Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Diabetic nephropathy (DN) has gradually become one of the main causes of end-stage renal disease (ESRD). However, there is still a lack of effective preventive measures to delay its progression. As the energy factory in the cell, mitochondria play an irreplaceable role in maintaining cell homeostasis. Interestingly, recent studies have shown that in addition to maintaining homeostasis in cells in which mitochondria reside, when mitochondrial perturbations occur in one tissue, distal tissues can also sense and act through mitochondrial stress response pathways through a group of proteins or peptides called “mitokines”. Here, we reviewed the mitokines that have been found thus far and summarized their research progress in DN. Finally, we explored the possibility of mitokines as potential therapeutic targets for DN.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673255403230919061828
2023-10-26
2025-04-19
Loading full text...

Full text loading...

References

  1. AlicicR.Z. RooneyM.T. TuttleK.R. Diabetic kidney disease: Challenges, progress, and possibilities.Clin. J. Am. Soc. Nephrol.201712122032204510.2215/CJN.1149111628522654
    [Google Scholar]
  2. SelbyN.M. TaalM.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines.Diabetes Obes. Metab.202022S131510.1111/dom.1400732267079
    [Google Scholar]
  3. WarrenA.M. KnudsenS.T. CooperM.E. Diabetic nephropathy: An insight into molecular mechanisms and emerging therapies.Expert Opin. Ther. Targets201923757959110.1080/14728222.2019.162472131154867
    [Google Scholar]
  4. NunnariJ. SuomalainenA. Mitochondria: In sickness and in health.Cell201214861145115910.1016/j.cell.2012.02.03522424226
    [Google Scholar]
  5. DuannP. LinP.H. Mitochondria damage and kidney disease.Adv. Exp. Med. Biol.201798252955110.1007/978‑3‑319‑55330‑6_2728551805
    [Google Scholar]
  6. AkbariM. KirkwoodT.B.L. BohrV.A. Mitochondria in the signaling pathways that control longevity and health span.Ageing Res. Rev.20195410094010.1016/j.arr.2019.10094031415807
    [Google Scholar]
  7. ColquhounA. Lipids, mitochondria and cell death: Implications in neuro-oncology.Mol. Neurobiol.2010421768810.1007/s12035‑010‑8134‑420429043
    [Google Scholar]
  8. YangM. LiC. SunL. Mitochondria-Associated membranes (MAMs): A novel therapeutic target for treating metabolic syndrome.Curr. Med. Chem.20212871347136210.2174/1875533XMTA0iNDEoz32048952
    [Google Scholar]
  9. CarafoliE. The fateful encounter of mitochondria with calcium: How did it happen?Biochim. Biophys. Acta Bioenerg.201017976-759560610.1016/j.bbabio.2010.03.02420385096
    [Google Scholar]
  10. DevineM.J. KittlerJ.T. Mitochondria at the neuronal presynapse in health and disease.Nat. Rev. Neurosci.2018192638010.1038/nrn.2017.17029348666
    [Google Scholar]
  11. BikomeyeJ.C. TerwoordJ.D. SantosJ.H. BeyerA.M. Emerging mitochondrial signaling mechanisms in cardio-oncology: Beyond oxidative stress.Am. J. Physiol. Heart Circ. Physiol.20223234H702H72010.1152/ajpheart.00231.202235930448
    [Google Scholar]
  12. GreenD.R. GalluzziL. KroemerG. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging.Science201133360461109111210.1126/science.120194021868666
    [Google Scholar]
  13. AbateM. FestaA. FalcoM. LombardiA. LuceA. GrimaldiA. ZappavignaS. SperlonganoP. IraceC. CaragliaM. MissoG. Mitochondria as playmakers of apoptosis, autophagy and senescence.Semin. Cell Dev. Biol.20209813915310.1016/j.semcdb.2019.05.02231154010
