Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Tumor diseases remain among the world's primary causes of death despite substantial advances in cancer diagnosis and treatment. The adverse chemotherapy problems and sensitivity towards drugs for some cancer types are among the most promising challenges in modern treatment. Finding new anti-cancer agents and drugs is, therefore, essential. A significant class of biologically active substances and prospective medications against cancer is comprised of bacterial proteins and peptides. Among these bacterial peptides, some of them, such as anti-cancer antibiotics and many toxins like diphtheria are widely being used in the treatment of cancer. In contrast, the remaining bacterial peptides are either in clinical trials or under research studies. This study includes the most recent information on the characteristics and mechanism of action of the bacterial peptides that have anti-cancer activities, some of which are now being employed in cancer therapy while some are still undergoing research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673253414231127162817
2024-02-07
2025-04-04
Loading full text...

Full text loading...

References

  1. ChakrabartyA.M. BernardesN. FialhoA.M. Bacterial proteins and peptides in cancer therapy.Bioengineered20145423424210.4161/bioe.2926624875003
    [Google Scholar]
  2. SinglaR.K. BehzadS. KhanJ. TsagkarisC. GautamR.K. GoyalR. ChopraH. ShenB. Natural kinase inhibitors for the treatment and management of endometrial/uterine cancer: Preclinical to clinical studies.Front. Pharmacol.20221380173310.3389/fphar.2022.80173335264951
    [Google Scholar]
  3. NussbaumerS. BonnabryP. VeutheyJ.L. Fleury-SouverainS. Analysis of anticancer drugs: A review.Talanta20118552265228910.1016/j.talanta.2011.08.03421962644
    [Google Scholar]
  4. ChopraH. BibiS. GoyalR. GautamR.K. TrivediR. UpadhyayT.K. MujahidM.H. ShahM.A. HarisM. KhotK.B. GopanG. SinghI. KimJ.K. JoseJ. Abdel-DaimM.M. AlhumaydhiF.A. EmranT.B. KimB. Chemopreventive potential of dietary nanonutraceuticals for prostate cancer: An extensive review.Front. Oncol.20221292537910.3389/fonc.2022.92537935903701
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  6. FerlayJ. SoerjomataramI. ErvikM. DikshitR. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 v1.0.IARC Publications2012
    [Google Scholar]
  7. SynakiewiczA. Stachowicz-StencelT. Adamkiewicz-DrozynskaE. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials.Expert Opin. Investig. Drugs201423111517152910.1517/13543784.2014.93480824965808
    [Google Scholar]
  8. NardoneV. RomeoC. D’IppolitoE. PastinaP. D’ApolitoM. PirtoliL. CaragliaM. MuttiL. BiancoG. FalzeaA.C. GiannicolaR. GiordanoA. TagliaferriP. VinciguerraC. DesideriI. LoiM. ReginelliA. CappabiancaS. TassoneP. CorrealeP. The role of brain radiotherapy for EGFR- and ALK-positive non-small-cell lung cancer with brain metastases: A review.Radiol. Med.2023128331632910.1007/s11547‑023‑01602‑z36786970
    [Google Scholar]
  9. ThurstonD.E. Chemistry and Pharmacology of Anticancer Drugs.1st edCRC Press200610.1201/9781420008906
    [Google Scholar]
  10. PandeyP. ChopraH. KaushikD. VermaR. PurohitD. ParasharJ. MittalV. RahmanH. BhatiaS. KumarP. Multifunctional patented nanotherapeutics for cancer intervention: 2010-Onwards.Recent Pat Anticancer Drug Discov2022181385210.2174/157489281766622032208594235319390
    [Google Scholar]
  11. LavanyaV. AdilM. AhmedN. RishiA.K. JamalS. Small molecule inhibitors as emerging cancer therapeutics.Integr. Cancer Sci. Ther.201413394610.15761/ICST.1000109
    [Google Scholar]
  12. BackeS.J. VotraS.D. StokesM.P. SebestyénE. CastelliM. TorielliL. ColomboG. WoodfordM.R. MollapourM. BourbouliaD. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling.Cell Rep.202342611253910.1016/j.celrep.2023.11253937243593
    [Google Scholar]
  13. FialhoA.M. ChakrabartyA.M. Promiscuous anticancer drugs from pathogenic bacteria: Rational versus intelligent drug design.Emerging Cancer Therapy.John Wiley & Sons, Ltd201017919810.1002/9780470626528.ch8
    [Google Scholar]
  14. ChenQ. Development of plant-made monoclonal antibodies against viral infections.Curr. Opin. Virol.20225214816010.1016/j.coviro.2021.12.00534933212
    [Google Scholar]
  15. SikesR.A. Chemistry and pharmacology of anticancer drugs.Br. J. Cancer20079712171310.1038/sj.bjc.66040752360279
    [Google Scholar]
  16. Shahpasand-KronerH. SiddiqueI. MalikR. LinaresG.R. IvanovaM.I. IchidaJ. WeilT. MünchJ. Sanchez-GarciaE. KlärnerF.G. SchraderT. BitanG. Molecular tweezers: Supramolecular hosts with broad-spectrum biological applications.Pharmacol. Rev.202375226330810.1124/pharmrev.122.00065436549866
    [Google Scholar]
  17. AvnerB.S. FialhoA.M. ChakrabartyA.M. Overcoming drug resistance in multi-drug resistant cancers and microorganisms.Bioengineered20123526227010.4161/bioe.2113022750915
    [Google Scholar]
  18. PandeyM. ChoudhuryH. VijayagomaranP.A.P. LianP.N.P. NingT.J. WaiN.Z. Xian-ZhuangN. Le ErC. RahmahN.S.N. KamaruzzamanN.D.B. MayurenJ. CandasamyM. GorainB. ChawlaP.A. AminM.C.I.M. Recent update on bacteria as a delivery carrier in cancer therapy: From evil to allies.Pharm. Res.20223961115113410.1007/s11095‑022‑03240‑y35386012
    [Google Scholar]
  19. BaindaraP. KorpoleS. GroverV. Bacteriocins: Perspective for the development of novel anticancer drugs.Appl. Microbiol. Biotechnol.201810224103931040810.1007/s00253‑018‑9420‑830338356
    [Google Scholar]
  20. XiaoY.F. JieM.M. LiB.S. HuC.J. XieR. TangB. YangS.M. Peptide-based treatment: A promising cancer therapy.J. Immunol. Res.2015201511310.1155/2015/76182026568964
    [Google Scholar]
  21. ChenN. JiangC. Antimicrobial peptides: Structure, mechanism, and modification.Eur. J. Med. Chem.202325511537710.1016/j.ejmech.2023.11537737099837
    [Google Scholar]
  22. AtamasS.P. Relief from within: A peptide therapy for fibrosis.Sci. Transl. Med.20124136136fs1610.1126/scitranslmed.300413822649088
    [Google Scholar]
  23. CastroA.C.H. BezerraÍ.R.S. PasconA.M. da SilvaG.H. PhilotE.A. de OliveiraV.L. ManciniR.S.N. SchlederG.R. CastroC.E. de CarvalhoL.R.S. FernandesB.H.V. CilliE.M. SanchesP.R.S. SanthiagoM. Charlie-SilvaI. MartinezD.S.T. ScottA.L. AlvesW.A. LimaR.S. Modular label-free electrochemical biosensor loading nature-inspired peptide toward the widespread use of COVID-19 antibody tests.ACS Nano2022169142391425310.1021/acsnano.2c0436435969505
