Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review article discusses the challenges of delivering cargoes to the cytoplasm, for example, proteins, peptides, and nucleic acids, and the mechanisms involved in endosomal escape. Endocytosis, endosomal maturation, and exocytosis pose significant barriers to effective cytoplasmic delivery. The article explores various endosomal escape mechanisms, such as the proton sponge effect, osmotic lysis, membrane fusion, pore formation, membrane destabilization/ disruption, and vesicle budding and collapse. Additionally, it discusses the role of lysosomes, glycocalyx, and molecular crowding in the cytoplasmic delivery process. Despite the recent advances in nonviral delivery systems, there is still a need to improve cytoplasmic delivery. Strategies such as fusogenic peptides, endosomolytic polymers, and cell-penetrating peptides have shown promise in improving endosomal escape and cytoplasmic delivery. More research is needed to refine these strategies and make them safer and more effective. In conclusion, the article highlights the challenges associated with cytoplasmic delivery and the importance of understanding the mechanisms involved in endosomal escape. A better understanding of these processes could result in the creation of greater effectiveness and safe delivery systems for various cargoes, including proteins, peptides, and nucleic acids.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673278936240107121907
2024-02-15
2025-04-21
Loading full text...

Full text loading...

References

  1. AdlerM. MayoA. ZhouX. FranklinR.A. JacoxJ.B. MedzhitovR. AlonU. Endocytosis as a stabilizing mechanism for tissue homeostasis.Proc. Natl. Acad. Sci.20181158E1926E193510.1073/pnas.171437711529429964
    [Google Scholar]
  2. SahayG. AlakhovaD.Y. KabanovA.V. Endocytosis of nanomedicines.J. Control. Release2010145318219510.1016/j.jconrel.2010.01.03620226220
    [Google Scholar]
  3. AkincA. BattagliaG. Exploiting endocytosis for nanomedicines.Cold Spring Harb. Perspect. Biol.2013511a01698010.1101/cshperspect.a01698024186069
    [Google Scholar]
  4. MosqueraJ. GarcíaI. Liz-MarzánL.M. Cellular uptake of nanoparticles versus small molecules: A matter of size.Acc. Chem. Res.20185192305231310.1021/acs.accounts.8b0029230156826
    [Google Scholar]
  5. PriorI.A. HardingA. YanJ. SluimerJ. PartonR.G. HancockJ.F. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity.Nat. Cell Biol.20013436837510.1038/3507005011283610
    [Google Scholar]
  6. DenzerK. KleijmeerM.J. HeijnenH.F.G. StoorvogelW. GeuzeH.J. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device.J. Cell Sci.2000113193365337410.1242/jcs.113.19.336510984428
    [Google Scholar]
  7. Sousa de AlmeidaM. SusnikE. DraslerB. Taladriz-BlancoP. Petri-FinkA. Rothen-RutishauserB. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.Chem. Soc. Rev.20215095397543410.1039/D0CS01127D33666625
    [Google Scholar]
  8. SabnisS. KumarasingheE.S. SalernoT. MihaiC. KetovaT. SennJ.J. LynnA. BulychevA. McFadyenI. ChanJ. AlmarssonÖ. StantonM.G. BenenatoK.E. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates.Mol. Ther.20182661509151910.1016/j.ymthe.2018.03.01029653760
    [Google Scholar]
  9. PatelS. KimJ. HerreraM. MukherjeeA. KabanovA.V. SahayG. Brief update on endocytosis of nanomedicines.Adv. Drug Deliv. Rev.20191449011110.1016/j.addr.2019.08.00431419450
    [Google Scholar]
  10. ZhangJ. WangX. WenJ. SuX. WengL. WangC. TianY. ZhangY. TaoJ. XuP. LuG. TengZ. WangL. Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation.Biomater. Sci.20197114790479910.1039/C9BM01164A31524909