    [Google Scholar]
  14. HanY. TangS. LiuY. LiA. ZhanM. YangM. SongN. ZhangW. WuX. PengC. ZhangH. YangS. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice.Cell Death Dis.2021121092510.1038/s41419‑021‑04184‑834628484
    [Google Scholar]
  15. YangM. HanY. LuoS. XiongX. ZhuX. ZhaoH. JiangN. XiaoY. WeiL. LiC. YangJ. SunL. MAMs protect against ectopic fat deposition and Lipid-Related kidney damage in DN patients.Front. Endocrinol.20211260958010.3389/fendo.2021.60958033679616
    [Google Scholar]
  16. AudzeyenkaI. BierżyńskaA. LayA.C. Podocyte bioenergetics in the development of diabetic nephropathy: The role of mitochondria.Endocrinology20221631bqab23410.1210/endocr/bqab23434791124
    [Google Scholar]
  17. YangS. HanY. LiuJ. SongP. XuX. ZhaoL. HuC. XiaoL. LiuF. ZhangH. SunL. Mitochondria: A novel therapeutic target in diabetic nephropathy.Curr. Med. Chem.201724293185320228486920
    [Google Scholar]
  18. LiC. LiL. YangM. YangJ. ZhaoC. HanY. ZhaoH. JiangN. WeiL. XiaoY. LiuY. XiongX. XiY. LuoS. DengF. ChenW. YuanS. ZhuX. XiaoL. SunL. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy.Diabetes20227151034105010.2337/db21‑098335133431
    [Google Scholar]
  19. YangM. LiC. YangS. XiaoY. ChenW. GaoP. JiangN. XiongS. WeiL. ZhangQ. YangJ. ZengL. SunL. Mitophagy: A novel therapeutic target for treating DN.Curr. Med. Chem.202128142717272810.2174/092986732766620100615265633023427
    [Google Scholar]
  20. YooS.M. JungY.K. A molecular approach to mitophagy and mitochondrial dynamics.Mol. Cells2018411182629370689
    [Google Scholar]
  21. FivensonE.M. LautrupS. SunN. Scheibye-KnudsenM. StevnsnerT. NilsenH. BohrV.A. FangE.F. Mitophagy in neurodegeneration and aging.Neurochem. Int.201710920220910.1016/j.neuint.2017.02.00728235551
    [Google Scholar]
  22. Poveda-HuertesD. TaskinA.A. DhaouadiI. MyketinL. MaradaA. HabernigL. BüttnerS. VögtleF.N. Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR.PLoS Genet.2021177e100966410.1371/journal.pgen.100966434214073
    [Google Scholar]
  23. Poveda-HuertesD. MaticS. MaradaA. HabernigL. LichevaM. MyketinL. GilsbachR. Tosal-CastanoS. PapinskiD. MulicaP. KretzO. KücükköseC. TaskinA.A. HeinL. KraftC. BüttnerS. MeisingerC. VögtleF.N. An early mtUPR: Redistribution of the nuclear transcription factor rox1 to mitochondria protects against intramitochondrial proteotoxic aggregates.Mol. Cell2020771180188.e910.1016/j.molcel.2019.09.02631630969
    [Google Scholar]
  24. LeeM.J. JangY. ZhuJ. NamgungE. GoD. SeoC. JuX. CuiJ. LeeY.L. KangH. KimH. ChungW. HeoJ.Y. Auraptene enhances junction assembly in cerebrovascular endothelial cells by promoting resilience to mitochondrial stress through activation of antioxidant enzymes and mtUPR.Antioxidants202110347510.3390/antiox1003047533802930
    [Google Scholar]
  25. WengH. MaY. ChenL. CaiG. ChenZ. ZhangS. YeQ. A new vision of mitochondrial unfolded protein response to the sirtuin family.Curr. Neuropharmacol.202018761362310.2174/1570159X1866620012316500231976838
    [Google Scholar]
  26. ZhuL. ZhouQ. HeL. ChenL. Mitochondrial unfolded protein response: An emerging pathway in human diseases.Free Radic. Biol. Med.202116312513410.1016/j.freeradbiomed.2020.12.01333347985
    [Google Scholar]
  27. ShenG. LiuW. XuL. WangL. Mitochondrial unfolded protein response and its roles in stem cells.Stem Cells Dev.2020291062763710.1089/scd.2019.027832070227
