Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

To obtain the binding site of a model of the human 5-HT1A/2A receptor, a series of substituted 2,4-imidazolidinediones and oxazolidinediones were subjected to flexible docking using GLIDE.

Methods

The docking scores that were generated are correlated with the affinity data that had already been collected.

Results

When combined with a homology model of 5HT1A/2A, the GLIDE docking approach was based on a template for 2-adrenergic receptors.

Conclusion

A model for ligand binding in the hydrophobic portion of the binding site was proposed after discussing the impact of the structure and hydrophobic characteristics of the aryl moiety on binding affinities.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/2210299X02666221206091540
2023-01-01
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E061222211614.html?itemId=/content/journals/cis/10.2174/2210299X02666221206091540&mimeType=html&fmt=ahah

References

  1. HoyerD. ClarkeD.E. FozardJ.R. HartigP.R. MartinG.R. MylecharaneE.J. SaxenaP.R. HumphreyP.P. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin).Pharmacol. Rev.19944621572037938165
    [Google Scholar]
  2. LanfumeyL. HamonM. Central 5-HT1A receptors: Regional distribution and functional characteristics.Nucl. Med. Biol.200027542943510.1016/S0969‑8051(00)00107‑410962246
    [Google Scholar]
  3. BronowskaA. ChilmonczykZ. LeśA. EdvardsenØ. ØstensenR. SylteI. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues.J. Comput. Aided Mol. Des.200115111005102310.1023/A:101485610748611989622
    [Google Scholar]
  4. GenerT. TausteC.A. Alemany-GonzálezM. NebotP. Delgado-SallentC. ChanovasJ. PuigM.V. Serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone.Neuropharmacology2019158107743
    [Google Scholar]
  5. BogerD.L. PattersonJ.E. JinQ. Structural requirements for 5-HT 2A and 5-HT 1A serotonin receptor potentiation by the biologically active lipid oleamide.Proc. Natl. Acad. Sci.19989584102410710.1073/pnas.95.8.4102
    [Google Scholar]
  6. HibertM.F. GittosM.W. MiddlemissD.N. MirA.K. FozardJ.R. Graphics computer-aided receptor mapping as a predictive tool for drug design: Development of potent, selective, and stereospecific ligands for the 5-HT1A receptor.J. Med. Chem.19883161087109310.1021/jm00401a0073373482
    [Google Scholar]
  7. HibertM. McDermottI. MiddlemissD. MirA. FozardJ. Radioligand binding study of a series of 5-HT1A receptor agonists and definition of a steric model of this site.Eur. J. Med. Chem.1989241313710.1016/0223‑5234(89)90160‑8
    [Google Scholar]
  8. MellinC. VallgaardaJ. NelsonD.L. BjoerkL. YuH. AndenN.E. CsoereghI. ArvidssonL.E. HacksellU. A 3 dimensional model for 5-HT1A-receptor agonists based on stereoselective methyl-substituted and conformationally restricted analogs of 8-hydroxy-2-(dipropylamino)tetralin.J. Med. Chem.199134249751010.1021/jm00106a0041995871
    [Google Scholar]
  9. DhanawatM. BanerjeeA.G. ShrivastavaS.K. Design, synthesis, and anticonvulsant screening of some substituted piperazine and aniline derivatives of 5-phenyl-oxazolidin-2,4-diones and 5,5-diphenylimidazolidin-2,4 diones.Med. Chem. Res.201221102807282210.1007/s00044‑011‑9805‑z
    [Google Scholar]
  10. DhanawatM. DasN. ShrivastavaS.K. Design, synthesis, anticonvulsant screening and 5HT<sub>1A/2A </sub>receptor affinity of (3)-substituted 2,4-imidazolidinediones and oxazolidinediones.Drug Discov. Ther.20115522723710.5582/ddt.2011.v5.5.22722466369
    [Google Scholar]
  11. ShiehF.K. YoungbloodB. ReichN.O. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.J. Mol. Biol.2006362351652710.1016/j.jmb.2006.07.03016926025
    [Google Scholar]
  12. CherezovV. RosenbaumD.M. HansonM.A. RasmussenS.G.F. ThianF.S. KobilkaT.S. ChoiH.J. KuhnP. WeisW.I. KobilkaB.K. StevensR.C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.Science200731858541258126510.1126/science.115057717962520
    [Google Scholar]
  13. RosenbaumD.M. CherezovV. HansonM.A. RasmussenS.G.F. ThianF.S. KobilkaT.S. ChoiH.J. YaoX.J. WeisW.I. StevensR.C. KobilkaB.K. GPCR engineering yields high resolution structural insights into β2-adrenergic receptor function.Science200731858541266127310.1126/science.115060917962519
    [Google Scholar]
  14. AltschulS. MaddenT.L. SchäfferA.A. ZhangJ. ZhangZ. MillerW. LipmanD.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res.199725173389340210.1093/nar/25.17.33899254694
    [Google Scholar]
  15. MobarecJ.C. SanchezR. FilizolaM. Modern homology modeling of G-protein coupled receptors: Which structural template to use?J. Med. Chem.200952165207521610.1021/jm900525219627087
    [Google Scholar]
  16. HoB.Y. KarschinA. BranchekT. DavidsonN. LesterH.A. The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT 1A receptor: A site directed mutation study.FEBS Lett.19923122-325926210.1016/0014‑5793(92)80948‑G1426261
    [Google Scholar]
  17. PucadyilT.J. KalipatnapuS. ChattopadhyayA. The serotonin1A receptor: A representative member of the serotonin receptor family.Cell. Mol. Neurobiol.2005253-455358010.1007/s10571‑005‑3969‑316075379
    [Google Scholar]
  18. KitsonS. 5-hydroxytryptamine (5-HT) receptor ligands.Curr. Pharm. Des.200713252621263710.2174/13816120778166300017897004
    [Google Scholar]
  19. PasschierJ. van WaardeA. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system.Eur. J. Nucl. Med.200128111312910.1007/s00259000039411202445
    [Google Scholar]
  20. KanagarajaduraiK. MaliniM. BhattacharyaA. PanickerM.M. SowdhaminiR. Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding.Mol. Biosyst.20095121877188810.1039/b906391a19763327
    [Google Scholar]
  21. SenguptaD. VermaD. NaikP.K. Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics generalized born/surface area and absorption, distribution, metabolism and excretion properties.J. Biosci.200732S31307131610.1007/s12038‑007‑0140‑y18202455
    [Google Scholar]
  22. ShiahI.S. YathamL.N. LamR.W. ZisA.P. Effects of lamotrigine on the 5-HT1A receptor function in healthy human males.J. Affect. Disord.199849215716210.1016/S0165‑0327(98)00008‑19609681
    [Google Scholar]
/content/journals/cis/10.2174/2210299X02666221206091540
Loading
/content/journals/cis/10.2174/2210299X02666221206091540
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Docking; GLIDE; Homology modeling; PRIME; Receptors; Schrödinger
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test