Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

High concentrations of reactive oxygen species (ROS) can disrupt cell structure and induce apoptosis and necrosis of tumor cells. Photodynamic therapy (PDT) and chemodynamic therapy (CDT) are two cancer treatments mediated by reactive oxygen species. Oxygen molecules (O) are one of the indispensable factors in PDT and hypoxic tumor sites limit its application. However, another ROS-mediated method, CDT, can generate •OH and O by Fenton reaction or Fenton-like reaction. Synergistic PDT/CDT therapy is a strategy to overcome the limitations of tumor microenvironment therapy. In this review, PDT and CDT therapies are briefly introduced, with an emphasis on metal-basrd porphyrin nanoparticles constructed in different ways for PDT/CDT dual-mode therapy. By introducing the history and latest design schemes of the treatment model, it provides ideas for researchers engaged in ROS-mediated cancer therapies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673264765231006062032
2023-10-18
2025-04-16
Loading full text...

Full text loading...

References

  1. YinW. WangJ. JiangL. James KangY. Cancer and stem cells.Exp. Biol. Med.2021246161791180110.1177/1535370221100539033820469
    [Google Scholar]
  2. LeeS.H. LeeY. SongJ.G. HanH.K. Improved in vivo effect of chrysin as an absorption enhancer via the preparation of ternary solid dispersion with Brij®L4 and aminoclay.Curr. Drug Deliv.2018161869210.2174/156720181566618092415145830246640
    [Google Scholar]
  3. WangX.Q. WangW. PengM. ZhangX.Z. Free radicals for cancer theranostics.Biomaterials202126612047410.1016/j.biomaterials.2020.12047433125969
    [Google Scholar]
  4. WangY. WangJ. HaoH. CaiM. WangS. MaJ. LiY. MaoC. ZhangS. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles.ACS Nano201610119927993710.1021/acsnano.6b0383527797178
    [Google Scholar]
  5. ZhangH. MaoZ. KangY. ZhangW. MeiL. JiX. Redox regulation and its emerging roles in cancer treatment.Coord. Chem. Rev.202347521489710.1016/j.ccr.2022.214897
    [Google Scholar]
  6. AguirreJ. Ríos-MombergM. HewittD. HansbergW. Reactive oxygen species and development in microbial eukaryotes.Trends Microbiol.200513311111810.1016/j.tim.2005.01.00715737729
    [Google Scholar]
  7. LushchakV.I. Free radicals, reactive oxygen species, oxidative stress and its classification.Chem. Biol. Interact.201422416417510.1016/j.cbi.2014.10.01625452175
    [Google Scholar]
  8. CorreiaJ.H. RodriguesJ.A. PimentaS. DongT. YangZ. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions.Pharmaceutics2021139133210.3390/pharmaceutics1309133234575408
    [Google Scholar]
  9. Philipp BabilasS.S. Photodynamic therapy in dermatology: State-of-the-art.Photodermatol. Photoimmunol. Photomed.20102611813220584250
    [Google Scholar]
  10. KangY. LiZ. YangY. SuZ. JiX. ZhangS. Antimonene nanosheets-based z-scheme heterostructure with enhanced reactive oxygen species generation and photothermal conversion efficiency for photonic therapy of cancer.Adv. Healthc. Mater.2021103200183510.1002/adhm.20200183533200585
    [Google Scholar]
  11. DobsonJ. de QueirozG.F. GoldingJ.P. Photodynamic therapy and diagnosis: Principles and comparative aspects.Vet. J.201823381810.1016/j.tvjl.2017.11.01229486883
    [Google Scholar]
  12. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy - mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.04930119176
    [Google Scholar]