    [Google Scholar]
  28. VögtleF.N. Open questions on the mitochondrial unfolded protein response.FEBS J.202128892856286910.1111/febs.1556932961625
    [Google Scholar]
  29. GuL.F. ChenJ.Q. LinQ.Y. YangY.Z. Roles of mitochondrial unfolded protein response in mammalian stem cells.World J. Stem Cells202113773775210.4252/wjsc.v13.i7.73734367475
    [Google Scholar]
  30. BaylanF.A. YararE. Relationship between the mitochondria-derived peptide MOTS-c and insulin resistance in obstructive sleep apnea.Sleep Breath.202125286186610.1007/s11325‑020‑02273‑033394327
    [Google Scholar]
  31. WuD. KampmannE. QianG. Novel insights into the role of Mitochondria-Derived peptides in myocardial infarction.Front. Physiol.20211275017710.3389/fphys.2021.75017734777013
    [Google Scholar]
  32. LiQ. LuH. HuG. YeZ. ZhaiD. YanZ. WangL. XiangA. LuZ. Earlier changes in mice after D-galactose treatment were improved by mitochondria derived small peptide MOTS-c.Biochem. Biophys. Res. Commun.2019513243944510.1016/j.bbrc.2019.03.19430967270
    [Google Scholar]
  33. WooD.K. ShadelG.S. Mitochondrial stress signals revise an old aging theory.Cell20111441111210.1016/j.cell.2010.12.02321215364
    [Google Scholar]
  34. YiH.S. Implications of mitochondrial unfolded protein response and mitokines: A perspective on fatty liver diseases.Endocrinol. Metab.2019341394610.3803/EnM.2019.34.1.3930912337
    [Google Scholar]
  35. WelchenE. GonzalezD.H. Breaking boundaries: Exploring short- and long-distance mitochondrial signalling in plants.New Phytol.2021232249450110.1111/nph.1761434255867
    [Google Scholar]
  36. MartucciM. ConteM. OstanR. ChiarielloA. MieleF. FranceschiC. SalvioliS. SantoroA. ProviniF. Both objective and paradoxical insomnia elicit a stress response involving mitokine production.Aging.20201211104971050510.18632/aging.10327432420904
    [Google Scholar]
  37. NishimuraT. NakatakeY. KonishiM. ItohN. Identification of a novel FGF, FGF-21, preferentially expressed in the liver.Biochim. Biophys. Acta Gene Struct. Expr.20001492120320610.1016/S0167‑4781(00)00067‑110858549
    [Google Scholar]
  38. IzumiyaY. BinaH.A. OuchiN. AkasakiY. KharitonenkovA. WalshK. FGF21 is an Akt-regulated myokine.FEBS Lett.2008582273805381010.1016/j.febslet.2008.10.02118948104
    [Google Scholar]
  39. FlippoK.H. PotthoffM.J. Metabolic messengers: FGF21.Nat. Metab.20213330931710.1038/s42255‑021‑00354‑233758421
    [Google Scholar]
  40. TyynismaaH. CarrollC.J. RaimundoN. Ahola-ErkkiläS. WenzT. RuhanenH. GuseK. HemminkiA. Peltola-MjøsundK.E. TulkkiV. OrešičM. MoraesC.T. PietiläinenK. HovattaI. SuomalainenA. Mitochondrial myopathy induces a starvation-like response.Hum. Mol. Genet.201019203948395810.1093/hmg/ddq31020656789
    [Google Scholar]
  41. SuomalainenA. EloJ.M. PietiläinenK.H. HakonenA.H. SevastianovaK. KorpelaM. IsohanniP. MarjavaaraS.K. TyniT. Kiuru-EnariS. PihkoH. DarinN. ÕunapK. KluijtmansL.A.J. PaetauA. BuzkovaJ. BindoffL.A. Annunen-RasilaJ. UusimaaJ. RissanenA. Yki-JärvinenH. HiranoM. TuliniusM. SmeitinkJ. TyynismaaH. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study.Lancet Neurol.201110980681810.1016/S1474‑4422(11)70155‑721820356
    [Google Scholar]
  42. KimK.H. JeongY.T. OhH. KimS.H. ChoJ.M. KimY.N. KimS.S. KimD.H. HurK.Y. KimH.K. KoT. HanJ. KimH.L. KimJ. BackS.H. KomatsuM. ChenH. ChanD.C. KonishiM. ItohN. ChoiC.S. LeeM.S. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine.Nat. Med.2013191839210.1038/nm.301423202295