    [Google Scholar]
  11. BallabioA. The awesome lysosome.EMBO Mol. Med.201682737610.15252/emmm.20150596626787653
    [Google Scholar]
  12. WittrupA. AiA. LiuX. HamarP. TrifonovaR. CharisseK. ManoharanM. KirchhausenT. LiebermanJ. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown.Nat. Biotechnol.201533887087610.1038/nbt.329826192320
    [Google Scholar]
  13. SmithS.A. SelbyL.I. JohnstonA.P.R. SuchG.K. The endosomal escape of nanoparticles: Toward more efficient cellular delivery.Bioconjug. Chem.201930226327210.1021/acs.bioconjchem.8b0073230452233
    [Google Scholar]
  14. SelbyL.I. Cortez-JugoC.M. SuchG.K. JohnstonA.P.R. Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201795e145210.1002/wnan.145228160452
    [Google Scholar]
  15. PereraR.M. ZoncuR. The lysosome as a regulatory hub.Annu. Rev. Cell Dev. Biol.201632122325310.1146/annurev‑cellbio‑111315‑12512527501449
    [Google Scholar]
  16. LimC.Y. ZoncuR. The lysosome as a command-and-control center for cellular metabolism.J. Cell Biol.2016214665366410.1083/jcb.20160700527621362
    [Google Scholar]
  17. Rabanal-RuizY. KorolchukV. mTORC1 and nutrient homeostasis: The central role of the lysosome.Int. J. Mol. Sci.201819381810.3390/ijms1903081829534520
    [Google Scholar]
  18. SahaS. PanigrahiD.P. PatilS. BhutiaS.K. Autophagy in health and disease: A comprehensive review.Biomed. Pharmacother.201810448549510.1016/j.biopha.2018.05.00729800913
    [Google Scholar]
  19. MaxfieldF.R. Role of endosomes and lysosomes in human disease.Cold Spring Harb. Perspect. Biol.201465a01693110.1101/cshperspect.a01693124789821
    [Google Scholar]
  20. BoustanyR.M.N. Lysosomal storage diseases—the horizon expands.Nat. Rev. Neurol.201391058359810.1038/nrneurol.2013.16323938739
    [Google Scholar]
  21. CastanheiraS. García-del PortilloF. Salmonella populations inside host cells.Front. Cell. Infect. Microbiol.2017743210.3389/fcimb.2017.0043229046870
    [Google Scholar]
  22. LeungK. ChakrabortyK. SaminathanA. KrishnanY. A DNA nanomachine chemically resolves lysosomes in live cells.Nat. Nanotechnol.201914217618310.1038/s41565‑018‑0318‑530510277
    [Google Scholar]
  23. WangC. ZhaoT. LiY. HuangG. WhiteM.A. GaoJ. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.Adv. Drug Deliv. Rev.2017113879610.1016/j.addr.2016.08.01427612550
    [Google Scholar]
  24. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  25. MathieuM. Martin-JaularL. LavieuG. ThéryC. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.Nat. Cell Biol.201921191710.1038/s41556‑018‑0250‑930602770
    [Google Scholar]
  26. JiangX.C. GaoJ.Q. Exosomes as novel bio-carriers for gene and drug delivery.Int. J. Pharm.20175211-216717510.1016/j.ijpharm.2017.02.03828216464
    [Google Scholar]
  27. HaneyM.J. KlyachkoN.L. HarrisonE.B. ZhaoY. KabanovA.V. BatrakovaE.V. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease.Adv. Healthc. Mater.2019811180127110.1002/adhm.20180127130997751
    [Google Scholar]
  28. ChenW.H. LuoG.F. ZhangX.Z. Recent advances in subcellular targeted cancer therapy based on functional materials.Adv. Mater.2019313180272510.1002/adma.20180272530260521
    [Google Scholar]
  29. DonahueN.D. AcarH. WilhelmS. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.Adv. Drug Deliv. Rev.2019143689610.1016/j.addr.2019.04.00831022434
    [Google Scholar]
  30. XuX. ZhuL. XueK. LiuJ. WangJ. WangG. GuJ. ZhangY. LiX. Ultrastructural studies of the neurovascular unit reveal enhanced endothelial transcytosis in hyperglycemia-enhanced hemorrhagic transformation after stroke.CNS Neurosci. Ther.202127112313310.1111/cns.13571
    [Google Scholar]