    [Google Scholar]
  24. JainM.V. PaczullaA.M. KlonischT. DimgbaF.N. RaoS.B. RobergK. SchweizerF. LengerkeC. DavoodpourP. PalicharlaV.R. MaddikaS. ŁosM. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development.J. Cell. Mol. Med.2013171122910.1111/jcmm.1200123301705
    [Google Scholar]
  25. SergiC.M. Soft tissue.Pathology of Childhood and Adolescence.Berlin, HeidelbergSpringer Berlin Heidelberg202010031094
    [Google Scholar]
  26. FernaldK. KurokawaM. Evading apoptosis in cancer.Trends Cell Biol.2013231262063310.1016/j.tcb.2013.07.00623958396
    [Google Scholar]
  27. BeheshtirouyS. MirzaeiF. EyvaziS. TarhrizV. Recent advances in therapeutic peptides for breast cancer treatment.Curr. Protein Pept. Sci.2021221748810.2174/138920372199920111712361633208071
    [Google Scholar]
  28. SunJ. ZhangC. LiuG. LiuH. ZhouC. LuY. ZhouC. YuanL. LiX. A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clin. Exp. Metastasis201229318519610.1007/s10585‑011‑9440‑622228571
    [Google Scholar]
  29. SawP.E. SongE.W. Phage display screening of therapeutic peptide for cancer targeting and therapy.Protein Cell2019101178780710.1007/s13238‑019‑0639‑731140150
    [Google Scholar]
  30. WuX. HuangH. WangC. LinS. HuangY. WangY. LiangG. YanQ. XiaoJ. WuJ. YangY. LiX. Identification of a novel peptide that blocks basic fibroblast growth factor-mediated cell proliferation.Oncotarget20134101819182810.18632/oncotarget.131224142482
    [Google Scholar]
  31. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑137169756
    [Google Scholar]
  32. LiuJ. LinM. YuJ. LiuB. BaoJ. Targeting apoptotic and autophagic pathways for cancer therapeutics.Cancer Lett.2011300210511410.1016/j.canlet.2010.10.00121036469
    [Google Scholar]
  33. RobertsN.J. ZhangL. JankuF. CollinsA. BaiR.Y. StaedtkeV. RuskA.W. TungD. MillerM. RoixJ. KhannaK.V. MurthyR. BenjaminR.S. HelgasonT. SzvalbA.D. BirdJ.E. Roy-ChowdhuriS. ZhangH.H. QiaoY. KarimB. McDanielJ. ElpinerA. SahoraA. LachowiczJ. PhillipsB. TurnerA. KleinM.K. PostG. DiazL.A.Jr RigginsG.J. PapadopoulosN. KinzlerK.W. VogelsteinB. BettegowdaC. HusoD.L. VarterasianM. SahaS. ZhouS. Intratumoral injection of Clostridium novyi -NT spores induces antitumor responses.Sci. Transl. Med.20146249249ra11110.1126/scitranslmed.300898225122639
    [Google Scholar]
  34. DevoyC. Flores BuesoY. TangneyM. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology.Front. Oncol.202212102012110.3389/fonc.2022.102012136505861
    [Google Scholar]
  35. Hoption CannS.A. van NettenJ.P. van NettenC. Dr William Coley and tumour regression: A place in history or in the future.Postgrad. Med. J.20037993867268010.1093/postgradmedj/79.938.67214707241
    [Google Scholar]
  36. KarpińskiT.M. Evidence is insufficient to suggest that probiotics may reduce the risk of oral cancer.J. Evid. Based Dent. Pract.202121410163710.1016/j.jebdp.2021.10163734922715
    [Google Scholar]
  37. PaivaA.D. de OliveiraM.D. de PaulaS.O. Baracat-PereiraM.C. BreukinkE. MantovaniH.C. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.Microbiology2012158112851285810.1099/mic.0.062190‑022956757
    [Google Scholar]
  38. RommasiF. Bacterial-based methods for cancer treatment: What we know and where we are.Oncol. Ther.2022101235410.1007/s40487‑021‑00177‑x34780046
    [Google Scholar]
  39. LeeH. KimH.Y. Lantibiotics, class I bacteriocins from the genus Bacillus.J. Microbiol. Biotechnol.201121322923510.4014/jmb.1010.1001721464591
    [Google Scholar]
  40. ChowdhuryG. RamamurthyD. The human gut microbiota and gastrointestinal cancer: Current status and therapeutic perspectives.In Human MicrobiomeSpringer Nature SingaporeSingapore202273107
    [Google Scholar]
  41. KarpinskiT.M. SzkaradkiewiczA. GamianA. A new enterococcal anti-cancer peptide.Proceedings of the 23rd European Congress of Clinical Microbiology and Infectious DiseasesBerlin, Germany20132730
    [Google Scholar]
  42. LullaR.R. GoldmanS. YamadaT. BeattieC.W. BresslerL. PaciniM. PollackI.F. FisherP.G. PackerR.J. DunkelI.J. DhallG. WuS. OnarA. BoyettJ.M. FouladiM. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study.Neuro-oncol.20161891319132510.1093/neuonc/now04727022131
    [Google Scholar]
  43. KarpinskiT.M. New peptide (Entap) with antiproliferative activity produced by bacteria of Enterococcus genus (in polish).Habilitation thesis. Scientific Publisher of Poznań University of Medical Sciences2012
    [Google Scholar]
  44. AbdoullahiS. JahangiriA. HalabianR. Potential role of herbal- and bacterial-derived peptides against colorectal cancer.Rev. Bras. Farmacogn.202232567369210.1007/s43450‑022‑00276‑4
    [Google Scholar]
  45. AgrawalS. AdholeyaA. DeshmukhS.K. The pharmacological potential of non-ribosomal peptides from marine sponge and tunicates.Front. Pharmacol.2016733310.3389/fphar.2016.0033327826240
    [Google Scholar]
  46. ShahS. GhoshS. Medicinal Prospects of Marine Flora and Fauna for Drug Discovery. In: Marine Niche: Applications in Pharmaceutical Sciences; Nathani, N.M.; Mootapally, C.; Gadhvi, I.R.; Maitreya, B.; Joshi, C.G., Eds.; Springer, Singapore, 2020, pp. 321–345.10.1007/978‑981‑15‑5017‑1_18
  47. OkuN. AdachiK. MatsudaS. KasaiH. TakatsukiA. ShizuriY. Ariakemicins A and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix.Org. Lett.200810122481248410.1021/ol800729218498148
    [Google Scholar]
  48. DehghaniM. TaherizadehM.R. HomaeiA. Marine origin bioactive peptides: Novel advances in the therapeutic potential.Marine BiomaterialsSpringer Nature SingaporeSingapore2022351392
    [Google Scholar]
  49. KalinovskayaN.I. RomanenkoL.A. KalinovskyA.I. DmitrenokP.S. DyshlovoyS.A. A new antimicrobial and anticancer peptide producing by the marine deep sediment strain “Paenibacillus profundus” sp. nov. Sl 79.Nat. Prod. Commun.2013831934578X130080010.1177/1934578X130080032623678816
    [Google Scholar]
  50. LeeR.H. OhJ.D. HwangJ.S. LeeH.K. ShinD. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor.Sci. Rep.20211111844510.1038/s41598‑021‑97581‑034531430
    [Google Scholar]