    [Google Scholar]
  43. TezzeC. RomanelloV. DesbatsM.A. FadiniG.P. AlbieroM. FavaroG. CiciliotS. SorianoM.E. MorbidoniV. CerquaC. LoeflerS. KernH. FranceschiC. SalvioliS. ConteM. BlaauwB. ZampieriS. SalviatiL. ScorranoL. SandriM. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence.Cell Metab.201725613741389.e610.1016/j.cmet.2017.04.02128552492
    [Google Scholar]
  44. TouvierT. De PalmaC. RigamontiE. ScagliolaA. IncertiE. MazelinL. ThomasJ-L. D’AntonioM. PolitiL. SchaefferL. ClementiE. BrunelliS. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation.Cell Death Dis.201562e166310.1038/cddis.2014.59525719247
    [Google Scholar]
  45. FavaroG. RomanelloV. VaranitaT. Andrea DesbatsM. MorbidoniV. TezzeC. AlbieroM. CanatoM. GherardiG. De StefaniD. MammucariC. BlaauwB. BoncompagniS. ProtasiF. ReggianiC. ScorranoL. SalviatiL. SandriM. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass.Nat. Commun.2019101257610.1038/s41467‑019‑10226‑931189900
    [Google Scholar]
  46. XuL. NiuM. YuW. XiaW. GongF. WangO. Associations between FGF21, osteonectin and bone turnover markers in type 2 diabetic patients with albuminuria.J. Diabetes Complications201731358358810.1016/j.jdiacomp.2016.11.01227916484
    [Google Scholar]
  47. ChangL.H. ChuC.H. HuangC.C. LinL.Y. Fibroblast growth factor 21 levels exhibit the association with renal outcomes in subjects with type 2 diabetes mellitus.Front. Endocrinol.20221384601810.3389/fendo.2022.84601835528011
    [Google Scholar]
  48. ChengY. ZhangX. MaF. SunW. WangW. YuJ. ShiY. CaiL. XuZ. The role of akt2 in the protective effect of fenofibrate against diabetic nephropathy.Int. J. Biol. Sci.202016455356710.7150/ijbs.4064332025205
    [Google Scholar]
  49. ShaoM. YuL. ZhangF. LuX. LiX. ChengP. LinX. HeL. JinS. TanY. YangH. ZhangC. CaiL. Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model.Am. J. Physiol. Endocrinol. Metab.20153091E45E5410.1152/ajpendo.00026.201525968574
    [Google Scholar]
  50. ZhuS. HuX. BennettS. XuJ. MaiY. The molecular structure and role of humanin in neural and skeletal diseases, and in tissue regeneration.Front. Cell Dev. Biol.20221082335410.3389/fcell.2022.82335435372353
    [Google Scholar]
  51. YangY. GaoH. ZhouH. LiuQ. QiZ. ZhangY. ZhangJ. The role of mitochondria-derived peptides in cardiovascular disease: Recent updates.Biomed. Pharmacother.201911710907510.1016/j.biopha.2019.10907531185388
    [Google Scholar]
  52. MorrisD.L. KastnerD.W. JohnsonS. StrubM.P. HeY. BleckC.K.E. LeeD.Y. TjandraN. Humanin induces conformational changes in the apoptosis regulator BAX and sequesters it into fibers, preventing mitochondrial outer-membrane permeabilization.J. Biol. Chem.201929450190551906510.1074/jbc.RA119.01129731690630
    [Google Scholar]
  53. HashimotoY. ItoY. NiikuraT. ShaoZ. HataM. OyamaF. NishimotoI. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein.Biochem. Biophys. Res. Commun.2001283246046810.1006/bbrc.2001.476511327724
    [Google Scholar]
  54. YamagishiY. HashimotoY. NiikuraT. NishimotoI. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults.Peptides200324458559510.1016/S0196‑9781(03)00106‑212860203
    [Google Scholar]
  55. PopovL.D. Mitochondrial peptides-appropriate options for therapeutic exploitation.Cell Tissue Res.2019377216116510.1007/s00441‑019‑03049‑z31131430
    [Google Scholar]