  13. OguraS.I. HagiyaY. TabataK. KamachiT. OkuraI. Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis.Curr. Top. Med. Chem.201212317618410.2174/15680261279907888322236155
    [Google Scholar]
  14. BoydN.H. TranA.N. BernstockJ.D. EtminanT. JonesA.B. GillespieG.Y. FriedmanG.K. HjelmelandA.B. Glioma stem cells and their roles within the hypoxic tumor microenvironment.Theranostics202111266568310.7150/thno.4169233391498
    [Google Scholar]
  15. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑931711497
    [Google Scholar]
  16. WanY. FuL.H. LiC. LinJ. HuangP. Conquering the hypoxia limitation for photodynamic therapy.Adv. Mater.20213348210397810.1002/adma.20210397834580926
    [Google Scholar]
  17. CaoC. WangX. YangN. SongX. DongX. Recent advances of cancer chemodynamic therapy based on fenton/fenton-like chemistry.Chem. Sci.202213486388910.1039/D1SC05482A35211255
    [Google Scholar]
  18. TangZ. LiuY. HeM. BuW. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions.Angew. Chem. Int. Ed.201958494695610.1002/anie.20180566430048028
    [Google Scholar]
  19. WangT. XuX. ZhangK. Nanotechnology-enabled chemodynamic therapy and immunotherapy.Curr. Cancer Drug Targets202121754555710.2174/156800962166621021910155233618647
    [Google Scholar]
  20. ZhangL. LiC.X. WanS.S. ZhangX.Z. Nanocatalyst-mediated chemodynamic tumor therapy.Adv. Healthc. Mater.2022112210197110.1002/adhm.20210197134751505
    [Google Scholar]
  21. ShengS. LiuF. LinL. YanN. WangY. XuC. TianH. ChenX. Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy.J. Control. Release202032863163910.1016/j.jconrel.2020.09.02932950593
    [Google Scholar]
  22. ZhangX. HeC. ChenY. ChenC. YanR. FanT. GaiY. YangT. LuY. XiangG. Cyclic reactions-mediated self-supply of H2O2 and O2 for cooperative chemodynamic/starvation cancer therapy.Biomaterials202127512098710.1016/j.biomaterials.2021.12098734175561
    [Google Scholar]
  23. ParkJ.M. HongK.I. LeeH. JangW.D. Bioinspired applications of porphyrin derivatives.Acc. Chem. Res.20215492249226010.1021/acs.accounts.1c0011433891405
    [Google Scholar]
  24. ZhouY. LiangX. DaiZ. Porphyrin-loaded nanoparticles for cancer theranostics.Nanoscale2016825123941240510.1039/C5NR07849K26730838
    [Google Scholar]
  25. AbbasM. ZouQ. LiS. YanX. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy.Adv. Mater.20172912160502110.1002/adma.20160502128060418
    [Google Scholar]
  26. ZhuS. YaoS. WuF. JiangL. WongK.L. ZhouJ. WangK. Platinated porphyrin as a new organelle and nucleus dual-targeted photosensitizer for photodynamic therapy.Org. Biomol. Chem.201715275764577110.1039/C7OB01003F28660264
    [Google Scholar]
  27. BrownS.B.S.M. JonesP. Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution.Biochem. J.197615327928510.1042/bj15302796005
    [Google Scholar]
  28. DarU.A. ShahS.A. UV–visible and fluorescence spectroscopic assessment of meso-tetrakis-(4-halophenyl) porphyrin; H2TXPP (X = F, Cl, Br, I) in THF and THF-water system: Effect of pH and aggregation behaviour.Spectrochim. Acta A Mol. Biomol. Spectrosc.202024011857010.1016/j.saa.2020.11857032590311
    [Google Scholar]
  29. HeJ. XiaK. ZhaoB. SongW. ZhengY. XiaoG. WuH. ZhengN. Codelivery of high-molecular-weight poly-porphyrins and hif-1α inhibitors for in vivo synergistic anticancer therapy.Biomacromolecules202122114783479310.1021/acs.biomac.1c0107334623134
    [Google Scholar]
  30. DolmansD.E.J.G.J. FukumuraD. JainR.K. Photodynamic therapy for cancer.Nat. Rev. Cancer20033538038710.1038/nrc107112724736