  51. ChoJ.Y. WilliamsP.G. KwonH.C. JensenP.R. FenicalW. Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis.J. Nat. Prod.20077081321132810.1021/np070101b17630797
    [Google Scholar]
  52. ChunduriA. DonthulaN. JahanaviM. GollaS. AichP. SahithyaK. MishraB. MandalS.K. Role of microbes in industrial products and processes.Wiley2022134
    [Google Scholar]
  53. TareqF.S. KimJ.H. LeeM.A. LeeH.S. LeeY.J. LeeJ.S. ShinH.J. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis.Org. Lett.20121461464146710.1021/ol300202z22360451
    [Google Scholar]
  54. AgrawalS. AcharyaD. AdholeyaA. BarrowC.J. DeshmukhS.K. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential.Front. Pharmacol.2017882810.3389/fphar.2017.0082829209209
    [Google Scholar]
  55. YaghoubiA. GhazviniK. HasanianS.M. AvanA. SoleimanpourS. KhazaeiM. Bacterial peptides and bacteriocins as a promising therapy for solid tumor.Curr. Pharm. Des.202228383105311310.2174/138161282866622092115003736154595
    [Google Scholar]
  56. AsolkarR.N. FreelK.C. JensenP.R. FenicalW. KondratyukT.P. ParkE.J. PezzutoJ.M. Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola.J. Nat. Prod.200972339640210.1021/np800617a19117399
    [Google Scholar]
  57. PetersenL-E. KellermannM.Y. SchuppP.J. Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology.YOUMARES 9 - The Oceans: Our Research, Our Future.ChamSpringer International Publishing202015918010.1007/978‑3‑030‑20389‑4_8
    [Google Scholar]
  58. YangL. TanR. WangQ. HuangW. YinY. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin.Tetrahedron Lett.200243376545654810.1016/S0040‑4039(02)01458‑2
    [Google Scholar]
  59. SharmaV. SinhaP.K. SinghJ. SinhaE.S. Role of microbes and microbial products in cancer therapeutics.Microbial Products for Health, Environment and AgricultureSpringer202120322010.1007/978‑981‑16‑1947‑2_9
    [Google Scholar]
  60. ZhangJ.N. XiaY.X. ZhangH.J. Natural cyclopeptides as anticancer agents in the last 20 years.Int. J. Mol. Sci.2021228397310.3390/ijms2208397333921480
    [Google Scholar]
  61. ZhangS. KavianiniaI. BrimbleM.A. Naturally occurring antitubercular cyclic peptides.Tetrahedron Lett.2019605015133910.1016/j.tetlet.2019.151339
    [Google Scholar]
  62. FiedlerH.P. BruntnerC. RiedlingerJ. BullA.T. KnutsenG. GoodfellowM. JonesA. MaldonadoL. Pathom-areeW. BeilW. SchneiderK. KellerS. SussmuthR.D. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora.J. Antibiot.200861315816310.1038/ja.2008.12518503194
    [Google Scholar]
  63. EbrahimzadehS. AhangariH. SoleimanianA. HosseiniK. EbrahimiV. GhasemnejadT. SoofiyaniS.R. TarhrizV. EyvaziS. Colorectal cancer treatment using bacteria: Focus on molecular mechanisms.BMC Microbiol.202121121810.1186/s12866‑021‑02274‑334281519
    [Google Scholar]
  64. WilliamsD.E. DalisayD.S. PatrickB.O. MatainahoT. AndrusiakK. DeshpandeR. MyersC.L. PiotrowskiJ.S. BooneC. YoshidaM. AndersenR.J. Padanamides A and B, highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment.Org. Lett.201113153936393910.1021/ol201449421749075
    [Google Scholar]
  65. UmS. ChoiT.J. KimH. KimB.Y. KimS.H. LeeS.K. OhK.B. ShinJ. OhD.C. Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island.J. Org. Chem.20137824123211232910.1021/jo401974g24266328
    [Google Scholar]
  66. SungW.S. ParkY. ChoiC.H. HahmK.S. LeeD.G. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae.Biochem. Biophys. Res. Commun.2007363380681010.1016/j.bbrc.2007.09.04117900534
    [Google Scholar]
  67. MarzhoseyniZ. ShojaieL. TabatabaeiS.A. MovahedpourA. SafariM. EsmaeiliD. Mahjoubin-TehranM. JaliliA. MorshediK. KhanH. OkhraviR. HamblinM.R. MirzaeiH. Streptococcal bacterial components in cancer therapy.Cancer Gene Ther.202229214115510.1038/s41417‑021‑00308‑633753868
    [Google Scholar]
  68. HuangY. WangX. WangH. LiuY. ChenY. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework.Mol. Cancer Ther.201110341642610.1158/1535‑7163.MCT‑10‑081121252288
    [Google Scholar]
  69. NegiB. KumarD. RawatD.S. Marine peptides as anticancer agents: A remedy to mankind by nature.Curr. Protein Pept. Sci.201718988590410.2174/138920371766616072420084927455970
    [Google Scholar]
  70. ManamR.R. TeisanS. WhiteD.J. NicholsonB. GrodbergJ. NeuteboomS.T.C. LamK.S. MoscaD.A. LloydG.K. PottsB.C.M. Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus.J. Nat. Prod.200568224024310.1021/np049725x15730252
    [Google Scholar]
  71. QiuZ. WuY. LanK. WangS. YuH. WangY. WangC. CaoS. Cytotoxic compounds from marine actinomycetes: Sources, structures and bioactivity.Acta Materia Medica20221444547510.15212/AMM‑2022‑002836588746
    [Google Scholar]
  72. GaoM. ZhouJ. SuZ. HuangY. Bacterial cupredoxin Azurin hijacks cellular signaling networks: Protein–protein interactions and cancer therapy.Protein Sci.201726122334234110.1002/pro.331028960574
    [Google Scholar]
  73. SantiniS. BizzarriA.R. CannistraroS. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin.J. Mol. Recognit.20112461043105510.1002/jmr.115322038811
    [Google Scholar]
  74. AbueiH. Behzad BehbahaniA. Rafiei DehbidiG. PirouzfarM. ZareF. FarhadiA. Construction, expression, and purification of p28 as a cell-penetrating peptide ‎with anticancer effects on burkitt’s lymphoma cell line.Shiraz E Med. J.201920710.5812/semj.85190
    [Google Scholar]
  75. BaudinoT. Targeted cancer therapy: The next generation of cancer treatment.Curr. Drug Discov. Technol.201512132010.2174/157016381266615060214431026033233
    [Google Scholar]
  76. ChatzisideriT. LeonidisG. SarliV. Cancer-targeted delivery systems based on peptides.Future Med. Chem.201810182201222610.4155/fmc‑2018‑017430043641
    [Google Scholar]
  77. HoskinD.W. RamamoorthyA. Studies on anticancer activities of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.20081778235737510.1016/j.bbamem.2007.11.00818078805
    [Google Scholar]
  78. WangX. LiuY. LiK. HaoZ. Roles of p53-mediated host–virus interaction in coronavirus infection.Int. J. Mol. Sci.2023247637110.3390/ijms2407637137047343
    [Google Scholar]
  79. MehtaR.R. YamadaT. TaylorB.N. ChristovK. KingM.L. MajumdarD. LekmineF. TiruppathiC. ShilkaitisA. BratescuL. GreenA. BeattieC.W. Das GuptaT.K. A cell penetrating peptide derived from Azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt.Angiogenesis201114335536910.1007/s10456‑011‑9220‑621667138
    [Google Scholar]