  56. HashimotoY. KuritaM. AisoS. NishimotoI. MatsuokaM. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130.Mol. Biol. Cell200920122864287310.1091/mbc.e09‑02‑016819386761
    [Google Scholar]
  57. MatsuokaM. HashimotoY. Humanin and the receptors for humanin.Mol. Neurobiol.2010411222810.1007/s12035‑009‑8090‑z19997871
    [Google Scholar]
  58. YingG. IribarrenP. ZhouY. GongW. ZhangN. YuZ.X. LeY. CuiY. WangJ.M. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor.J. Immunol.2004172117078708510.4049/jimmunol.172.11.707815153530
    [Google Scholar]
  59. RochetteL. MelouxA. ZellerM. CottinY. VergelyC. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders.Arch. Cardiovasc. Dis.20201138-956457110.1016/j.acvd.2020.03.02032680738
    [Google Scholar]
  60. LiJ. SunY.B.Y. ChenW. FanJ. LiS. QuX. ChenQ. ChenR. ZhuD. ZhangJ. WuZ. ChiH. CrawfordS. OorschotV. PuellesV.G. KerrP.G. RenY. NilssonS.K. ChristianM. TangH. ChenW. BertramJ.F. Nikolic-PatersonD.J. YuX. Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS.EMBO Rep.2020212e4878110.15252/embr.20194878131916354
    [Google Scholar]
  61. QinQ. JinJ. HeF. ZhengY. LiT. ZhangY. HeJ. Humanin promotes mitochondrial biogenesis in pancreatic MIN6 β-cells.Biochem. Biophys. Res. Commun.2018497129229710.1016/j.bbrc.2018.02.07129432738
    [Google Scholar]
  62. PaharkovaV. AlvarezG. NakamuraH. CohenP. LeeK.W. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production.Mol. Cell. Endocrinol.20154139610010.1016/j.mce.2015.06.01526116236
    [Google Scholar]
  63. VoigtA. JelinekH.F. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress.Physiol. Rep.201649e1279610.14814/phy2.1279627173674
    [Google Scholar]
  64. RamanjaneyaM. BettahiI. JerobinJ. ChandraP. Abi KhalilC. SkarulisM. AtkinS.L. Abou-SamraA.B. Mitochondrial-derived peptides are down regulated in diabetes subjects.Front. Endocrinol.20191033110.3389/fendo.2019.0033131214116
    [Google Scholar]
  65. MuzumdarR.H. HuffmanD.M. AtzmonG. BuettnerC. CobbL.J. FishmanS. BudagovT. CuiL. EinsteinF.H. PoduvalA. HwangD. BarzilaiN. CohenP. Humanin: A novel central regulator of peripheral insulin action.PLoS One200947e633410.1371/journal.pone.000633419623253
    [Google Scholar]
  66. HoangP.T. ParkP. CobbL.J. Paharkova-VatchkovaV. HakimiM. CohenP. LeeK.W. The neurosurvival factor Humanin inhibits β-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice.Metabolism201059334334910.1016/j.metabol.2009.08.00119800083
    [Google Scholar]
  67. SinghB.K. MascarenhasD.D. Bioactive peptides control receptor for advanced glycated end product-induced elevation of kidney insulin receptor substrate 2 and reduce albuminuria in diabetic mice.Am. J. Nephrol.200828689089910.1159/00014104218566543
    [Google Scholar]
  68. Herman-EdelsteinM. ScherzerP. TobarA. LeviM. GafterU. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy.J. Lipid Res.201455356157210.1194/jlr.P04050124371263
    [Google Scholar]
  69. XuT. XuX. ZhangL. ZhangK. WeiQ. ZhuL. YuY. XiaoL. LinL. QianW. WangJ. KeM. AnX. LiuS. Lipidomics reveals serum specific lipid alterations in diabetic nephropathy.Front. Endocrinol.20211278141710.3389/fendo.2021.78141734956093
    [Google Scholar]
  70. ZhangX. Urbieta-CaceresV.H. EirinA. BellC.C. CraneJ.A. TangH. JordanK.L. OhY.K. ZhuX.Y. KorsmoM.J. BacharA.R. CohenP. LermanA. LermanL.O. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice.Life Sci.2012915-619920610.1016/j.lfs.2012.07.01022820173
    [Google Scholar]
