPlanteS.R. EdwardsP.J. FaderL.D. JakalianA. HuckeO. Revealing atropisomer axial chirality in drug discovery.ChemMedChem20116350551310.1002/cmdc.20100048521360821
    [Google Scholar]
  138. UdvarhelyiA. RoddeS. WilckenR. ReSCoSS: A flexible quantum chemistry workflow identifying relevant solution conformers of drug-like molecules.J. Comput. Aided Mol. Des.202135439941510.1007/s10822‑020‑00337‑732803515
    [Google Scholar]
  139. LombardoF. ObachR.S. VarmaM.V. StringerR. BerelliniG. Clearance mechanism assignment and total clearance prediction in human based upon in silico models.J. Med. Chem.201457104397440510.1021/jm500436v24773013
    [Google Scholar]
  140. ZhengQ. PeacockD.M. ShokatK.M. Drugging the next undruggable KRAS Allele-Gly12Asp.J. Med. Chem.20226543119312210.1021/acs.jmedchem.2c0009935167298
    [Google Scholar]
  141. SinghA. GreningerP. RhodesD. KoopmanL. VioletteS. BardeesyN. SettlemanJ. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival.Cancer Cell200915648950010.1016/j.ccr.2009.03.02219477428
    [Google Scholar]
  142. RyanM.B. Fecedela CruzF. PhatS. Vertical pathway inhibition overcomes adaptive feedback resistance to KRAS (G12C) inhibition.Clin. Cancer Res.2020261633164310.1158/1078‑0432.CCR‑19‑352331776128
    [Google Scholar]
  143. MisaleS. FatherreeJ.P. CortezE. LiC. BiltonS. TimoninaD. MyersD.T. LeeD. Gomez-CaraballoM. GreenbergM. NangiaV. GreningerP. EganR.K. McClanaghanJ. SteinG.T. MurchieE. ZarrinkarP.P. JanesM.R. LiL.S. LiuY. HataA.N. BenesC.H. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition.Clin. Cancer Res.201925279680710.1158/1078‑0432.CCR‑18‑036830327306
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673258913231019113814
Loading
/content/journals/cmc/10.2174/0109298673258913231019113814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test