  31. GunduC. ArruriV.K. YadavP. NavikU. KumarA. AmalkarV.S. VikramA. GaddamR.R. Dynamin-independent mechanisms of endocytosis and receptor trafficking.Cells20221116255710.3390/cells1116255736010634
    [Google Scholar]
  32. ChengX. ChenK. DongB. YangM. FilbrunS.L. MyoungY. HuangT.X. GuY. WangG. FangN. Dynamin-dependent vesicle twist at the final stage of clathrin- mediated endocytosis.Nat. Cell Biol.202123885986910.1038/s41556‑021‑00713‑x34253896
    [Google Scholar]
  33. RennickJ.J. JohnstonA.P.R. PartonR.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics.Nat. Nanotechnol.202116326627610.1038/s41565‑021‑00858‑833712737
    [Google Scholar]
  34. DheerD. NicolasJ. ShankarR. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases.Adv. Drug Deliv. Rev.2019151-15213015110.1016/j.addr.2019.01.01030690054
    [Google Scholar]
  35. LiuC.G. HanY.H. KankalaR.K. WangS.B. ChenA.Z. Subcellular performance of nanoparticles in cancer therapy.Int. J. Nanomedicine20201567570410.2147/IJN.S22618632103936
    [Google Scholar]
  36. MakvandiP. ChenM. SartoriusR. ZarrabiA. AshrafizadehM. DabbaghM.F. MaJ. MattoliV. TayF.R. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking.Nano Today20214010127910.1016/j.nantod.2021.10127934518771
    [Google Scholar]
  37. ChengJ.P.X. NicholsB.J. Caveolae: One function or many?Trends Cell Biol.201626317718910.1016/j.tcb.2015.10.01026653791
    [Google Scholar]
  38. MehtaD. MalikA.B. Signaling mechanisms regulating endothelial permeability.Physiol. Rev.200686127936710.1152/physrev.00012.200516371600
    [Google Scholar]
  39. CardarelliF. PozziD. BifoneA. MarchiniC. CaraccioloG. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells.Mol. Pharm.20129233434010.1021/mp200374e22196199
    [Google Scholar]
  40. BloomfieldG. KayR.R. Uses and abuses of macropinocytosis.J. Cell Sci.2016129142697270527352861
    [Google Scholar]
  41. HuQ. LiH. WangL. GuH. FanC. DNA nanotechnology-enabled drug delivery systems.Chem. Rev.2019119106459650610.1021/acs.chemrev.7b0066329465222
    [Google Scholar]
  42. MurrayD.H. JahnelM. LauerJ. AvellanedaM.J. BrouillyN. CezanneA. Morales-NavarreteH. PeriniE.D. FergusonC. LupasA.N. KalaidzidisY. PartonR.G. GrillS.W. ZerialM. An endosomal tether undergoes an entropic collapse to bring vesicles together.Nature2016537761810711110.1038/nature1932627556945
    [Google Scholar]
  43. ShimizuY. TakagiJ. ItoE. ItoY. EbineK. KomatsuY. GotoY. SatoM. ToyookaK. UedaT. KurokawaK. UemuraT. NakanoA. Cargo sorting zones in the trans-golgi network visualized by super-resolution confocal live imaging microscopy in plants.Nat. Commun.2021121190110.1038/s41467‑021‑22267‑033772008
    [Google Scholar]
  44. HuotariJ. HeleniusA. Endosome maturation.EMBO J.201130173481350010.1038/emboj.2011.28621878991
    [Google Scholar]
  45. BakhtiarA ChowdhuryEH PH-responsive strontium nanoparticles for targeted gene therapy against mammary carcinoma cells.Asian J. Pharm. Sci.2021162236252
    [Google Scholar]
  46. DahiyaU.R. GanguliM. Exocytosis - a putative road-block in nanoparticle and nanocomplex mediated gene delivery.J. Control. Release2019303677610.1016/j.jconrel.2019.04.01230980852
    [Google Scholar]
  47. MahmoodA. Investigating Spatiotemporal Kinetics, Dynamics, and Mechanism of Exosome Release.Electronic Theses and Dissertations2022126
    [Google Scholar]
  48. PeiD. BuyanovaM. Overcoming endosomal entrapment in drug delivery.Bioconjug. Chem.201930227328310.1021/acs.bioconjchem.8b0077830525488
    [Google Scholar]
  49. BehrJ.P. The proton sponge: A trick to enter cells the viruses did not exploit.Chimia1997511-2343610.2533/chimia.1997.34