    [Google Scholar]
  31. TaylorM.N. GonzalezM.L. The practicalities of photodynamic therapy in acne vulgaris.Br. J. Dermatol.200916061140114810.1111/j.1365‑2133.2009.09054.x19239465
    [Google Scholar]
  32. DebeleT. PengS. TsaiH.C. Drug carrier for photodynamic cancer therapy.Int. J. Mol. Sci.2015169220942213610.3390/ijms16092209426389879
    [Google Scholar]
  33. LiX.Y. DengF.A. ZhengR.R. LiuL.S. LiuY.B. KongR.J. ChenA.L. YuX.Y. LiS.Y. ChengH. Carrier free photodynamic synergists for oxidative damage amplified tumor therapy.Small20211740210247010.1002/smll.20210247034480417
    [Google Scholar]
  34. YangM. TaoJ. WuH. GuanS. LiuL. ZhangL. DengS. HeC. JiP. LiuJ. LiuG. Aanat knockdown and melatonin supplementation in embryo development: Involvement of mitochondrial function and DNA methylation.Antioxid. Redox Signal.201930182050206510.1089/ars.2018.755530343588
    [Google Scholar]
  35. HamblinM.R. AbrahamseH. Factors affecting photodynamic therapy and anti-tumor immune response.Anticancer. Agents Med. Chem.202021212313610.2174/187152062066620031810103732188394
    [Google Scholar]
  36. OrtelB. SheaC.R. Calzavara-PintonP. Molecular mechanisms of photodynamic therapy.Front. Biosci.2009Volume144157417210.2741/352019273342
    [Google Scholar]
  37. JonathanP. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization.Chem. Rev.201011027952838
    [Google Scholar]
  38. NgK.K. ZhengG. Molecular interactions in organic nanoparticles for phototheranostic applications.Chem. Rev.201511519110121104210.1021/acs.chemrev.5b0014026244706
    [Google Scholar]
  39. ChilakamarthiU. GiribabuL. Photodynamic therapy: Past, present and future.Chem. Rec.201717877580210.1002/tcr.20160012128042681
    [Google Scholar]
  40. QidwaiA. Annu NabiB. KottaS. NarangJ.K. BabootaS. AliJ. Role of nanocarriers in photodynamic therapy.Photodiagn. Photodyn. Ther.20203010178210.1016/j.pdpdt.2020.10178232330611
    [Google Scholar]
  41. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization.Photodiagn. Photodyn. Ther.20041427929310.1016/S1572‑1000(05)00007‑425048432
    [Google Scholar]
  42. BenovL. Photodynamic therapy: Current status and future directions.Med. Princ. Pract.201524Suppl 1142810.1159/00036241624820409
    [Google Scholar]
  43. PlaetzerK. KrammerB. BerlandaJ. BerrF. KiesslichT. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects.Lasers Med. Sci.200924225926810.1007/s10103‑008‑0539‑118247081
    [Google Scholar]
  44. SobhaniN. SamadaniA.A. Implications of photodynamic cancer therapy: An overview of PDT mechanisms basically and practically.J. Egypt. Natl. Canc. Inst.20213313410.1186/s43046‑021‑00093‑134778919
    [Google Scholar]
  45. ZouZ. ChangH. LiH. WangS. Induction of reactive oxygen species: An emerging approach for cancer therapy.Apoptosis201722111321133510.1007/s10495‑017‑1424‑928936716
    [Google Scholar]
  46. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of Reactive Oxygen Species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  47. JLF. Mechanisms of cell in jury by activated oxygen species.Environ. Health Perspect.1994101724
    [Google Scholar]
  48. PushpanS. VenkatramanS. AnandV. SankarJ. ParmeswaranD. GanesanS. ChandrashekarT. Porphyrins in photodynamic therapy - A search for ideal photosensitizers.Curr. Med. Chem. Anticancer Agents20022218720710.2174/156801102335413712678743
    [Google Scholar]