  80. HuangF. ShuQ. QinZ. TianJ. SuZ. HuangY. GaoM. Anticancer actions of Azurin and its derived peptide p28.Protein J.202039218218910.1007/s10930‑020‑09891‑332180097
    [Google Scholar]
  81. MoscettiI. BizzarriA.R. CannistraroS. Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance.Int. J. Nanomedicine20181325125910.2147/IJN.S15221429379285
    [Google Scholar]
  82. CapuozzoM. SantorsolaM. BocchettiM. PerriF. CascellaM. GranataV. CelottoV. GualilloO. CossuA.M. NastiG. CaragliaM. OttaianoA. p53: From fundamental biology to clinical applications in cancer.Biology2022119132510.3390/biology1109132536138802
    [Google Scholar]
  83. Ghasemi-DehkordiP. DoostiA. JamiS. The concurrent effects of Azurin and mammaglobin-a genes in inhibition of breast cancer progression and immune system stimulation in cancerous BALB/c mice.3 Biotech20199727110.1007/s13205‑019‑1804‑7
    [Google Scholar]
  84. HaiderT. SandhaK.K. SoniV. GuptaP.N. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models.Mater. Sci. Eng. C202011611122910.1016/j.msec.2020.11122932806313
    [Google Scholar]
  85. ZhangH.L. HuaH.M. PeiY.H. YaoX.S. Three new cytotoxic cyclic acylpeptides from marine Bacillus sp.Chem. Pharm. Bull.20045281029103010.1248/cpb.52.102915305011
    [Google Scholar]
  86. KanohK. MatsuoY. AdachiK. ImagawaH. NishizawaM. ShizuriY. Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251.J. Antibiot.200558428929210.1038/ja.2005.3615981418
    [Google Scholar]
  87. BaindaraP. MandalS.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics.Biochimie202017716418910.1016/j.biochi.2020.07.02032827604
    [Google Scholar]
  88. IbrahimK.S. AishwaryaM. KannanR.P.B. Secondary metabolites from extremophiles with therapeutic benefits. Recent Advances and Future Perspectives of Microbial Metabolites.Elsevier202324926710.1016/B978‑0‑323‑90113‑0.00011‑0
    [Google Scholar]
  89. MillerE.D. KauffmanC.A. JensenP.R. FenicalW. Piperazimycins: Cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces.J. Org. Chem.200772232333010.1021/jo061064g17221946
    [Google Scholar]
  90. MaZ. WangN. HuJ. WangS. Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A.J. Antibiot.201265631732210.1038/ja.2012.1922491138
    [Google Scholar]
  91. HaiY. WeiM.Y. WangC.Y. GuY.C. ShaoC.L. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020).Mar. Life Sci. Technol.20213448851810.1007/s42995‑021‑00101‑237073258
    [Google Scholar]
  92. FialhoA. BernardesN. ChakrabartyA. Exploring the anticancer potential of the bacterial protein Azurin.AIMS Microbiol.2016229230310.3934/microbiol.2016.3.292
    [Google Scholar]
  93. HanY. WangT. ChenG. PuQ. LiuQ. ZhangY. XuL. WuM. LiangH. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition.PLoS Pathog.20191512e100819810.1371/journal.ppat.100819831790504
    [Google Scholar]
  94. YamadaT. GotoM. PunjV. ZaborinaO. ChenM.L. KimbaraK. MajumdarD. CunninghamE. Das GuptaT.K. ChakrabartyA.M. Bacterial redox protein Azurin, tumor suppressor protein p53, and regression of cancer.Proc. Natl. Acad. Sci.20029922140981410310.1073/pnas.22253969912393814
    [Google Scholar]
  95. PaydarniaN. Khoshtinat NikkhoiS. FakhravarA. MehdiabdolM. HeydarzadehH. RanjbarS. Synergistic effect of granzyme B-Azurin fusion protein on breast cancer cells.Mol. Biol. Rep.20194633129314010.1007/s11033‑019‑04767‑x30937652
    [Google Scholar]
  96. VakiliB. Jahanian-NajafabadiA. Application of antimicrobial peptides in the design and production of anticancer agents.Int. J. Pept. Res. Ther.20232922810.1007/s10989‑023‑10501‑w
    [Google Scholar]
  97. HolmströmK.M. FinkelT. Cellular mechanisms and physiological consequences of redox-dependent signalling.Nat. Rev. Mol. Cell Biol.201415641142110.1038/nrm380124854789
    [Google Scholar]
  98. ÅbergE. KarlssonO.A. AnderssonE. JemthP. Binding kinetics of the intrinsically disordered p53 family transactivation domains and MDM2.J. Phys. Chem. B2018122276899690510.1021/acs.jpcb.8b0387629878773
    [Google Scholar]
  99. GabellieriE. BucciantiniM. StefaniM. CioniP. Does Azurin bind to the transactivation domain of p53? A Trp phosphorescence study.Biophys. Chem.20111592-328729310.1016/j.bpc.2011.07.00821885181
    [Google Scholar]
  100. GuX. LiuY. DaiX. YangY.G. ZhangX. Deciphering the potential roles of ferroptosis in regulating tumor immunity and tumor immunotherapy.Front. Immunol.202314113710710.3389/fimmu.2023.113710736926345
    [Google Scholar]
  101. BizzarriA.R. BizzarriA.R. CannistraroS. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor.Int. J. Nanomedicine201162033204210.2147/IJN.S2384521976978
    [Google Scholar]
  102. AtabayM. EjtehadiM.R. Aptamer affinity to P53 DBD: A molecular dynamics study.J. Mol. Struct.2023128413535510.1016/j.molstruc.2023.135355
    [Google Scholar]
  103. LalianiG. Ghasemian SorboniS. LariR. YaghoubiA. SoleimanpourS. KhazaeiM. HasanianS.M. AvanA. Bacteria and cancer: Different sides of the same coin.Life Sci.202024611739810.1016/j.lfs.2020.11739832032647
    [Google Scholar]
  104. PatyarS. JoshiR. ByravD.S.P. PrakashA. MedhiB. DasB.K. Bacteria in cancer therapy: A novel experimental strategy.J. Biomed. Sci.20101712110.1186/1423‑0127‑17‑2120331869
    [Google Scholar]
  105. BernardesN. RibeiroA.S. AbreuS. MotaB. MatosR.G. ArraianoC.M. SerucaR. ParedesJ. FialhoA.M. The bacterial protein Azurin impairs invasion and FAK/Src signaling in P-cadherin-overexpressing breast cancer cell models.PLoS One201387e6902310.1371/journal.pone.006902323894398
    [Google Scholar]
  106. SahaN. RobevD. MasonE.O. HimanenJ.P. NikolovD.B. Therapeutic potential of targeting the Eph/ephrin signaling complex.Int. J. Biochem. Cell Biol.201810512313310.1016/j.biocel.2018.10.00630343150
    [Google Scholar]
  107. YaghoubiA. KhazaeiM. AvanA. HasanianS.M. ChoW.C. SoleimanpourS. p28 bacterial peptide, as an anticancer agent.Front. Oncol.202010130310.3389/fonc.2020.0130332850408
    [Google Scholar]
  108. GargJ. KakkarV. PawarS.V. Resealed erythrocytes: Towards a novel approach for anticancer therapy.J. Indian Chem. Soc.2021981210025710.1016/j.jics.2021.100257
    [Google Scholar]
  109. MalikA.Q. MirT.G. KumarD. MirI.A. RashidA. AyoubM. ShuklaS. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins.Environ. Sci. Pollut. Res. Int.20233027697966982310.1007/s11356‑023‑27437‑937171732
