Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer can take years to develop, both at its beginning and during its development. All typical epithelial cancers have a long latency period, sometimes 20 years or more, and if they are clinically detected, distinct genes may include infinite mutations. Long non-coding RNAs (LncRNAs) are a subset of RNAs that regulate many biological processes, including RNA processing, epigenetic control, and signal transduction. Current studies show that lncRNAs, which are dysregulated in cancer, play a significant function in the growth and spread of the illness. LncRNAs have been connected to the overexpression of specific proteins that function in tumors' spread and growth. Moreover, through translational inhibition, microRNAs (miRNAs) regulates gene expression sequence specifically. Apart from that, non-coding RNAs known as miRNAs, with a length of around 22 nucleotides, controls gene expressions in a sequence-specific way either by preventing translation or degrading messenger RNA (mRNA). Quercetin appears to have a significant role in altering miRNA and lncRNA expression, which is linked to variations in the production of oncogenes, tumor suppressors, and proteins produced from cancer. Quercetin may change the earliest epigenetic modifications related to cancer prevention in addition to its usual antioxidant or anti-inflammatory effects. It would be beneficial to have more in-depth information on how Quercetin modulates miRNAs and lncRNAs to use it as a cancer therapeutic strategy. Here, we go through what is known about Quercetin's potential to modulate miRNAs and lncRNAs in various malignancies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673256601231009054714
2023-10-19
2025-04-09
Loading full text...

Full text loading...

References

  1. Lortet-TieulentJ. GeorgesD. BrayF. VaccarellaS. Profiling global cancer incidence and mortality by socioeconomic development.Int. J. Cancer2020147113029303610.1002/ijc.3311432449164
    [Google Scholar]
  2. ZhangJ.Y. HuangW.J. SunH.M. LiuY. ZhaoX.Q. TangS.L. Structure identification and in vitro anti-cancer activity of lathyrol-3-phenylacetate-5,15-diacetate.Molecules201722
    [Google Scholar]
  3. ShiZ. PengX.X. KimI.W. ShuklaS. SiQ.S. RobeyR.W. BatesS.E. ShenT. AshbyC.R.Jr FuL.W. AmbudkarS.V. ChenZ.S. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance.Cancer Res.20076722110121102010.1158/0008‑5472.CAN‑07‑268618006847
    [Google Scholar]
  4. ZhangJ. TaoL. LiangY. ChenL. MiY. ZhengL. WangF. SheZ. LinY. ToK.K.W. FuL. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi.Mar. Drugs2010841469148110.3390/md804146920479985
    [Google Scholar]
  5. PerkelJ.M. Visiting “noncodarnia”.Biotechniques201354630130410.2144/00011403723750541
    [Google Scholar]
  6. MorrisK.V. MattickJ.S. The rise of regulatory RNA.Nat. Rev. Genet.201415642343710.1038/nrg372224776770
    [Google Scholar]
  7. GrouxH. HuetS. AubritF. TranH.C. BoumsellL. BernardA. A 19-kDa human erythrocyte molecule H19 is involved in rosettes, present on nucleated cells, and required for T cell activation. Comparison of the roles of H19 and LFA-3 molecules in T cell activation.J. Immunol.198914293013302010.4049/jimmunol.142.9.30132468708
    [Google Scholar]
  8. BriggsS.F. Reijo PeraR.A. X chromosome inactivation: Recent advances and a look forward.Curr. Opin. Genet. Dev.201428788210.1016/j.gde.2014.09.01025461454
    [Google Scholar]
  9. HanY. YuH. WangJ. RenY. SuX. ShiY. Quercetin alleviates myocyte toxic and sensitizes anti-leukemic effect of adriamycin.Hematology201520527628310.1179/1607845414Y.000000019825201038
    [Google Scholar]
  10. HematiM. HaghiralsadatF. YazdianF. JafariF. MoradiA. Malekpour-DehkordiZ. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, Quercetin and siRNA for the treatment of cancer by using combination therapy.Artif. Cells Nanomed. Biotechnol.20194711295131110.1080/21691401.2018.148927130033768