  49. CampagnolaP. CoteD. PavoneF. ReeceP. SrinivasanV.J. TkaczykT. VolpeG. Biophotonics feature: Introduction.Biomed. Opt. Express2018931229123110.1364/BOE.9.00122929541515
    [Google Scholar]
  50. KakkadS. KrishnamacharyB. JacobD. Pacheco-TorresJ. GogginsE. BhartiS.K. PenetM.F. BhujwallaZ.M. Molecular and functional imaging insights into the role of hypoxia in cancer aggression.Cancer Metastasis Rev.2019381-2516410.1007/s10555‑019‑09788‑330840168
    [Google Scholar]
  51. OkunieffP. FentonB. ChenY. Past, present, and future of oxygen in cancer research.Adv. Exp. Med. Biol.200556621322210.1007/0‑387‑26206‑7_2916594155
    [Google Scholar]
  52. HarrisA.L. Hypoxia - A key regulatory factor in tumour growth.Nat. Rev. Cancer200221384710.1038/nrc70411902584
    [Google Scholar]
  53. TinganelliW. DuranteM. Tumor hypoxia and circulating tumor cells.Int. J. Mol. Sci.20202124959210.3390/ijms2124959233339353
    [Google Scholar]
  54. ParedesF. WilliamsH.C. San MartinA. Metabolic adaptation in hypoxia and cancer.Cancer Lett.202150213314210.1016/j.canlet.2020.12.02033444690
    [Google Scholar]
  55. MoenI. StuhrL.E.B. Hyperbaric oxygen therapy and cancer-A review.Target. Oncol.20127423324210.1007/s11523‑012‑0233‑x23054400
    [Google Scholar]
  56. SpanP.N. BussinkJ. Biology of hypoxia.Semin. Nucl. Med.201545210110910.1053/j.semnuclmed.2014.10.00225704383
    [Google Scholar]
  57. ZhouM. XieY. XuS. XinJ. WangJ. HanT. TingR. ZhangJ. AnF. Hypoxia-activated nanomedicines for effective cancer therapy.Eur. J. Med. Chem.202019511227410.1016/j.ejmech.2020.11227432259703
    [Google Scholar]
  58. SorgB.S. MoellerB.J. DonovanO. CaoY. DewhirstM.W. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development.J. Biomed. Opt.200510404400410.1117/1.200336916178638
    [Google Scholar]
  59. DewhirstM.W. NaviaI.C. BrizelD.M. WillettC. SecombT.W. Multiple etiologies of tumor hypoxia require multifaceted solutions.Clin. Cancer Res.200713237537710.1158/1078‑0432.CCR‑06‑262917255256
    [Google Scholar]
  60. PriesA.R. CornelissenA.J.M. SlootA.A. HinkeldeyM. DreherM.R. HöpfnerM. DewhirstM.W. SecombT.W. Structural adaptation and heterogeneity of normal and tumor microvascular networks.PLOS Comput. Biol.200955e100039410.1371/journal.pcbi.100039419478883
    [Google Scholar]
  61. VaupelP. ThewsO. HoeckelM. Treatment resistance of solid tumors: Role of hypoxia and anemia.Med. Oncol.200118424326010.1385/MO:18:4:24311918451
    [Google Scholar]
  62. VaupelP. HarrisonL. Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response.Oncologist20049S54910.1634/theoncologist.9‑90005‑415591417
    [Google Scholar]
  63. VaupelP. KelleherD.K. HöckelM. Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy.Semin. Oncol.2001282293510.1016/S0093‑7754(01)90210‑611395850
    [Google Scholar]
  64. ErinN. GrahovacJ. BrozovicA. EfferthT. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance.Drug Resist. Updat.20205310071510.1016/j.drup.2020.10071532679188
    [Google Scholar]
  65. ChangL.Y. LinY.C. MahalingamJ. HuangC.T. ChenT.W. KangC.W. PengH.M. ChuY.Y. ChiangJ.M. DuttaA. DayY.J. ChenT.C. YehC.T. LinC.Y. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells.Cancer Res.20127251092110210.1158/0008‑5472.CAN‑11‑249322282655
    [Google Scholar]
  66. AtkuriK.R. HerzenbergL.A. NiemiA-K. CowanT. HerzenbergL.A. Importance of culturing primary lymphocytes at physiological oxygen levels.Proc. Natl. Acad. Sci.2007104114547455210.1073/pnas.0611732104
    [Google Scholar]