    [Google Scholar]
  110. CavuotoP. FenechM.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension.Cancer Treat. Rev.201238672673610.1016/j.ctrv.2012.01.00422342103
    [Google Scholar]
  111. HoffmanR.M. HanQ. KawaguchiK. LiS. TanY. Afterword: Oral methioninase—answer to cancer and fountain of youth?Methods Mol. Biol.20191866311322
    [Google Scholar]
  112. MacleanK.N. JiangH. PhinneyW.N. MclaganB.M. RoedeJ.R. StablerS.P. Derangement of hepatic polyamine, folate, and methionine cycle metabolism in cystathionine beta-synthase-deficient homocystinuria in the presence and absence of treatment: Possible implications for pathogenesis.Mol. Genet. Metab.2021132212813810.1016/j.ymgme.2021.01.00333483253
    [Google Scholar]
  113. SharmaB. SinghS. KanwarS.S. L-methionase: a therapeutic enzyme to treat malignancies.BioMed. Res. Int.2014201411310.1155/2014/50628725250324
    [Google Scholar]
  114. ChuY.D. LaiH.Y. PaiL.M. HuangY.H. LinY.H. LiangK.H. YehC.T. The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine.Cell Death Dis.201910324010.1038/s41419‑019‑1486‑430858354
    [Google Scholar]
  115. NongS. HanX. XiangY. QianY. WeiY. ZhangT. TianK. ShenK. YangJ. MaX. Metabolic reprogramming in cancer: Mechanisms and therapeutics.MedComm202342e21810.1002/mco2.21836994237
    [Google Scholar]
  116. TakakuraT. ItoT. YagiS. NotsuY. ItakuraT. NakamuraT. InagakiK. EsakiN. HoffmanR.M. TakimotoA. High-level expression and bulk crystallization of recombinant l-methionine γ-lyase, an anticancer agent.Appl. Microbiol. Biotechnol.200670218319210.1007/s00253‑005‑0038‑216012835
    [Google Scholar]
  117. Al-YousefN. ShinwariZ. Al-ShahraniB. Al-ShowimiM. Al-MoghrabiN. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines.Oncol. Rep.202043382783810.3892/or.2020.747332020216
    [Google Scholar]
  118. YangL. ChuZ. LiuM. ZouQ. LiJ. LiuQ. WangY. WangT. XiangJ. WangB. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy.J. Hematol. Oncol.20231615910.1186/s13045‑023‑01453‑137277776
    [Google Scholar]
  119. JaccardA. GachardN. MarinB. RogezS. AudrainM. SuarezF. TillyH. MorschhauserF. ThieblemontC. YsebaertL. DevidasA. PetitB. de LevalL. GaulardP. FeuillardJ. BordessouleD. HermineO. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study.Blood201111761834183910.1182/blood‑2010‑09‑30745421123825
    [Google Scholar]
  120. DerbieA. MekonnenD. NibretE. MisganE. MaierM. WoldeamanuelY. AbebeT. Cervical cancer in Ethiopia: A review of the literature.Cancer Causes Control202334111110.1007/s10552‑022‑01638‑y36242682
    [Google Scholar]
  121. SindhuR. ManonmaniH.K. L-asparaginase-mediated therapy in l-asparagine auxotrophic cancers: A review.Anticancer. Agents Med. Chem.202222132393241010.2174/187152062266622010610333634994334
    [Google Scholar]
  122. CoviniD. TarditoS. BussolatiO. ChiarelliL.R. PasquettoM.V. DigilioR. ValentiniG. ScottiC. Expanding targets for a metabolic therapy of cancer: L-asparaginase.Recent Patents Anticancer Drug Discov.20127141310.2174/15748921279835800121854356
    [Google Scholar]
  123. DengL. ZhaiX. LiangP. CuiH. Overcoming TRAIL resistance for glioblastoma treatment.Biomolecules202111457210.3390/biom1104057233919846
    [Google Scholar]
  124. PietersR. HungerS.P. BoosJ. RizzariC. SilvermanL. BaruchelA. GoekbugetN. SchrappeM. PuiC.H. L-asparaginase treatment in acute lymphoblastic leukemia.Cancer2011117223824910.1002/cncr.2548920824725
    [Google Scholar]
  125. MaggiM. ScottiC. Enzymes in metabolic anticancer therapy.Adv. Exp. Med. Biol.2019114817319910.1007/978‑981‑13‑7709‑9_9
    [Google Scholar]
  126. Van TrimpontM. PeetersE. De VisserY. SchalkA.M. MondelaersV. De MoerlooseB. LavieA. LammensT. GoossensS. Van VlierbergheP. Novel insights on the use of l-asparaginase as an efficient and safe anti-cancer therapy.Cancers202214490210.3390/cancers1404090235205650
    [Google Scholar]
  127. AsselinB. RizzariC. Asparaginase pharmacokinetics and implications of therapeutic drug monitoring.Leuk. Lymphoma20155682273228010.3109/10428194.2014.100305625586605
    [Google Scholar]
  128. VachherM. SenA. KapilaR. NigamA. Microbial therapeutic enzymes: A promising area of biopharmaceuticals.Curr. Res. Biotechnol.2021319520810.1016/j.crbiot.2021.05.006
    [Google Scholar]
  129. JalilA.T. AbdulhadiM.A. Al-AmeerL.R. AbbasH.A. MerzaM.S. ZabibahR.S. FadhilA.A. The emerging role of microRNA-126 as a potential therapeutic target in cancer: A comprehensive review.Pathol. Res. Pract.202324815463110.1016/j.prp.2023.15463137393667
    [Google Scholar]
  130. FiedlerT. StraussM. HeringS. RedanzU. WilliamD. RoscheY. ClassenC.F. KreikemeyerB. LinnebacherM. MaletzkiC. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo.Cancer Biol. Ther.20151671047105510.1080/15384047.2015.102647825774632
    [Google Scholar]
  131. RogersL.C. KremerJ.C. BrashearsC.B. LinZ. HuZ. BastosA.C.S. BakerA. FettigN. ZhouD. ShoghiK.I. DehnerC.A. ChrisingerJ.S.A. BomalaskiJ.S. GarciaB.A. OyamaT. WhiteE.P. Van TineB.A. Discovery and targeting of a noncanonical mechanism of sarcoma resistance to adi-peg20 mediated by the microenvironment.Clin. Cancer Res.202329163189320210.1158/1078‑0432.CCR‑22‑264237339179
    [Google Scholar]
  132. VladuA.F. FicaiD. EneA.G. FicaiA. Combination therapy using polyphenols: An efficient way to improve antitumoral activity and reduce resistance.Int. J. Mol. Sci.202223181024410.3390/ijms23181024436142147
    [Google Scholar]
  133. FriedR. CarltonR.M. FriedD.A. Starving Cancer Cells: Evidence-Based Strategies to Slow Cancer Progression: A Selection of Readings for Health Services Providers.Academic Press2021246
    [Google Scholar]
  134. Benítez-ChaoD.F. León-BuitimeaA. Lerma-EscaleraJ.A. Morones-RamírezJ.R. Bacteriocins: An overview of antimicrobial, toxicity, and biosafety assessment by in vivo models.Front. Microbiol.20211263069510.3389/fmicb.2021.63069533935991
    [Google Scholar]
  135. SimonsA. AlhanoutK. DuvalR.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria.Microorganisms20208563910.3390/microorganisms805063932349409
    [Google Scholar]
  136. SamM. SaglamS. AltindagS. KoseK. EmulE. UzunL. SaglamN. Lantibiotics nanotechnology, bioengineering, and biotechnology.Nanotechnology Applications in Health and Environmental SciencesSpringer2021319331