    [Google Scholar]
  11. LiuT. LiZ. TianF. Quercetin inhibited the proliferation and invasion of hepatoblastoma cells through facilitating SIRT6-medicated FZD4 silence.Hum. Exp. Toxicol.20214012_supplS96S10710.1177/0960327121103055834219513
    [Google Scholar]
  12. KimH.I. LeeS.J. ChoiY.J. KimM.J. KimT.Y. KoS.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway.Am. J. Chin. Med.202149376778410.1142/S0192415X2150036133657989
    [Google Scholar]
  13. EzzatiM. YousefiB. VelaeiK. SafaA. A review on anti-cancer properties of Quercetin in breast cancer.Life Sci.202024811746310.1016/j.lfs.2020.11746332097663
    [Google Scholar]
  14. VafadarA. ShabaninejadZ. MovahedpourA. FallahiF. TaghavipourM. GhasemiY. AkbariM. ShafieeA. HajighadimiS. MoradizarmehriS. RaziE. SavardashtakiA. MirzaeiH. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells.Cell Biosci.20201013210.1186/s13578‑020‑00397‑032175075
    [Google Scholar]
  15. Ghafouri-FardS. ShabestariF.A. VaeziS. AbakA. ShooreiH. KarimiA. TaheriM. BasiriA. Emerging impact of quercetin in the treatment of prostate cancer.Biomed. Pharmacother.202113811154810.1016/j.biopha.2021.11154834311541
    [Google Scholar]
  16. Maleki DanaP. SadoughiF. AsemiZ. YousefiB. Anti-cancer properties of Quercetin in osteosarcoma.Cancer Cell Int.202121134910.1186/s12935‑021‑02067‑834225730
    [Google Scholar]
  17. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w35971151
    [Google Scholar]
  18. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of Quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms2013317731261749
    [Google Scholar]
  19. Akbari KordkheyliV. Khonakdar TarsiA. MishanM.A. TafazoliA. BardaniaH. ZarpouS. BagheriA. Effects of Quercetin on microRNAs: A mechanistic review.J. Cell. Biochem.20191208121411215510.1002/jcb.2866330957271
    [Google Scholar]
  20. ZhangZ. LiB. XuP. YangB. Integrated whole transcriptome profiling and bioinformatics analysis for revealing regulatory pathways associated with quercetin-induced apoptosis in HCT-116 cells.Front. Pharmacol.20191079810.3389/fphar.2019.0079831379573
    [Google Scholar]
  21. WangD. Sun-WaterhouseD. LiF. XinL. LiD. MicroRNAs as molecular targets of quercetin and its derivatives underlying their biological effects: A preclinical strategy.Crit. Rev. Food Sci. Nutr.201959142189220110.1080/10408398.2018.144112329446655
    [Google Scholar]
  22. ZhangL. PengD. SoodA.K. DangC.V. ZhongX. Shedding light on the dark cancer genomes: Long noncoding rnas as novel biomarkers and potential therapeutic targets for cancer.Mol. Cancer Ther.20181791816182310.1158/1535‑7163.MCT‑18‑012430181330
    [Google Scholar]
  23. BachD.H. LeeS.K. Long noncoding RNAs in cancer cells.Cancer Lett.201841915216610.1016/j.canlet.2018.01.05329414303
    [Google Scholar]
  24. BianE.B. XiongZ.G. LiJ. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA–miRNA interactions.J. Cell. Physiol.201923432194220310.1002/jcp.2706930229908
    [Google Scholar]
  25. HeY. MengX.M. HuangC. WuB.M. ZhangL. LvX.W. LiJ. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma.Cancer Lett.20143441202710.1016/j.canlet.2013.10.02124183851
    [Google Scholar]
  26. Alvarez-DominguezJ.R. LodishH.F. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis.Blood2017130181965197510.1182/blood‑2017‑06‑78869528928124
    [Google Scholar]
  27. Alvarez-DominguezJ.R. HuW. GromatzkyA.A. LodishH.F. Long noncoding RNAs during normal and malignant hematopoiesis.Int. J. Hematol.201499553154110.1007/s12185‑014‑1552‑824609766
    [Google Scholar]
  28. Castro-OropezaR. Melendez-ZajglaJ. MaldonadoV. Vazquez-SantillanK. The emerging role of lncRNAs in the regulation of cancer stem cells.Cell Oncol.201841658560310.1007/s13402‑018‑0406‑430218296