  67. ChenH. TianJ. HeW. GuoZ. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells.J. Am. Chem. Soc.201513741539154710.1021/ja511420n25574812
    [Google Scholar]
  68. CaoH. WangL. YangY. LiJ. QiY. LiY. LiY. WangH. LiJ. An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy.Angew. Chem. Int. Ed.201857267759776310.1002/anie.20180249729704295
    [Google Scholar]
  69. YaoC. WangW. WangP. ZhaoM. LiX. ZhangF. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2 -responsive O2 -Evolving synergetic cancer therapy.Adv. Mater.2018307170483310.1002/adma.201704833
    [Google Scholar]
  70. YuZ. HuY. SunY. SunT. Chemodynamic therapy combined with multifunctional nanomaterials and their applications in tumor treatment.Chemistry20212756139531396010.1002/chem.20210151434196066
    [Google Scholar]
  71. WangW. JinY. XuZ. LiuX. BajwaS.Z. KhanW.S. YuH. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020124e161410.1002/wnan.161432011108
    [Google Scholar]
  72. XinJ. DengC. ArasO. ZhouM. WuC. AnF. Chemodynamic nanomaterials for cancer theranostics.J. Nanobiotechnol.202119119210.1186/s12951‑021‑00936‑y34183023
    [Google Scholar]
  73. NiK. LanG. LinW. Nanoscale metal-organic frameworks generate reactive oxygen species for cancer therapy.ACS Cent. Sci.20206686186810.1021/acscentsci.0c0039732607433
    [Google Scholar]
  74. LiuM. WuH. WangS. HuJ. SunB. Glutathione-triggered nanoplatform for chemodynamic/metal-ion therapy.J. Mater. Chem. B Mater. Biol. Med.20219459413942210.1039/D1TB01330K34746940
    [Google Scholar]
  75. ChenQ. ZhouJ. ChenZ. LuoQ. XuJ. SongG. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a fenton nanoagent for enhanced chemodynamic therapy.ACS Appl. Mater. Interfaces20191134305513056510.1021/acsami.9b0932331397998
    [Google Scholar]
  76. ZhangC. BuW. NiD. ZhangS. LiQ. YaoZ. ZhangJ. YaoH. WangZ. ShiJ. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction.Angew. Chem. Int. Ed.20165562101210610.1002/anie.20151003126836344
    [Google Scholar]
  77. KangY. MaoZ. WangY. PanC. OuM. ZhangH. ZengW. JiX. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy.Nat. Commun.2022131242510.1038/s41467‑022‑30166‑135504879
    [Google Scholar]
  78. LinL.S. HuangT. SongJ. OuX.Y. WangZ. DengH. TianR. LiuY. WangJ.F. LiuY. YuG. ZhouZ. WangS. NiuG. YangH.H. ChenX. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy.J. Am. Chem. Soc.2019141259937994510.1021/jacs.9b0345731199131
    [Google Scholar]
  79. LinL.S. SongJ. SongL. KeK. LiuY. ZhouZ. ShenZ. LiJ. YangZ. TangW. NiuG. YangH.H. ChenX. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy.Angew. Chem. Int. Ed.201857184902490610.1002/anie.20171202729488312
    [Google Scholar]
  80. ChenL. MaoZ. WangY. KangY. WangY. MeiL. JiX. Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy.Sci. Adv.2022839eabo737210.1126/sciadv.abo737236179019
    [Google Scholar]
  81. FangC. DengZ. CaoG. ChuQ. WuY. LiX. PengX. HanG. Co–ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy.Adv. Funct. Mater.20203016191008510.1002/adfm.201910085
    [Google Scholar]
  82. ZhangD. ZhaoY.X. GaoY.J. GaoF.P. FanY.S. LiX.J. DuanZ.Y. WangH. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20131385100510710.1039/c3tb20907e32261101
    [Google Scholar]
  83. WangL. HuoM. ChenY. ShiJ. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy.Biomaterials201816311310.1016/j.biomaterials.2018.02.01829452944
    [Google Scholar]