    [Google Scholar]
  137. YiY. LiP. ZhaoF. ZhangT. ShanY. WangX. LiuB. ChenY. ZhaoX. LüX. Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry.Trends Food Sci. Technol.202212038740110.1016/j.tifs.2022.01.018
    [Google Scholar]
  138. MarkovićK.G. GrujovićM.Ž. KoraćevićM.G. NikodijevićD.D. MilutinovićM.G. Semedo-LemsaddekT. DjilasM.D. Colicins and microcins produced by enterobacteriaceae: Characterization, mode of action, and putative applications.Int. J. Environ. Res. Public Health202219181182510.3390/ijerph19181182536142096
    [Google Scholar]
  139. NagataS. SuzukiJ. SegawaK. FujiiT. Exposure of phosphatidylserine on the cell surface.Cell Death Differ.201623695296110.1038/cdd.2016.726891692
    [Google Scholar]
  140. HeilbronnerS. KrismerB. Brötz-OesterheltH. PeschelA. The microbiome-shaping roles of bacteriocins.Nat. Rev. Microbiol.2021191172673910.1038/s41579‑021‑00569‑w34075213
    [Google Scholar]
  141. GarsaA.K. ChoudhuryP.K. PuniyaA.K. DhewaT. MalikR.K. TomarS.K. Bovicins: The bacteriocins of streptococci and their potential in methane mitigation.Probiotics Antimicrob. Proteins20191141403141310.1007/s12602‑018‑9502‑z30603877
    [Google Scholar]
  142. Flores-RomeroH. RosU. Garcia-SaezA.J. Pore formation in regulated cell death.EMBO J.20203923e10575310.15252/embj.202010575333124082
    [Google Scholar]
  143. ChoiS. BaekM. ChungM.J. LimS. YiH. Distribution of bacteriocin genes in the lineages of Lactiplantibacillus plantarum.Sci. Rep.20211112006310.1038/s41598‑021‑99683‑134625657
    [Google Scholar]
  144. GoudarziF. EsmaeilzadehM. YaghoubiH. The mechanisms of anticancer activity of nisin peptide on myelogenous leukemia cell line (K562) as a new treatment: Inducing apoptosis by changing in the expression of bax and Bcl-2 genes.Int. J. Pept. Res. Ther.20212742661267010.1007/s10989‑021‑10281‑1
    [Google Scholar]
  145. KamarajanP. HayamiT. MatteB. LiuY. DanciuT. RamamoorthyA. WordenF. KapilaS. KapilaY. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival.PLoS One2015107e013100810.1371/journal.pone.013100826132406
    [Google Scholar]
  146. BaindaraP. GautamA. RaghavaG.P.S. KorpoleS. Anticancer properties of a defensin like class IId Bacteriocin Laterosporulin10.Sci. Rep.2017714654110.1038/srep4654128422156
    [Google Scholar]
  147. BaindaraP. ChaudhryV. MittalG. LiaoL.M. MatosC.O. KhatriN. FrancoO.L. PatilP.B. KorpoleS. Characterization of the antimicrobial peptide penisin, a class ia novel lantibiotic from Paenibacillus sp. strain A3.Antimicrob. Agents Chemother.201660158059110.1128/AAC.01813‑1526574006
    [Google Scholar]
  148. KaurS. KaurS. Bacteriocins as potential anticancer agents.Front. Pharmacol.2015627210.3389/fphar.2015.0027226617524
    [Google Scholar]
  149. Mesa-PereiraB. O’ConnorP.M. ReaM.C. CotterP.D. HillC. RossR.P. Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli.Sci. Rep.201771306910.1038/s41598‑017‑02868‑w28596555
    [Google Scholar]
  150. ZhangQ.Y. YanZ.B. MengY.M. HongX.Y. ShaoG. MaJ.J. ChengX.R. LiuJ. KangJ. FuC.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential.Mil. Med. Res.2021814810.1186/s40779‑021‑00343‑234496967
    [Google Scholar]
  151. SharmaP.C. SharmaD. SharmaA. BhagatM. OlaM. ThakurV.K. BhardwajJ.K. GoyalR.K. Recent advances in microbial toxin-related strategies to combat cancer.Semin. Cancer Biol.202286Pt 375376810.1016/j.semcancer.2021.07.00734271147
    [Google Scholar]
  152. LanH. HosomiK. KunisawaJ. Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system.Vaccine201937426232623910.1016/j.vaccine.2019.08.03231466706
    [Google Scholar]
  153. QueredaJ.J. Morón-GarcíaA. Palacios-GorbaC. DessauxC. García-del PortilloF. PucciarelliM.G. OrtegaA.D. Pathogenicity and virulence of Listeria monocytogenes : A trip from environmental to medical microbiology.Virulence20211212509254510.1080/21505594.2021.197552634612177
    [Google Scholar]
  154. BandalaC. Cortés-AlgaraA.L. Mejía-BarradasC.M. Ilizaliturri-FloresI. Dominguez-RubioR. Bazán-MéndezC.I. Floriano-SánchezE. Luna-AriasJ.P. Anaya-RuizM. Lara-PadillaE. Botulinum neurotoxin type A inhibits synaptic vesicle 2 expression in breast cancer cell lines.Int. J. Clin. Exp. Pathol.2015878411841826339411
    [Google Scholar]
  155. TrivanovićD. PavelićK. PeršurićŽ. Fighting cancer with bacteria and their toxins.Int. J. Mol. Sci.202122231298010.3390/ijms22231298034884780
    [Google Scholar]
  156. BandalaC. Perez-SantosJ.L.M. Lara-PadillaE. Delgado LopezM.G. Anaya-RuizM. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line.Asian Pac. J. Cancer Prev.201314289189410.7314/APJCP.2013.14.2.89123621257
    [Google Scholar]
  157. MittalS.O. JabbariB. Botulinum neurotoxins and cancer—a review of the literature.Toxins20201213210.3390/toxins1201003231948115
    [Google Scholar]
  158. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑334508254
    [Google Scholar]
  159. MademtzoglouD. RelaixF. From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation.Exp. Cell Res.2022420111327510.1016/j.yexcr.2022.11327535931143
    [Google Scholar]
  160. LingwoodC. Verotoxin receptor-based pathology and therapies.Front. Cell. Infect. Microbiol.20201012310.3389/fcimb.2020.0012332296648
    [Google Scholar]
  161. SharmaN.C. EfstratiouA. MokrousovI. MutrejaA. DasB. RamamurthyT. Diphtheria.Nat. Rev. Dis. Primers2019518110.1038/s41572‑019‑0131‑y31804499
    [Google Scholar]
  162. ChenJ.K. YangD. ShenB. MurrayV. Bleomycin analogues preferentially cleave at the transcription start sites of actively transcribed genes in human cells.Int. J. Biochem. Cell Biol.201785566510.1016/j.biocel.2017.02.00128167289
    [Google Scholar]
  163. GaoY. ShangQ. LiW. GuoW. StojadinovicA. MannionC. ManY. ChenT. Antibiotics for cancer treatment: A double-edged sword.J. Cancer202011175135514910.7150/jca.4747032742461
    [Google Scholar]
  164. WangJ. ZhouY. YeY. ShangX. CaiY. XiongC. WuY. XuH. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis.J. Ethnopharmacol.201113731089109410.1016/j.jep.2011.07.01621798328
    [Google Scholar]
  165. PhamV.T.T. NguyenH.T. NguyenC.T. ChoiY.S. DhakalD. KimT.S. JungH.J. YamaguchiT. SohngJ.K. Identification and enhancing production of a novel macrolide compound in engineered Streptomyces peucetius.RSC Advances20211153168317310.1039/D0RA06099B35424263