    [Google Scholar]
  50. SonawaneN.D. SzokaF.C.Jr VerkmanA.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.J. Biol. Chem.200327845448264483110.1074/jbc.M30864320012944394
    [Google Scholar]
  51. HeJ. XuS. MixsonA.J. The multifaceted histidine-based carriers for nucleic acid delivery: advances and challenges.Pharmaceutics202012877410.3390/pharmaceutics1208077432823960
    [Google Scholar]
  52. ChengY. Polymeric Gene Delivery Systems.Springer201835810.1007/978‑3‑319‑77866‑2
    [Google Scholar]
  53. FunhoffA.M. van NostrumC.F. KoningG.A. Schuurmans-NieuwenbroekN.M.E. CrommelinD.J.A. HenninkW.E. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH.Biomacromolecules200451323910.1021/bm034041+14715005
    [Google Scholar]
  54. RangasamyL. ChelvamV. KanduluruA.K. SrinivasaraoM. BandaraN.A. YouF. OrellanaE.A. KasinskiA.L. LowP.S. New mechanism for release of endosomal contents: Osmotic lysis via nigericin-mediated K+/H+ exchange.Bioconjug. Chem.20182941047105910.1021/acs.bioconjchem.7b0071429446616
    [Google Scholar]
  55. BenjaminsenR.V. MattebjergM.A. HenriksenJ.R. MoghimiS.M. AndresenT.L. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH.Mol. Ther.201321114915710.1038/mt.2012.18523032976
    [Google Scholar]
  56. WangC. WangY. LiY. BodemannB. ZhaoT. MaX. HuangG. HuZ. DeBerardinisR.J. WhiteM.A. GaoJ. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles.Nat. Commun.201561852410.1038/ncomms952426437053
    [Google Scholar]
  57. RehmanZ. HoekstraD. ZuhornI.S. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis.ACS Nano2013753767377710.1021/nn304949423597090
    [Google Scholar]
  58. YangM.M. YarragudiS.B. JamiesonS.M.F. TangM. WilsonW.R. WuZ. Calcium enabled remote loading of a weak acid into pH-sensitive liposomes and augmented cytosolic delivery to cancer cells via the proton sponge effect.Pharm. Res.20223961181119510.1007/s11095‑022‑03206‑035229237
    [Google Scholar]
  59. WhiteJ.M. WhittakerG.R. Fusion of enveloped viruses in endosomes.Traffic201617659361410.1111/tra.1238926935856
    [Google Scholar]
  60. WangC. WangX. DuL. DongY. HuB. ZhouJ. ShiY. BaiS. HuangY. CaoH. LiangZ. DongA. Harnessing pH-sensitive polycation vehicles for the efficient siRNA delivery.ACS Appl. Mater. Interfaces20211322218222910.1021/acsami.0c1786633406826
    [Google Scholar]
  61. HanX. BushwellerJ.H. CafisoD.S. TammL.K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin.Nat. Struct. Biol.20018871572010.1038/9043411473264
    [Google Scholar]
  62. SmrtS.T. DraneyA.W. LorieauJ.L. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature.J. Biol. Chem.2015290122823810.1074/jbc.M114.61165725398882
    [Google Scholar]
  63. MurphyJ.R. HarrisonR.J. Mechanisms of bacterial protein toxin entry into the target cell cytosol.Drug Discov. Today Dis. Mech.20063226727210.1016/j.ddmec.2006.05.005
    [Google Scholar]
  64. TilleyS.J. SaibilH.R. The mechanism of pore formation by bacterial toxins.Curr. Opin. Struct. Biol.200616223023610.1016/j.sbi.2006.03.00816563740
    [Google Scholar]
  65. KordusS.L. ThomasA.K. LacyD.B. Clostridioides difficile toxins: Mechanisms of action and antitoxin therapeutics.Nat. Rev. Microbiol.202220528529810.1038/s41579‑021‑00660‑234837014
    [Google Scholar]
  66. HerceH.D. GarciaA.E. LittJ. KaneR.S. MartínP. EnriqueN. RebolledoA. MilesiV. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.Biophys. J.20099771917192510.1016/j.bpj.2009.05.06619804722
    [Google Scholar]
  67. Nadal-BufíF. HenriquesS.T. How to overcome endosomal entrapment of cell-penetrating peptides to release the therapeutic potential of peptides?Pept. Sci.20201126e2416810.1002/pep2.24168