  84. AllisonR.R. BagnatoV.S. SibataC.H. Future of oncologic photodynamic therapy.Future Oncol.20106692994010.2217/fon.10.5120528231
    [Google Scholar]
  85. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  86. HaoY.N. QuC.C. ShuY. WangJ.H. ChenW. Construction of novel nanocomposites (Cu-MOF/GOD@HA) for chemodynamic therapy.Nanomaterials2021117184310.3390/nano1107184334361229
    [Google Scholar]
  87. MehmoodT. ReddyJ.P. AIE-MOF materials for biological applications.Prog. Mol. Biol. Transl. Sci.202118517919810.1016/bs.pmbts.2021.06.01334782104
    [Google Scholar]
  88. LiS. ZouQ. LiY. YuanC. XingR. YanX. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly.J. Am. Chem. Soc.201814034107941080210.1021/jacs.8b0491230102029
    [Google Scholar]
  89. HabibN.R. Asedegbega-NietoE. TaddesseA.M. DiazI. Non-noble MNP@MOF materials: Synthesis and applications in heterogeneous catalysis.Dalton Trans.20215030103401035310.1039/D1DT01531A34241616
    [Google Scholar]
  90. UsmanM. IqbalN. NoorT. ZamanN. AsgharA. AbdelnabyM.M. GaladimaA. HelalA. Advanced strategies in metal-organic frameworks for CO2 capture and separation.Chem. Rec.2022227e20210023010.1002/tcr.20210023034757694
    [Google Scholar]
  91. GiliopoulosD. ZamboulisA. GiannakoudakisD. BikiarisD. TriantafyllidisK. Polymer/Metal Organic Framework (MOF) nanocomposites for biomedical applications.Molecules202025118510.3390/molecules2501018531906398
    [Google Scholar]
  92. WangS. McGuirkC.M. d’AquinoA. MasonJ.A. MirkinC.A. Metal-organic framework nanoparticles.Adv. Mater.20183037180020210.1002/adma.20180020229862586
    [Google Scholar]
  93. WuM.X. YangY.W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy.Adv. Mater.20172923160613410.1002/adma.20160613428370555
    [Google Scholar]
  94. ChenJ. WangY. NiuH. WangY. WuA. ShuC. ZhuY. BianY. LinK. Metal–organic framework-based nanoagents for effective tumor therapy by dual dynamics-amplified oxidative stress.ACS Appl. Mater. Interfaces20211338452014521310.1021/acsami.1c1103234525803
    [Google Scholar]
  95. XieZ. LiangS. CaiX. DingB. HuangS. HouZ. MaP. ChengZ. LinJ. O2 -Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy.ACS Appl. Mater. Interfaces20191135316713168010.1021/acsami.9b1068531397149
    [Google Scholar]
  96. ZhangL. YangZ. HeW. RenJ. WongC.Y. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy.J. Colloid Interface Sci.202159954355510.1016/j.jcis.2021.03.17333964699
    [Google Scholar]
  97. ZouK.Y. LiZ.X. Controllable syntheses of MOF-derived materials.Chemistry201824256506651810.1002/chem.20170541529232018
    [Google Scholar]
  98. YangS. PengL. BulutS. QueenW.L. Recent advances of MOFs and MOF-derived materials in thermally driven organic transformations.Chemistry20192592161217810.1002/chem.20180315730114320
    [Google Scholar]
  99. WangP. LiangC. ZhuJ. YangN. JiaoA. WangW. SongX. DongX. Manganese-based nanoplatform as metal ion-enhanced ROS Generator for combined chemodynamic/photodynamic therapy.ACS Appl. Mater. Interfaces20191144411404114710.1021/acsami.9b1661731603650
    [Google Scholar]
  100. QiuW. LiangM. GaoY. YangX. ZhangX. ZhangX. XueP. KangY. XuZ. Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy.Theranostics202111199652966610.7150/thno.6435434646391
    [Google Scholar]
  101. SunS. ChenQ. TangZ. LiuC. LiZ. WuA. LinH. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot–Cu 2+ nanoassemblies.Angew. Chem. Int. Ed.20205947210412104810.1002/anie.20200778632914924
    [Google Scholar]