    [Google Scholar]
  166. ShresthaB. PokhrelA.R. DarsandhariS. ParajuliP. SohngJ.K. PandeyR.P. Engineering Streptomyces peucetius for doxorubicin and daunorubicin biosynthesis: The bioengineering perspective.Pharmaceuticals from Microbes201919120910.1007/978‑3‑030‑01881‑8_7
    [Google Scholar]
  167. RickardB.P. ConradC. SorrinA.J. RuhiM.K. ReaderJ.C. HuangS.A. FrancoW. ScarcelliG. PolacheckW.J. RoqueD.M. del CarmenM.G. HuangH.C. DemirciU. RizviI. Malignant ascites in ovarian cancer: Cellular, acellular, and biophysical determinants of molecular characteristics and therapy response.Cancers20211317431810.3390/cancers1317431834503128
    [Google Scholar]
  168. McEvoyG.K. Bringing medication prescribing out of the dark: Time for full disclosure.Am. J. Health Syst. Pharm.2018751173974010.2146/ajhp18015329802108
    [Google Scholar]
  169. DangX. OgbuS.C. ZhaoJ. NguyenL.N.T. CaoD. NguyenL.N. KhanalS. SchankM. ThakuriB.K.C. WuX.Y. MorrisonZ.D. ZhangJ. LiZ. El GazzarM. NingS. WangL. WangZ. MoormanJ.P. YaoZ.Q. Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection.Cell Death Dis.202011319610.1038/s41419‑020‑2395‑232193368
    [Google Scholar]
  170. KrayzG.T. BittnerS. DhimanA. BeckerJ.Y. Electrochemistry of quinones with respect to their role in biomedical chemistry.Chem. Rec.20212192332234310.1002/tcr.20210006934107155
    [Google Scholar]
  171. ChenH. CuiJ. WangP. WangX. WenJ. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis.Microb. Cell Fact.20201913210.1186/s12934‑020‑01301‑832054531
    [Google Scholar]
  172. MurataE.P. BielsaS. PardinaM. Salud SalviaA. PorcelL. PorcelJ. Impact of pleural effusion in ovarian cancer: A retrospective study in Lleida, Spain.J. Clin. Oncol.20213915_supple17534e1753410.1200/JCO.2021.39.15_suppl.e17534
    [Google Scholar]
  173. BrandtJ.P. GerrietsV. Bleomycin.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  174. HanssenK.M. HaberM. FletcherJ.I. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition.Drug Resist. Updat.20215910079510.1016/j.drup.2021.10079534983733
    [Google Scholar]
  175. GadS.E. Mechanism of Toxicity.Encyclopedia of Toxicology3rd ed.2014
    [Google Scholar]
  176. SegermanZ.J. RoyB. HechtS.M. Characterization of bleomycin-mediated cleavage of a hairpin DNA library.Biochemistry201352315315532710.1021/bi400779r23834496
    [Google Scholar]
  177. LiuX.F. XiangL. ZhouQ. CarralotJ.P. PrunottoM. NiederfellnerG. PastanI. ActinomycinD. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis.Proc. Natl. Acad. Sci.201611338106661067110.1073/pnas.161148111327601652
    [Google Scholar]
  178. YuA.F. ChanA.T. SteingartR.M. Cardiac magnetic resonance and cardio-oncology.J. Am. Coll. Cardiol.201973779279410.1016/j.jacc.2018.11.04530784672
    [Google Scholar]
  179. MarcqG. JarryE. OuzaidI. HermieuJ.F. HenonF. FantoniJ.C. XylinasE. Contemporary best practice in the use of neoadjuvant chemotherapy in muscle-invasive bladder cancer.Ther. Adv. Urol.201911175628721882367810.1177/175628721882367830728860
    [Google Scholar]
  180. ThornC.F. OshiroC. MarshS. Hernandez-BoussardT. McLeodH. KleinT.E. AltmanR.B. Doxorubicin pathways.Pharmacogenet. Genomics201121744044610.1097/FPC.0b013e32833ffb5621048526
    [Google Scholar]
  181. SoleimaniN. JavadiM.M. Future prospects of bacteria-mediated cancer therapies: Affliction or opportunity?Microb. Pathog.202217210579510.1016/j.micpath.2022.10579536155065
    [Google Scholar]
  182. NallarS.C. XuD.Q. KalvakolanuD.V. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges.Cytokine20178916017210.1016/j.cyto.2016.01.00226778055
    [Google Scholar]
  183. BabanC.K. CroninM. O’HanlonD. O’SullivanG.C. TangneyM. Bacteria as vectors for gene therapy of cancer.Bioeng. Bugs20101638539410.4161/bbug.1.6.1314621468205
    [Google Scholar]
  184. SaltzmanD. AugustinL. LeonardA. MertensottoM. SchottelJ. Low dose chemotherapy combined with attenuated Salmonella decreases tumor burden and is less toxic than high dose chemotherapy in an autochthonous murine model of breast cancer.Surgery2018163350951410.1016/j.surg.2017.09.03629229318
    [Google Scholar]
  185. KwakT.W. ShinH.J. JeongY.I. HanM.E. OhS.O. KimH.J. KimD.H. KangD.H. Anticancer activity of Streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma.Drug Des. Devel. Ther.201592201221410.2147/DDDT.S8020525931814
    [Google Scholar]
  186. ZhaoM. ChenX. YangZ. YangX. PengQ. Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology.Microbiol. Res.202226112708210.1016/j.micres.2022.12708235660471
    [Google Scholar]
  187. LarssonD.G.J. FlachC.F. Antibiotic resistance in the environment.Nat. Rev. Microbiol.202220525726910.1038/s41579‑021‑00649‑x34737424
    [Google Scholar]
  188. PunjV. BhattacharyyaS. Saint-DicD. VasuC. CunninghamE.A. GravesJ. YamadaT. ConstantinouA.I. ChristovK. WhiteB. LiG. MajumdarD. ChakrabartyA.M. Das GuptaT.K. Bacterial cupredoxin Azurin as an inducer of apoptosis and regression in human breast cancer.Oncogene200423132367237810.1038/sj.onc.120737614981543
    [Google Scholar]
  189. WitharanaC. Lakshani DharmawickremeR.B. Bacterial protein Azurin and tumour suppressor p53 in cancer regression.Adv. Hum. Biol.202111214715110.4103/AIHB.AIHB_69_20
    [Google Scholar]
  190. BaindaraP. NallabelliN. KorpoleS. Whole genome mining reveals a diverse repertoire of lanthionine synthetases and lanthipeptides among the genus Paenibacillus.J. Appl. Microbiol.2020128247349010.1111/jam.1449531633851
    [Google Scholar]
  191. GlareT.R. DurrantA. BerryC. PalmaL. OrmskirkM.M. CoxM.P. Phylogenetic determinants of toxin gene distribution in genomes of Brevibacillus laterosporus.Genomics202011211042105310.1016/j.ygeno.2019.06.02031226484
    [Google Scholar]
  192. HelminkB.A. KhanM.A.W. HermannA. GopalakrishnanV. WargoJ.A. The microbiome, cancer, and cancer therapy.Nat. Med.201925337738810.1038/s41591‑019‑0377‑730842679
    [Google Scholar]
  193. ZargarA. ChangS. KothariA. SnijdersA.M. MaoJ.H. WangJ. HernándezA.C. KeaslingJ.D. BivonaT.G. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy.Chronic Dis. Transl. Med.20195425826610.1016/j.cdtm.2019.11.00132055785
    [Google Scholar]
  194. NazirA. Review on metagenomics and its applications.IJIR201623