  71. LiuC. GidlundE.K. WitaspA. QureshiA.R. SöderbergM. ThorellA. NaderG.A. BaranyP. StenvinkelP. von WaldenF. Reduced skeletal muscle expression of mitochondrial-derived peptides humanin and MOTS-C and Nrf2 in chronic kidney disease.Am. J. Physiol. Renal Physiol.20193175F1122F113110.1152/ajprenal.00202.201931432706
    [Google Scholar]
  72. BenayounB.A. LeeC. MOTS-c: A Mitochondrial-Encoded regulator of the nucleus.BioEssays2019419190004610.1002/bies.20190004631378979
    [Google Scholar]
  73. ZarseK. RistowM. A mitochondrially encoded hormone ameliorates obesity and insulin resistance.Cell Metab.201521335535610.1016/j.cmet.2015.02.01325738453
    [Google Scholar]
  74. LeeC. ZengJ. DrewB.G. SallamT. Martin-MontalvoA. WanJ. KimS.J. MehtaH. HevenerA.L. de CaboR. CohenP. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance.Cell Metab.201521344345410.1016/j.cmet.2015.02.00925738459
    [Google Scholar]
  75. KimK.H. SonJ.M. BenayounB.A. LeeC. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress.Cell Metab.2018283516524.e710.1016/j.cmet.2018.06.00829983246
    [Google Scholar]
  76. von WaldenF. Fernandez-GonzaloR. NorrbomJ. EmanuelssonE.B. FigueiredoV.C. GidlundE.K. NorrbrandL. LiuC. SandströmP. HanssonB. WanJ. CohenP. AlknerB. Acute endurance exercise stimulates circulating levels of mitochondrial-derived peptides in humans.J. Appl. Physiol.202113131035104210.1152/japplphysiol.00706.201934351816
    [Google Scholar]
  77. KongB.S. MinS.H. LeeC. ChoY.M. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes.Cell Rep.202136410944710.1016/j.celrep.2021.10944734320351
    [Google Scholar]
  78. DuC. ZhangC. WuW. LiangY. WangA. WuS. ZhaoY. HouL. NingQ. LuoX. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance.Pediatr. Diabetes20181961058106410.1111/pedi.1268529691953
    [Google Scholar]
  79. YinY. PanY. HeJ. ZhongH. WuY. JiC. LiuL. CuiX. The mitochondrial-derived peptide MOTS-c relieves hyperglycemia and insulin resistance in gestational diabetes mellitus.Pharmacol. Res.202217510598710.1016/j.phrs.2021.10598734798268
    [Google Scholar]
  80. LiS. WangM. MaJ. PangX. YuanJ. PanY. FuY. LaherI. MOTS-c and exercise restore cardiac function by activating of NRG1-ErbB signaling in diabetic rats.Front. Endocrinol.20221381203210.3389/fendo.2022.81203235370955
    [Google Scholar]
  81. CobbL.J. LeeC. XiaoJ. YenK. WongR.G. NakamuraH.K. MehtaH.H. GaoQ. AshurC. HuffmanD.M. WanJ. MuzumdarR. BarzilaiN. CohenP. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers.Aging.20168479680910.18632/aging.10094327070352
    [Google Scholar]
  82. SequeiraI.R. WoodheadJ.S.T. ChanA. D’SouzaR.F. WanJ. HollingsworthK.G. PlankL.D. CohenP. PoppittS.D. MerryT.L. Plasma mitochondrial derived peptides MOTS-c and SHLP2 positively associate with android and liver fat in people without diabetes.Biochim. Biophys. Acta, Gen. Subj.202118651112999110.1016/j.bbagen.2021.12999134419510
    [Google Scholar]
  83. MehtaH.H. XiaoJ. RamirezR. MillerB. KimS.J. CohenP. YenK. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment.Metabolomics20191568810.1007/s11306‑019‑1549‑731172328
    [Google Scholar]
  84. AlejandroE.U. GreggB. Blandino-RosanoM. Cras-MéneurC. Bernal-MizrachiE. Natural history of β-cell adaptation and failure in type 2 diabetes.Mol. Aspects Med.201542194110.1016/j.mam.2014.12.00225542976
    [Google Scholar]
  85. OkadaA.K. TeranishiK. LoboF. IsasJ.M. XiaoJ. YenK. CohenP. LangenR. The Mitochondrial-Derived peptides, HumaninS14G and small humanin-like peptide 2, exhibit chaperone-like activity.Sci. Rep.201771780210.1038/s41598‑017‑08372‑528798389