  102. TangX. WangZ. ZhuY. XiaoH. XiaoY. CuiS. LinB. YangK. LiuH. Hypoxia-activated ROS burst liposomes boosted by local mild hyperthermia for photo/chemodynamic therapy.J. Control. Release202032810011110.1016/j.jconrel.2020.08.03532858074
    [Google Scholar]
  103. YuH. LiY. ZhangZ. RenJ. ZhangL. XuZ. KangY. XueP. Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy.Acta Biomater.202213854556010.1016/j.actbio.2021.11.00934775125
    [Google Scholar]
  104. WanX. ZhongH. PanW. LiY. ChenY. LiN. TangB. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework.Angew. Chem. Int. Ed.20195840141341413910.1002/anie.20190738831389105
    [Google Scholar]
  105. NiK. AungT. LiS. FatuzzoN. LiangX. LinW. RETRACTED: Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy.Chem2019571892191310.1016/j.chempr.2019.05.01331384694
    [Google Scholar]
  106. YinS.Y. LiuW. YangJ. LiJ. Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20219295877588610.1039/D1TB00821H34259273
    [Google Scholar]
  107. HeT. ChenS. NiB. GongY. WuZ. SongL. GuL. HuW. WangX. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms.Angew. Chem. Int. Ed.201857133493349810.1002/anie.20180081729380509
    [Google Scholar]
  108. WangJ. HuY. WangX. GaoS. ZhongY. LiuJ. BaiF. Trace-water-induced competitive coordination synthesis and functionalization of porphyrinic metal–organic framework nanoparticles for treatment of hypoxic tumors.ACS Appl. Bio Mater.2021497322733110.1021/acsabm.1c0085235006961
    [Google Scholar]
  109. ZhaoY. WangJ. CaiX. DingP. LvH. PeiR. Metal-organic frameworks with enhanced photodynamic therapy: Synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation.ACS Appl. Mater. Interfaces20201221236972370610.1021/acsami.0c0436332362109
    [Google Scholar]
  110. ChenQ. SunS. LinH. LiZ. WuA. LiuX. WuF.G. ZhangW. Supra-carbon dots formed by Fe 3+ -driven assembly for enhanced tumor-specific photo-mediated and chemodynamic synergistic therapy.ACS Appl. Bio Mater.2021432759276810.1021/acsabm.0c0166335014315
    [Google Scholar]
  111. WangB. DaiY. KongY. DuW. NiH. ZhaoH. SunZ. ShenQ. LiM. FanQ. Tumor microenvironment-responsive Fe(III)-porphyrin nanotheranostics for tumor imaging and targeted chemodynamic–photodynamic therapy.ACS Appl. Mater. Interfaces20201248536345364510.1021/acsami.0c1404633205657
    [Google Scholar]
  112. ZhangH. MaW. WangZ. WuX. ZhangH. FangW. YanR. JinY. Self-supply oxygen ROS reactor via fenton-like reaction and modulating glutathione for amplified cancer therapy effect.Nanomaterials20221214250910.3390/nano1214250935889731
    [Google Scholar]
  113. MuraliA. LokhandeG. DeoK.A. BrokeshA. GaharwarA.K. Emerging 2D nanomaterials for biomedical applications.Mater. Today20215027630210.1016/j.mattod.2021.04.02034970073
    [Google Scholar]
  114. YazdaniH. ShahbaziM.A. VarmaR.S. 2D and 3D covalent organic frameworks: Cutting-edge applications in biomedical sciences.ACS Appl. Bio Mater.202251405810.1021/acsabm.1c0101535014828
    [Google Scholar]
  115. ValenzuelaC. ChenC. SunM. YeZ. ZhangJ. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20219163450348310.1039/D1TB00041A33909746
    [Google Scholar]
  116. EsrafiliA. WagnerA. InamdarS. AcharyaA.P. Covalent organic frameworks for biomedical applications.Adv. Healthc. Mater.2021106200209010.1002/adhm.20200209033475260
    [Google Scholar]