    [Google Scholar]
  68. ShaiY. Mode of action of membrane active antimicrobial peptides.Biopolymers200266423624810.1002/bip.1026012491537
    [Google Scholar]
  69. LeiJ. SunL. HuangS. ZhuC. LiP. HeJ. MackeyV. CoyD.H. HeQ. The antimicrobial peptides and their potential clinical applications.Am. J. Transl. Res.20191173919393131396309
    [Google Scholar]
  70. TuerkovaA. KabelkaI. KrálováT. SukeníkL. PokornáŠ. HofM. VáchaR. Effect of helical kink in antimicrobial peptides on membrane pore formation.eLife20209e4794610.7554/eLife.4794632167466
    [Google Scholar]
  71. BusT. TraegerA. SchubertU.S. The great escape: How cationic polyplexes overcome the endosomal barrier.J. Mater. Chem. B Mater. Biol. Med.20186436904691810.1039/C8TB00967H32254575
    [Google Scholar]
  72. WangJ. ZhuM. NieG. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles.Adv. Drug Deliv. Rev.202117811397410.1016/j.addr.2021.11397434530015
    [Google Scholar]
  73. SahniA. QianZ. PeiD. Cell-penetrating peptides escape the endosome by inducing vesicle budding and collapse.ACS Chem. Biol.20201592485249210.1021/acschembio.0c0047832786250
    [Google Scholar]
  74. DoughertyP.G. SahniA. PeiD. Understanding cell penetration of cyclic peptides.Chem. Rev.201911917102411028710.1021/acs.chemrev.9b0000831083977
    [Google Scholar]
  75. DavidsonS.M. Vander HeidenM.G. Critical functions of the lysosome in cancer biology.Annu. Rev. Pharmacol. Toxicol.201757148150710.1146/annurev‑pharmtox‑010715‑10310127732799
    [Google Scholar]
  76. GriffithsG. GruenbergJ. MarshM. WohlmannJ. JonesA.T. PartonR.G. Nanoparticle entry into cells; the cell biology weak link.Adv. Drug Deliv. Rev.202218811440310.1016/j.addr.2022.11440335777667
    [Google Scholar]
  77. ReilyC. StewartT.J. RenfrowM.B. NovakJ. Glycosylation in health and disease.Nat. Rev. Nephrol.201915634636610.1038/s41581‑019‑0129‑430858582
    [Google Scholar]
  78. SinghT. MurthyA.S.N. YangH.J. ImJ. Versatility of cell-penetrating peptides for intracellular delivery of siRNA.Drug Deliv.20182511996200610.1080/10717544.2018.154336630799658
    [Google Scholar]
  79. ChiperM. NiederreitherK. ZuberG. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells.Adv. Healthc. Mater.201876170104010.1002/adhm.20170104029205903
    [Google Scholar]
  80. D’AstolfoD.S. PaglieroR.J. PrasA. KarthausW.R. CleversH. PrasadV. LebbinkR.J. RehmannH. GeijsenN. Efficient intracellular delivery of native proteins.Cell2015161367469010.1016/j.cell.2015.03.02825910214
    [Google Scholar]
  81. JerjesW. TheodossiouT.A. HirschbergH. HøgsetA. WeyergangA. SelboP.K. HamdoonZ. HopperC. BergK. Photochemical internalization for intracellular drug delivery. From basic mechanisms to clinical research.J. Clin. Med.20209252810.3390/jcm902052832075165
    [Google Scholar]
  82. OhtsukiT. MikiS. KobayashiS. HaraguchiT. NakataE. HirakawaK. SumitaK. WatanabeK. OkazakiS. The molecular mechanism of photochemical internalization of cell penetrating peptide-cargo-photosensitizer conjugates.Sci. Rep.2015511857710.1038/srep1857726686907
    [Google Scholar]
  83. LächeltU. WagnerE. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond).Chem. Rev.201511519110431107810.1021/cr500679325872804
    [Google Scholar]
  84. KermaniyanS.S. ChenM. ZhangC. SmithS.A. JohnstonA.P.R. SuchC. SuchG.K. Understanding the biological interactions of pH-swellable nanoparticles.Macromol. Biosci.2022225210044510.1002/mabi.20210044535182032
    [Google Scholar]