    [Google Scholar]
  29. HuangY. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases.J. Cell. Mol. Med.201822125768577510.1111/jcmm.1386630188595
    [Google Scholar]
  30. LiM. DuanL. LiY. LiuB. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases.Life Sci.201923311644010.1016/j.lfs.2019.04.06631047893
    [Google Scholar]
  31. VishnoiA. RaniS. MiRNA biogenesis and regulation of diseases: An overview.Methods Mol. Biol.2017150911010.1007/978‑1‑4939‑6524‑3_127826912
    [Google Scholar]
  32. ChoudhuriS. Small noncoding RNAs: Biogenesis, function, and emerging significance in toxicology.J. Biochem. Mol. Toxicol.201024319521610.1002/jbt.2032520143452
    [Google Scholar]
  33. ParasramkaM.A. HoE. WilliamsD.E. DashwoodR.H. MicroRNAs, diet, and cancer: New mechanistic insights on the epigenetic actions of phytochemicals.Mol. Carcinog.201251321323010.1002/mc.2082221739482
    [Google Scholar]
  34. ThakurV.S. DebG. BabcookM.A. GuptaS. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention.AAPS J.201416115116310.1208/s12248‑013‑9548‑524307610
    [Google Scholar]
  35. LovatF. ValeriN. CroceC.M. MicroRNAs in the pathogenesis of cancer.Semin. Oncol.201138672473310.1053/j.seminoncol.2011.08.00622082758
    [Google Scholar]
  36. HummelR. HusseyD.J. HaierJ. MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types.Eur. J. Cancer201046229831110.1016/j.ejca.2009.10.02719948396
    [Google Scholar]
  37. CalinG.A. SevignaniC. DumitruC.D. HyslopT. NochE. YendamuriS. ShimizuM. RattanS. BullrichF. NegriniM. CroceC.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci.200410192999300410.1073/pnas.030732310114973191
    [Google Scholar]
  38. Abdel-LatifM. RiadA. SolimanR.A. ElkhoulyA.M. NafaeH. GadM.Z. MotaalA.A. YounessR.A. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer.Mol. Cell. Biochem.202247741281129310.1007/s11010‑022‑04378‑435129780
    [Google Scholar]
  39. ZhaoJ. FangZ. ZhaZ. SunQ. WangH. SunM. QiaoB. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer.Eur. J. Pharmacol.2019847111810.1016/j.ejphar.2019.01.00630639311
    [Google Scholar]
  40. GaoY. LiC. XueT. LinC. HouR. XiaQ. Quercetin mediated TET1 expression through MicroRNA-17 induced cell apoptosis in melanoma cells.Biochem. Genet.20236127627736136257
    [Google Scholar]
  41. RezaieF. MokhtariM.J. KalaniM. Quercetin arrests in G2 phase, upregulates INXS LncRNA and downregulates UCA1 LncRNA in MCF-7 cells.Int. J. Mol. Cell. Med.202110320821635178359
    [Google Scholar]
  42. ChaiR. XuC. LuL. LiuX. MaZ. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway.Immunopharmacol. Immunotoxicol.202143669370310.1080/08923973.2021.196603234448661
    [Google Scholar]
  43. MurataM. KomatsuS. MiyamotoE. OkaC. LinI. KumazoeM. YamashitaS. FujimuraY. TachibanaH. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer.Biosci. Microbiota Food Health2023421879310.12938/bmfh.2022‑05636660602
    [Google Scholar]
  44. LuX. ChenD. YangF. XingN. Quercetin inhibits epithelial-to-mesenchymal transition (emt) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1.Cancer Manag. Res.2020121741175010.2147/CMAR.S24109332210615
    [Google Scholar]
  45. ZhouJ. GongJ. DingC. ChenG. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.Mol. Med. Rep.20151223127313110.3892/mmr.2015.367925937243
    [Google Scholar]
  46. MalakotiF. MajidiniaM. AhmadiY. YousefiB. ShanebandiD. Quercetin augments cisplatin-induced apoptosis, DNA damage response, and MiR-22 expression while it prevents DNA repair in osteosarcoma cells.Drug Res.202272737838410.1055/a‑1800‑603035724673
    [Google Scholar]
  47. MohammadiE. AlemiF. MalekiM. MalakotiF. Farsad-AkhtarN. YousefiB. Quercetin and methotrexate in combination have anticancer activity in osteosarcoma cells and repress oncogenic MicroRNA-223.Drug Res.202272422623310.1055/a‑1709‑065835385884