    [Google Scholar]
  195. FernandesM.R. AggarwalP. CostaR.G.F. ColeA.M. TrinchieriG. Targeting the gut microbiota for cancer therapy.Nat. Rev. Cancer2022221270372210.1038/s41568‑022‑00513‑x36253536
    [Google Scholar]
  196. KarpińskiT. AdamczakA. Anticancer activity of bacterial proteins and peptides.Pharmaceutics20181025410.3390/pharmaceutics1002005429710857
    [Google Scholar]
  197. ZhongC. ZhangL. YuL. HuangJ. HuangS. YaoY. A review for antimicrobial peptides with anticancer properties: Re-purposing of potential anticancer agents.BIO Integration20211415616710.15212/bioi‑2020‑0013
    [Google Scholar]
  198. KaliaV.C. PatelS.K.S. ChoB.K. WoodT.K. LeeJ.K. Emerging applications of bacteria as antitumor agents.Semin. Cancer Biol.202286Pt 21014102510.1016/j.semcancer.2021.05.01233989734
    [Google Scholar]
  199. GuptaK.H. NowickiC. GiuriniE.F. MarzoA.L. ZlozaA. Bacterial-based cancer therapy (BBCT): Recent advances, current challenges, and future prospects for cancer immunotherapy.Vaccines2021912149710.3390/vaccines912149734960243
    [Google Scholar]
  200. ThundimadathilJ. Cancer treatment using peptides: Current therapies and future prospects.J. Amino Acids2012201211310.1155/2012/96734723316341
    [Google Scholar]
  201. MughalM.J. KwokH.F. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential.Semin. Cancer Biol.202286Pt 21026104410.1016/j.semcancer.2021.06.01134119644
    [Google Scholar]
  202. YaghoubiA. KhazaeiM. HasanianS.M. AvanA. ChoW.C. SoleimanpourS. Bacteriotherapy in breast cancer.Int. J. Mol. Sci.20192023588010.3390/ijms2023588031771178
    [Google Scholar]
  203. KissK. Biri-KovácsB. SzabóR. RanđelovićI. EnyediK.N. SchlosserG. OroszÁ. KapuváriB. TóváriJ. MezőG. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems.Eur. J. Med. Chem.201917610511610.1016/j.ejmech.2019.05.01631100648
    [Google Scholar]
  204. Pappas-GogosG. TepelenisK. FousekisF. KatsanosK. PitiakoudisM. VlachosK. The implication of gastric microbiome in the treatment of gastric cancer.Cancers2022148203910.3390/cancers1408203935454944
    [Google Scholar]
  205. SoleimanpourS. HasanianS.M. AvanA. YaghoubiA. KhazaeiM. Bacteriotherapy in gastrointestinal cancer.Life Sci.202025411775410.1016/j.lfs.2020.11775432389833
    [Google Scholar]
  206. SahaM. Medical oncology in cancer treatment.Cancer Diagnostics and Therapeutics.SingaporeSpringer Singapore202227128510.1007/978‑981‑16‑4752‑9_12
    [Google Scholar]
  207. HawkinsP.M.E. TranW. NagalingamG. CheungC.Y. GiltrapA.M. CookG.M. BrittonW.J. PayneR.J. Total synthesis and antimycobacterial activity of ohmyungsamycin a, deoxyecumicin, and ecumicin.Chemistry20202666152001520510.1002/chem.20200240832567168
    [Google Scholar]
  208. RamadhaniD. MaharaniR. GazzaliA.M. MuchtaridiM. Cyclic peptides for the treatment of cancers: A review.Molecules20222714442810.3390/molecules2714442835889301
    [Google Scholar]
  209. GomathiA. GothandamK.M. Ocean dwelling actinobacteria as source of antitumor compounds.Braz. Arch. Biol. Technol.201659e1616005510.1590/1678‑4324‑2016160055
    [Google Scholar]
  210. RodriguesG. SilvaG.G.O. BucciniD.F. DuqueH.M. DiasS.C. FrancoO.L. Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection.Front. Microbiol.201910169010.3389/fmicb.2019.0169031447795
    [Google Scholar]
  211. OleksakP. GondaJ. NepovimovaE. KucaK. MusilekK. The oxazolomycin family: A review of current knowledge.RSC Advances20201067407454079410.1039/D0RA08396H35519217
    [Google Scholar]
  212. HassanS.S. AnjumK. AbbasS.Q. AkhterN. ShaguftaB.I. ShahS.A.A. TasneemU. Emerging biopharmaceuticals from marine actinobacteria.Environ. Toxicol. Pharmacol.201749344710.1016/j.etap.2016.11.01527898308
    [Google Scholar]
  213. MuellerA.L. BrockmuellerA. FahimiN. GhotbiT. HashemiS. SadriS. KhorshidiN. KunnumakkaraA.B. ShakibaeiM. Bacteria-mediated modulatory strategies for colorectal cancer treatment.Biomedicines202210483210.3390/biomedicines1004083235453581
    [Google Scholar]
  214. BrucoliF. NatoliA. MarimuthuP. BorrelloM.T. StapletonP. GibbonsS. SchätzleinA. Efficient synthesis and biological evaluation of proximicins A, B and C.Bioorg. Med. Chem.20122062019202410.1016/j.bmc.2012.01.04322364744
    [Google Scholar]
  215. AftabU. SajidI. Antitumor peptides from Streptomyces sp. SSA 13, isolated from Arabian Sea.Int. J. Pept. Res. Ther.201723219921110.1007/s10989‑016‑9552‑6
    [Google Scholar]
  216. GarizoA.R. CoelhoL.F. PintoS. DiasT.P. FernandesF. BernardesN. FialhoA.M. The Azurin-derived peptide CT-p19LC exhibits membrane-active properties and induces cancer cell death.Biomedicines202199119410.3390/biomedicines909119434572379
    [Google Scholar]
  217. PahleJ. KobeltD. AumannJ. BehrensD. DaberkowO. MokritzkijM. PiontekJ. SteinU. WaltherW. Effective oncoleaking treatment of pancreatic cancer by claudin-targeted suicide gene therapy with Clostridium perfringens enterotoxin (CPE).Cancers20211317439310.3390/cancers1317439334503203
    [Google Scholar]
  218. KheirollahiM. Fotoohi-ArdakaniG. Zarei JalianiH. NoorianM. AnsariniyiaH. Targeting MCF-7 cell line by listeriolysin O pore forming toxin fusion with AHNP targeted peptide.Adv. Biomed. Res.2019813310.4103/abr.abr_18_1931259162
    [Google Scholar]
  219. GrendaT. GrendaA. KrawczykP. KwiatekK. Botulinum toxin in cancer therapy—current perspectives and limitations.Appl. Microbiol. Biotechnol.2022106248549510.1007/s00253‑021‑11741‑w34951660
    [Google Scholar]
  220. HavaeiS.M. AucoinM.G. Jahanian-NajafabadiA. Pseudomonas exotoxin-based immunotoxins: Over three decades of efforts on targeting cancer cells with the toxin.Front. Oncol.20211178180010.3389/fonc.2021.78180034976821
    [Google Scholar]
  221. HadidM.A. Al-HalbosiyM.M.F. Al-ShaibaniA.B. Anticancer and cytotoxic effect of verotoxin 1 on colon cancer cell line.Han’guk Misaengmul, Saengmyong Konghakhoe Chi.202250338739410.48022/mbl.2204.04005
    [Google Scholar]
  222. ShafieeF. AucoinM.G. Jahanian-NajafabadiA. Targeted diphtheria toxin-based therapy: A review article.Front. Microbiol.201910234010.3389/fmicb.2019.0234031681205
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673253414231127162817
Loading
/content/journals/cmc/10.2174/0109298673253414231127162817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test