  85. KumarV.V. PichonC. RefregiersM. GuerinB. MidouxP. ChaudhuriA. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: Evidence for histidine-mediated membrane fusion at acidic pH.Gene Ther.200310151206121510.1038/sj.gt.330197912858185
    [Google Scholar]
  86. MidouxP. MonsignyM. Efficient gene transfer by histidylated polylysine/pDNA complexes.Bioconjug. Chem.199910340641110.1021/bc980107010346871
    [Google Scholar]
  87. PeelerD.J. SellersD.L. PunS.H. pH-sensitive polymers as dynamic mediators of barriers to nucleic acid delivery.Bioconjug. Chem.201930235036510.1021/acs.bioconjchem.8b0069530398844
    [Google Scholar]
  88. ZhouY.N. LiJ.J. WuY.Y. LuoZ.H. Role of external field in polymerization: Mechanism and kinetics.Chem. Rev.202012052950304810.1021/acs.chemrev.9b0074432083844
    [Google Scholar]
  89. Tejeda-MuñozN. AlbrechtL.V. BuiM.H. De RobertisE.M. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins.Proc. Natl. Acad. Sci.201911621104021041110.1073/pnas.190350611631061124
    [Google Scholar]
  90. ZahafN.I. SchmidtG. Bacterial toxins for cancer therapy.Toxins20179823610.3390/toxins908023628788054
    [Google Scholar]
  91. YuY. WangX. FanG.C. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases.Acta Pharmacol. Sin.201839451453310.1038/aps.2017.8228858295
    [Google Scholar]
  92. RabideauA.E. PenteluteB.L. Delivery of non-native cargo into mammalian cells using anthrax lethal toxin.ACS Chem. Biol.20161161490150110.1021/acschembio.6b0016927055654
    [Google Scholar]
  93. KakimotoS. HamadaT. KomatsuY. TakagiM. TanabeT. AzumaH. ShinkaiS. NagasakiT. The conjugation of diphtheria toxin T domain to poly(ethylenimine) based vectors for enhanced endosomal escape during gene transfection.Biomaterials200930340240810.1016/j.biomaterials.2008.09.04218930314
    [Google Scholar]
  94. OrellanaE.A. AbdelaalA.M. RangasamyL. TennetiS. MyoungS. LowP.S. KasinskiA.L. Enhancing microRNA activity through increased endosomal release mediated by nigericin.Mol. Ther. Nucleic Acids20191650551810.1016/j.omtn.2019.04.00331071527
    [Google Scholar]
  95. OliveiraS. VanrooyI. KranenburgO. StormG. SchiffelersR. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes.Int. J. Pharm.2007331221121410.1016/j.ijpharm.2006.11.05017187949
    [Google Scholar]
  96. HatakeyamaH. ItoE. AkitaH. OishiM. NagasakiY. FutakiS. HarashimaH. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo.J. Control. Release2009139212713210.1016/j.jconrel.2009.06.00819540888
    [Google Scholar]
  97. SubhanM.A. TorchilinV.P. siRNA based drug design, quality, delivery and clinical translation.Nanomedicine20202910223910.1016/j.nano.2020.10223932544449
    [Google Scholar]
  98. AlipourM. HosseinkhaniS. SheikhnejadR. CheraghiR. Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery.Sci. Rep.2017714150710.1038/srep4150728128339
    [Google Scholar]
  99. GonzalezM.E. CarrascoL. Viroporins.FEBS Lett.20035521283410.1016/S0014‑5793(03)00780‑412972148
    [Google Scholar]
  100. CostinJ.M. RauschJ.M. GarryR.F. WimleyW.C. Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein.Virol. J.20074112310.1186/1743‑422X‑4‑12318028545
    [Google Scholar]
  101. MemarianiH. MemarianiM. Shahidi-DadrasM. NasiriS. AkhavanM.M. MoravvejH. Melittin: From honeybees to superbugs.Appl. Microbiol. Biotechnol.201910383265327610.1007/s00253‑019‑09698‑y30824944
    [Google Scholar]
  102. RozemaD.B. EkenaK. LewisD.L. LoomisA.G. WolffJ.A. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules.Bioconjug. Chem.2003141515710.1021/bc025594512526692
    [Google Scholar]
  103. ChenS. WangS. KopytynskiM. BacheletM. ChenR. Membrane-anchoring, comb-like pseudopeptides for efficient, pH-mediated membrane destabilization and intracellular delivery.ACS Appl. Mater. Interfaces2017998021802910.1021/acsami.7b0049828225250