    [Google Scholar]
  48. ZhangX. GuoQ. ChenJ. ChenZ. Quercetin enhances cisplatin sensitivity of human osteosarcoma cells by modulating microRNA-217-KRAS Axis.Mol. Cells201538763864210.14348/molcells.2015.003726062553
    [Google Scholar]
  49. TaoS. HeH. ChenQ. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells.Mol. Cell. Biochem.20154021-29310010.1007/s11010‑014‑2317‑725596948
    [Google Scholar]
  50. WangY. ChenX. LiJ. XiaC. Quercetin antagonizes esophagus cancer by modulating miR-1-3p/TAGLN2 pathway-dependent growth and metastasis.Nutr. Cancer20227451872188110.1080/01635581.2021.197212534498538
    [Google Scholar]
  51. ChenL. XiaJ-S. WuJ-H. ChenY-G. QiuC-J. Quercetin suppresses cell survival and invasion in oral squamous cell carcinoma via the miR-1254/CD36 cascade in vitro.Hum. Exp. Toxicol.20214091413142110.1177/096032712199191233686878
    [Google Scholar]
  52. ZhangC. HaoY. SunY. LiuP. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis.J. Pharmacol. Sci.2019140212813610.1016/j.jphs.2019.03.00531257059
    [Google Scholar]
  53. Del Follo-MartinezA. BanerjeeN. LiX. SafeS. Mertens-TalcottS. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a.Nutr. Cancer201365349450410.1080/01635581.2012.72519423530649
    [Google Scholar]
  54. WangQ. ChenY. LuH. WangH. FengH. XuJ. ZhangB. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis.IUBMB Life20207251012102210.1002/iub.224232027086
    [Google Scholar]
  55. SonokiH. SatoT. EndoS. MatsunagaT. YamaguchiM. YamazakiY. SugataniJ. IkariA. Quercetin decreases claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells.Nutrients2015764578459210.3390/nu706457826061016
    [Google Scholar]
  56. LamT.K. ShaoS. ZhaoY. MarincolaF. PesatoriA. BertazziP.A. CaporasoN.E. WangE. LandiM.T. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues.Cancer Epidemiol. Biomarkers Prev.201221122176218410.1158/1055‑9965.EPI‑12‑074523035181
    [Google Scholar]
  57. HuY. LiR. JinJ. WangY. MaR. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks.J. Food Biochem.20224612e1445310.1111/jfbc.1445336181395
    [Google Scholar]
  58. NwaeburuC.C. BauerN. ZhaoZ. AbukiwanA. GladkichJ. BennerA. HerrI. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl.Oncotarget2016736583675838010.18632/oncotarget.1112227521217
    [Google Scholar]
  59. AppariM. BabuK.R. KaczorowskiA. GrosW. HerI. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition.Int. J. Oncol.20144541391140010.3892/ijo.2014.253925017900
    [Google Scholar]
  60. MacKenzieT.N. MujumdarN. BanerjeeS. SangwanV. SarverA. VickersS. SubramanianS. SalujaA.K. Triptolide induces the expression of miR-142-3p: A negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation.Mol. Cancer Ther.20131271266127510.1158/1535‑7163.MCT‑12‑123123635652
    [Google Scholar]
  61. YangF.Q. LiuM. LiW. CheJ.P. WangG.C. ZhengJ.H. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA-21.Mol. Med. Rep.20151121085109210.3892/mmr.2014.281325354548
    [Google Scholar]
  62. ShaalanY.M. HandoussaH. YounessR.A. AssalR.A. El-KhatibA.H. LinscheidM.W. El TayebiH.M. AbdelazizA.I. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma.Nat. Prod. Res.201832182217222010.1080/14786419.2017.136647828817968
    [Google Scholar]
  63. LiW. LiuM. XuY.F. FengY. CheJ.P. WangG.C. ZhengJ.H. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a.Oncol. Rep.201431111712410.3892/or.2013.281124173369
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673256601231009054714
Loading
/content/journals/cmc/10.2174/0109298673256601231009054714
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): colon cancer; LncRNA; molecular pathways; ovarian cancer; oxidative; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test