    [Google Scholar]
  86. NashineS. CohenP. NesburnA.B. KuppermannB.D. KenneyM.C. Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration.Sci. Rep.2018811517510.1038/s41598‑018‑33290‑530310092
    [Google Scholar]
  87. WangZ. FuW. HuoM. HeB. LiuY. TianL. LiW. ZhouZ. WangB. XiaJ. ChenY. WeiJ. AblizZ. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging.Acta Pharm. Sin. B202111113665367710.1016/j.apsb.2021.05.01334900545
    [Google Scholar]
  88. HinderL.M. ParkM. RumoraA.E. HurJ. EichingerF. PennathurS. KretzlerM. BrosiusF.C.III FeldmanE.L. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease.J. Cell. Mol. Med.20172192140215210.1111/jcmm.1313628272773
    [Google Scholar]
  89. FanY. YangQ. YangY. GaoZ. MaY. ZhangL. LiangW. DingG. Sirt6 suppresses high Glucose-Induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation.Int. J. Biol. Sci.201915370171310.7150/ijbs.2932330745856
    [Google Scholar]
  90. QiW. KeenanH.A. LiQ. IshikadoA. KanntA. SadowskiT. YorekM.A. WuI.H. LockhartS. CoppeyL.J. PfenningerA. LiewC.W. QiangG. BurkartA.M. HastingsS. PoberD. CahillC. NiewczasM.A. IsraelsenW.J. TinsleyL. StillmanI.E. AmentaP.S. FeenerE.P. Vander HeidenM.G. StantonR.C. KingG.L. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction.Nat. Med.201723675376210.1038/nm.432828436957
    [Google Scholar]
  91. BootcovM.R. BauskinA.R. ValenzuelaS.M. MooreA.G. BansalM. HeX.Y. ZhangH.P. DonnellanM. MahlerS. PryorK. WalshB.J. NicholsonR.C. FairlieW.D. PorS.B. RobbinsJ.M. BreitS.N. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily.Proc. Natl. Acad. Sci.19979421115141151910.1073/pnas.94.21.115149326641
    [Google Scholar]
  92. YangM.H. KimJ. KhanI.A. WalkerL.A. KhanS.I. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents.Life Sci.20141002758410.1016/j.lfs.2014.01.07524530873
    [Google Scholar]
  93. WangX. BaekS.J. ElingT.E. The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer.Biochem. Pharmacol.201385559760610.1016/j.bcp.2012.11.02523220538
    [Google Scholar]
  94. ThomasR. TrueL.D. LangeP.H. VessellaR.L. Placental bone morphogenetic protein(PLAB) gene expression in normal, pre-malignant and malignant human prostate: Relation to tumor development and progression.Int. J. Cancer2001931475210.1002/ijc.129111391620
    [Google Scholar]
  95. HromasR. HuffordM. SuttonJ. XuD. LiY. LuL. PLAB, a novel placental bone morphogenetic protein.Biochim. Biophys. Acta Gene Struct. Expr.199713541404410.1016/S0167‑4781(97)00122‑X9375789
    [Google Scholar]
  96. LawtonL.N. BonaldoM.F. JelencP.C. QiuL. BaumesS.A. MarcelinoR.A. de JesusG.M. WellingtonS. KnowlesJ.A. WarburtonD. BrownS. SoaresM.B. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta.Gene19972031172610.1016/S0378‑1119(97)00485‑X9426002
    [Google Scholar]
  97. AhmedD.S. IsnardS. BeriniC. LinJ. RoutyJ.P. RoystonL. Coping with stress: The mitokine GDF-15 as a biomarker of COVID-19 severity.Front. Immunol.20221382035010.3389/fimmu.2022.82035035251002
    [Google Scholar]
  98. FujitaY. ItoM. OhsawaI. Mitochondrial stress and GDF15 in the pathophysiology of sepsis.Arch. Biochem. Biophys.202069610866810.1016/j.abb.2020.10866833188737
    [Google Scholar]
  99. KeipertS. OstM. Stress-induced FGF21 and GDF15 in obesity and obesity resistance.Trends Endocrinol. Metab.2021321190491510.1016/j.tem.2021.08.00834526227