    [Google Scholar]
  104. ChengJ. ZeidanR. MishraS. LiuA. PunS.H. KulkarniR.P. JensenG.S. BellocqN.C. DavisM.E. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery.J. Med. Chem.200649226522653110.1021/jm060736s17064070
    [Google Scholar]
  105. Ali DoostiB. PezeshkianW. BruhnD.S. IpsenJ.H. KhandeliaH. JeffriesG.D.M. LobovkinaT. Membrane tubulation in lipid vesicles triggered by the local application of calcium ions.Langmuir20173341110101101710.1021/acs.langmuir.7b0146128910109
    [Google Scholar]
  106. XuJ. KhanA.R. FuM. WangR. JiJ. ZhaiG. Cell-penetrating peptide: A means of breaking through the physiological barriers of different tissues and organs.J. Control. Release201930910612410.1016/j.jconrel.2019.07.02031323244
    [Google Scholar]
  107. LönnP. KacsintaA.D. CuiX.S. HamilA.S. KaulichM. GogoiK. DowdyS.F. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics.Sci. Rep.2016613230110.1038/srep3230127604151
    [Google Scholar]
  108. LeCherJ.C. NowakS.J. McMurryJ.L. Breaking in and busting out: Cell-penetrating peptides and the endosomal escape problem.Biomol. Concepts201783-413114110.1515/bmc‑2017‑002328841567
    [Google Scholar]
  109. BhosleG.S. FernandesM. (R-X-R)4-motif peptides containing conformationally constrained cyclohexane-derived spacers: Effect on cellular uptake.ChemMedChem201712211743174710.1002/cmdc.20170049828948715
    [Google Scholar]
  110. ValeurE. GuéretS.M. AdihouH. GopalakrishnanR. LemurellM. WaldmannH. GrossmannT.N. PlowrightA.T. New modalities for challenging targets in drug discovery.Angew. Chem. Int. Ed.20175635102941032310.1002/anie.20161191428186380
    [Google Scholar]
  111. ZhangK. DuY. SiZ. LiuY. TurveyM.E. RajuC. KeoghD. RuanL. JothyS.L. ReghuS. MarimuthuK. DeP.P. NgO.T. MediavillaJ.R. KreiswirthB.N. ChiY.R. RenJ. TamK.C. LiuX.W. DuanH. ZhuY. MuY. HammondP.T. BazanG.C. PetheK. Chan-ParkM.B. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters.Nat. Commun.2019101479210.1038/s41467‑019‑12702‑831636263
    [Google Scholar]
  112. BolhassaniA. JafarzadeB.S. MomeniS. Cell-penetrating peptides: A concise review with emphasis on biomedical applications.Biopolymers202011111e23437
    [Google Scholar]
  113. MaityS. MaityS. Endosomal escape pathways for delivery of biologicals.Int. J. Biol. Macromol.2020148740749
    [Google Scholar]
  114. KimM. ShinJ.M. KimJ.S. Thermo-triggered endosomal escape and intracellular delivery of CRISPR/Cas9 via a gold nanocage with a pH-responsive polymer coating.ACS Appl. Mater. Interfaces201911393579735807
    [Google Scholar]
  115. MurthyN. XuM. SchuckS. KunisawaJ. ShastriN. FréchetJ.M.J. A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels.Proc. Natl. Acad. Sci.200310094995500010.1073/pnas.093064410012704236
    [Google Scholar]
  116. WadiaJ.S. StanR.V. DowdyS.F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis.Nat. Med.200410331031510.1038/nm99614770178
    [Google Scholar]
  117. MorrisM.C. DepollierJ. MeryJ. HeitzF. DivitaG. A peptide carrier for the delivery of biologically active proteins into mammalian cells.Nat. Biotechnol.200119121173117610.1038/nbt1201‑117311731788
    [Google Scholar]
  118. ZhangH. LiY. HuangY. WuY. ZhangX. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles.J. Drug Target.201018966267020222850
    [Google Scholar]
  119. XiongY. XuM. ChenS. WangY. Advances in targeting drug delivery system based on tumor-associated macrophages.J. Control. Release2017254110
    [Google Scholar]
