Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Objective

This study aimed to assess the hypoglycemic effects of methanolic extract of in male Wistar rats that were diabetic due to streptozotocin.

Methods

Experimental diabetes was initially induced in male Wistar rats by intravenous injection of streptozotocin (55 mg/kg). Subsequently, the rats received daily oral administration of the methanolic extract of (250 mg/kg) and the standard drug metformin (300 mg/kg) for 28 days. Furthermore, a tolerance test was carried out.

Results

The study findings suggest that the diabetic rats in the untreated control group showed hyperglycemia and significant weight loss, as well as polydipsia, polyphagia, and polyuria. However, rats treated with methanolic extract of for 28 days showed a significant reduction in blood glucose levels and a marked improvement in body weight. Additionally, there was a notable decrease in the daily rate of food consumption and water intake and a significant reduction in serum glucose level, triglycerides, total cholesterol, creatinine, urea, AST, and ALT levels compared to the untreated diabetic control group. Histopathological examination revealed that after 28 days of treatment with 250 mg/kg of methanolic extract of the , the size of the islets of Langerhans in the pancreas tissue was decreased. Moreover, liver tissue demonstrated normalization with a normal central lobular structure, and kidney tissue showed normalization with a normal Bowman's capsule.

Conclusion

These findings suggest that the methanolic extract of can potentially treat diabetes and should be evaluated further for drug development.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X353419241203064748
2024-12-06
2025-04-16
Loading full text...

Full text loading...