    [Google Scholar]
  100. RochetteL. DogonG. ZellerM. CottinY. VergelyC. GDF15 and cardiac cells: Current concepts and new insights.Int. J. Mol. Sci.20212216888910.3390/ijms2216888934445593
    [Google Scholar]
  101. FujitaY. ItoM. KojimaT. YatsugaS. KogaY. TanakaM. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases.Mitochondrion201520344210.1016/j.mito.2014.10.00625446397
    [Google Scholar]
  102. MonteroR. YuberoD. VillarroyaJ. HenaresD. JouC. RodríguezM.A. RamosF. NascimentoA. OrtezC.I. CampistolJ. Perez-DueñasB. O’CallaghanM. PinedaM. Garcia-CazorlaA. OferilJ.C. MontoyaJ. Ruiz-PesiniE. EmperadorS. MeznaricM. CampderrosL. KalkoS.G. VillarroyaF. ArtuchR. Jimenez-MallebreraC. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction.PLoS One2016112e014870910.1371/journal.pone.014870926867126
    [Google Scholar]
  103. YatsugaS. FujitaY. IshiiA. FukumotoY. ArahataH. KakumaT. KojimaT. ItoM. TanakaM. SaikiR. KogaY. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders.Ann. Neurol.201578581482310.1002/ana.2450626463265
    [Google Scholar]
  104. KimK.H. LeeM.S. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH.Biochim. Biophys. Acta, Gen. Subj.20211865312983410.1016/j.bbagen.2020.12983433358864
    [Google Scholar]
  105. OstM. Igual GilC. ColemanV. KeipertS. EfstathiouS. VidicV. WeyersM. KlausS. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress.EMBO Rep.2020213e4880410.15252/embr.20194880432026535
    [Google Scholar]
  106. KhanN.A. NikkanenJ. YatsugaS. JacksonC. WangL. PradhanS. KiveläR. PessiaA. VelagapudiV. SuomalainenA. MTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression.Cell Metab.2017262419428.e510.1016/j.cmet.2017.07.00728768179
    [Google Scholar]
  107. CarlssonA.C. NowakC. LindL. ÖstgrenC.J. NyströmF.H. SundströmJ. CarreroJ.J. RiserusU. IngelssonE. FallT. ÄrnlövJ. Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach.Ups. J. Med. Sci.20201251374310.1080/03009734.2019.169643031805809
    [Google Scholar]
  108. HamonS.M. GriffinT.P. IslamM.N. WallD. GriffinM.D. O’SheaP.M. Defining reference intervals for a serum growth differentiation factor-15 (GDF-15) assay in a Caucasian population and its potential utility in diabetic kidney disease (DKD).Clin. Chem. Lab. Med.201957451052010.1515/cclm‑2018‑053430218600
    [Google Scholar]
  109. Perez-GomezM.V. Pizarro-SanchezS. Gracia-IguacelC. CanoS. Cannata-OrtizP. Sanchez-RodriguezJ. SanzA.B. Sanchez-NiñoM.D. OrtizA. Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease.J. Nephrol.20213461819183210.1007/s40620‑021‑01020‑233847920
    [Google Scholar]
  110. MazagovaM. HenningR.H. DuinM. van BuitenA. BuikemaH. DeelmanL.E. Troubleshooting methods for microarray gene expression analysis in the onset of diabetic kidney disease.J. Pharmacol. Toxicol. Methods2013672616810.1016/j.vascn.2013.01.01223376814
    [Google Scholar]
  111. MazagovaM. BuikemaH. van BuitenA. DuinM. GorisM. SandoviciM. HenningR.H. DeelmanL.E. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes.Am. J. Physiol. Renal Physiol.20133059F1249F126410.1152/ajprenal.00387.201323986522
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673255403230919061828
Loading
/content/journals/cmc/10.2174/0109298673255403230919061828
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetic nephropathy (DN); FGF21; humanin; mitochondrial stress; Mitokines; MOTS-c
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test