  117. ZhangJ. YangJ. QinX. ZhuangJ. JingD. DingY. LuB. WangY. ChenT. YaoY. Glucose oxidase integrated porphyrinic covalent organic polymers for combined photodynamic/chemodynamic/starvation therapy in cancer treatment.ACS Biomater. Sci. Eng.2022851956196310.1021/acsbiomaterials.2c0013835412788
    [Google Scholar]
  118. HuC. CaiL. LiuS. LiuY. ZhouY. PangM. Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy.Bioconjug. Chem.20203161661167010.1021/acs.bioconjchem.0c0020932393025
    [Google Scholar]
  119. LiX. GuoZ. ZhaoT. LuY. ZhouL. ZhaoD. ZhangF. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence.Angew. Chem. Int. Ed.20165572464246910.1002/anie.20151060926762564
    [Google Scholar]
  120. HuP. WuT. FanW. ChenL. LiuY. NiD. BuW. ShiJ. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy.Biomaterials2017141869510.1016/j.biomaterials.2017.06.03528668609
    [Google Scholar]
  121. LiuS. LiW. DongS. GaiS. DongY. YangD. DaiY. HeF. YangP. Degradable calcium phosphate-coated upconversion nanoparticles for highly efficient chemo-photodynamic therapy.ACS Appl. Mater. Interfaces20191151476594767010.1021/acsami.9b1197331713407
    [Google Scholar]
  122. DongS. XuJ. JiaT. XuM. ZhongC. YangG. LiJ. YangD. HeF. GaiS. YangP. LinJ. Upconversion-mediated ZnFe2 O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy.Chem. Sci.201910154259427110.1039/C9SC00387H31057754
    [Google Scholar]
  123. ZhaoN. WuB. HuX. XingD. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles.Biomaterials2017141404910.1016/j.biomaterials.2017.06.03128666101
    [Google Scholar]
  124. ZhangP. SteelantW. KumarM. ScholfieldM. Versatile photosensitizers for photodynamic therapy at infrared excitation.J. Am. Chem. Soc.2007129154526452710.1021/ja070070717385866
    [Google Scholar]
  125. JiaT. WangZ. SunQ. DongS. XuJ. ZhangF. FengL. HeF. YangD. YangP. LinJ. Intelligent Fe-Mn layered double hydroxides nanosheets anchored with upconversion nanoparticles for oxygen-elevated synergetic therapy and bioimaging.Small20201646200134310.1002/smll.20200134333107221
    [Google Scholar]
  126. ChenM. YangJ. ZhouL. HuX. WangC. ChaiK. LiR. FengL. SunY. DongC. ShiS. Dual-responsive and ROS-augmented nanoplatform for chemo/photodynamic/chemodynamic combination therapy of triple negative breast cancer.ACS Appl. Mater. Interfaces2022141576810.1021/acsami.1c1413534935343
    [Google Scholar]
  127. LiuS. LiW. DongS. ZhangF. DongY. TianB. HeF. GaiS. YangP. An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy.Nanoscale20201247241462416110.1039/D0NR06790C33242048
    [Google Scholar]
  128. XuJ. HanW. YangP. JiaT. DongS. BiH. GulzarA. YangD. GaiS. HeF. LinJ. LiC. Tumor microenvironment-responsive mesoporous MnO2 -coated upconversion nanoplatform for self-enhanced tumor theranostics.Adv. Funct. Mater.20182836180380410.1002/adfm.201803804
    [Google Scholar]
  129. ChenJ. ChenF. ZhangL. YangZ. DengT. ZhaoY. ZhengT. GanX. ZhongH. GengY. FuX. WangY. YuC. Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy.ACS Appl. Mater. Interfaces20211324278562786710.1021/acsami.1c0486834110146
    [Google Scholar]
  130. YangB. DaiZ. ZhangG. HuZ. YaoX. WangS. LiuQ. ZhengX. Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-ions release and hypoxia relief for multimodal synergistic chemodynamic/photodynamic/photothermal cancer therapy.Adv. Healthc. Mater.2020921190163410.1002/adhm.20190163432959536
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673264765231006062032
Loading
/content/journals/cmc/10.2174/0109298673264765231006062032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test