  120. ZhouJ. NeffC.P. SwiderskiP. LiH. SmithD.D. AboellailT. Remling-MulderL. AkkinaR. RossiJ.J. KaminskiR. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge.Mol. Ther.20111943244123164935
    [Google Scholar]
  121. LiuY. ZhangX. YuS. HuangY. ZhangX. WangY. DuanY. A robust in vitro assay for measuring cellular internalization using pH-sensitive fluorescent proteins.Anal. Biochem.20185571730291836
    [Google Scholar]
  122. Wang, P.; Natural and synthetic saponins as vaccine adjuvants.Vaccines20219322210.3390/vaccines903022233807582
    [Google Scholar]
  123. BergK. SelboP.K. PrasmickaiteL. TjelleT.E. SandvigK. MoanJ. GaudernackG. FodstadO. KjølsrudS. AnholtH. RodalG.H. RodalS.K. HøgsetA. Photochemical internalization: A novel technology for delivery of macromolecules into cytosol.Cancer Res.19995961180118310096543
    [Google Scholar]
  124. SunY. LauS.Y. LimZ.W. ChangS.C. GhadessyF. PartridgeA. MiserezA. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics.Nat. Chem.202214327428310.1038/s41557‑021‑00854‑435115657
    [Google Scholar]
  125. ChaudhuriA. BattagliaG. GolestanianR. The effect of interactions on the cellular uptake of nanoparticles.Phys. Biol.20118404600210.1088/1478‑3975/8/4/04600221508440
    [Google Scholar]
  126. DirisalaA. UchidaS. LiJ. Van GuyseJ.F.R. HayashiK. VummaletiS.V.C. KaurS. MochidaY. FukushimaS. KataokaK. Effective mRNA protection by poly( l -ornithine) synergizes with endosomal escape functionality of a charge-conversion polymer toward maximizing mRNA introduction efficiency.Macromol. Rapid Commun.20224312210075410.1002/marc.20210075435286740
    [Google Scholar]
  127. SanjohM. HikiS. LeeY. ObaM. MiyataK. IshiiT. KataokaK. pDNA/poly( L -lysine) polyplexes functionalized with a pH-sensitive charge-conversional poly(aspartamide) derivative for controlled gene delivery to human umbilical vein endothelial cells.Macromol. Rapid Commun.201031131181118610.1002/marc.20100005621590873
    [Google Scholar]
  128. PercheF. YiY. HespelL. MiP. DirisalaA. CabralH. MiyataK. KataokaK. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.Biomaterials201690627110.1016/j.biomaterials.2016.02.02726986857
    [Google Scholar]
  129. ShenX. DirisalaA. ToyodaM. XiaoY. GuoH. HondaY. NomotoT. TakemotoH. MiuraY. NishiyamaN. pH-responsive polyzwitterion covered nanocarriers for DNA delivery.J. Control. Release202336092893910.1016/j.jconrel.2023.07.03837495117
    [Google Scholar]
  130. MicklerF.M. VachutinskyY. ObaM. MiyataK. NishiyamaN. KataokaK. BräuchleC. RuthardtN. Effect of integrin targeting and PEG shielding on polyplex micelle internalization studied by live-cell imaging.J. Control. Release2011156336437310.1016/j.jconrel.2011.08.00321843561
    [Google Scholar]
  131. LiJ. GeZ. LiuS. PEG-sheddable polyplex micelles as smart gene carriers based on MMP-cleavable peptide-linked block copolymers.Chem. Commun.201349626974697610.1039/c3cc43576h23802223
    [Google Scholar]
  132. DirisalaA. OsadaK. ChenQ. TockaryT.A. MachitaniK. OsawaS. LiuX. IshiiT. MiyataK. ObaM. UchidaS. ItakaK. KataokaK. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors.Biomaterials201435205359536810.1016/j.biomaterials.2014.03.03724720877
    [Google Scholar]
  133. ChenQ. OsadaK. GeZ. UchidaS. TockaryT.A. DirisalaA. MatsuiA. TohK. TakedaK.M. LiuX. NomotoT. IshiiT. ObaM. MatsumotoY. KataokaK. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting.Biomaterials201711325326510.1016/j.biomaterials.2016.10.04227835820
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673278936240107121907
Loading
/content/journals/cmc/10.2174/0109298673278936240107121907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test