References

  1. DrouinP. BlickleJ.F. CharbonnelB. EschwegeE. GuillausseauP.J. PlouinP.F. DaninosJ.M. BalaracN. SauvanetJ.P. Diagnosis and classification of diabetes mellitus: The new criteria.Diabetes Metab.1999251728310335427
    [Google Scholar]
  2. SextonW.J. JarowJ.P. Effect of diabetes mellitus upon male reproductive function.Urology199749450851310.1016/S0090‑4295(96)00573‑09111618
    [Google Scholar]
  3. GilbertR.E. MifsudS.A. HulthenU.L. Wilkinson-BerkaJ.L. BertramJ.F. AllenT.J. CooperM.E. KellyD.J. Podocyte foot process broadening in experimental diabetic nephropathy: Amelioration with renin-angiotensin blockade.Diabetologia200144787888210.1007/s00125010056111508273
    [Google Scholar]
  4. HadjzadehM-A-R. RajaeiZ. MoradiR. GhorbaniA. SaghebiA. Antihyperglycemic and antihyperlipidemic effects of hydroalcoholic extract of Securigera securidaca seeds in streptozotocin-induced diabetic rats.Adv. Biomed. Res.2015413310.4103/2277‑9175.15042725709998
    [Google Scholar]
  5. GilbertR.E. KellyD.J. CoxA.J. Wilkinson-BerkaJ.L. RumbleJ.R. OsickaT. PanagiotopoulosS. LeeV. HendrichE.C. JerumsG. CooperM.E. Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes.Diabetologia200043111360136710.1007/s00125005153911126403
    [Google Scholar]
  6. GabirM.M. HansonR.L. DabeleaD. Plasma glucose and prediction of microvascular disease and mortality.Diabetes Care200023827
    [Google Scholar]
  7. ShimomuraH. SpiroR. G. Hiroyuki shimomura and robert g. spiro1987
    [Google Scholar]
  8. RakietenN. RakietenM.L. NadkarniM.V. Studies on the diabetogenic action of streptozotocin (NSC-37917).Cancer Chemother Rep1963299198
    [Google Scholar]
  9. SamuelR.O. Gomes-FilhoJ.E. Dezan-JúniorE. Streptozotocin: Uses, mechanism of action and side effects.Streptozotocin: Uses, mechanism of action and side effects.Nova ScienceNew York20146180
    [Google Scholar]
  10. ValiathanM.S. Healing Plants.Curr Sci2020751111221127
    [Google Scholar]
  11. MuckensturmB. FoechterlenD. ReduronJ.P. DantonP. HildenbrandM. Phytochemical and chemotaxonomic studies of Foeniculum vulgare.Biochem. Syst. Ecol.199725435335810.1016/S0305‑1978(96)00106‑8
    [Google Scholar]
  12. OulmoudenF. Sa¨ıleR. GnaouiN.E. BenomarH. LkhiderS. Hypolipidemic and anti-atherogenic effect of aqueous extract of fennel (Foeniculum Vulgare) extract in an experimental model of atherosclerosis induced by triton WR-1339.Eur. J. Sci. Res.20119199
    [Google Scholar]
  13. El-SoudN.A. El-LaithyN. El-SaeedG. WahbyM.S. KhalilM. MorsyF. ShaffieM. Antidiabetic activities of Foeniculum vulgare mill. essential oil in streptozotocin-induced diabetic rats.Maced. J. Med. Sci.20114213914610.3889/MJMS.1857‑5773.2011.0173
    [Google Scholar]
  14. ÖzbekH. UğraşS. DülgerH. Bayramİ. Tuncerİ. ÖztürkG. ÖztürkA. Hepatoprotective effect of Foeniculum vulgare essential oil.Fitoterapia200374331731910.1016/S0367‑326X(03)00028‑512727504
    [Google Scholar]
  15. BarrosL. HelenoS.A. CarvalhoA.M. FerreiraI.C.F.R. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal.Food Chem. Toxicol.200947102458246410.1016/j.fct.2009.07.00319596397
    [Google Scholar]
  16. KumarS.V. KumarS.P. RupeshD. NitinK. J. Chem. Pharm. Res.201131675684
    [Google Scholar]
  17. BayneK. Revised guide for the care and use of laboratory animals available. American physiological society.Physiologist19963942082118854724
    [Google Scholar]
  18. PandhareR. BalakrishnanS. MohiteP. KhanageS. Antidiabetic and antihyperlipidaemic potential of Amaranthus viridis (L.) Merr. in streptozotocin induced diabetic ratsAsian Pac J Trop Dis201210.1016/S2222‑1808(12)60148‑0
    [Google Scholar]
  19. BeautyV. SukartiniN. Evaluation of blood glucose testing using Contour® plus glucometer.Indones. J. Med. Lab. Technol. Clin. Pathol201824325826110.24293/ijcpml.v24i3.1340
    [Google Scholar]
  20. DhanabalS.P. MaithiliV. MahendranS. VadivelanR. Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata in alloxan induced diabetic rats.Indian J. Pharmacol.201143445545910.4103/0253‑7613.8312121845005
    [Google Scholar]
  21. SuvarnaS.K. LaytonC. BancroftJ.D. Bancroft’s Theory and Practice of Histological Techniques.Elsevier8th ed201810.1016/C2015‑0‑00143‑5
    [Google Scholar]
  22. ML. ML.O. LZ. AE.H. AO. AM. Ethnopharmacological survey of plants used for the treatment of diabetes in the town of Sidi Slimane (Morocco).J. Pharmacogn. Phytother.20179610111010.5897/JPP2016.0437
    [Google Scholar]
  23. EddouksM. MaghraniM. LemhadriA. OuahidiM.L. JouadH. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet).J. Ethnopharmacol.2002822-39710310.1016/S0378‑8741(02)00164‑212241983
    [Google Scholar]
  24. TjalveH. Streptozotocin-distribution, metabolism and mechanisms of actionUps. J. Med. Sci.1983145157
    [Google Scholar]
  25. GhasemiA. JeddiS. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide.EXCLI J.20232227429410.17179/excli2022‑572036998708
    [Google Scholar]
  26. KolbH. Mouse models of insulin dependent diabetes: Low‐dose streptozocin‐induced diabetes and nonobese diabetic (NOD) mice.Diabetes Metab. Rev.19873375177810.1002/dmr.56100303082956075
    [Google Scholar]
  27. FurmanB.L. Streptozotocin‐induced diabetic models in mice and rats.Curr. Protoc.202114e7810.1002/cpz1.7833905609
    [Google Scholar]
  28. LiuY. DongM. YangZ. PanS. Antidiabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway.Int. J. Biol. Macromol.20168948448810.1016/j.ijbiomac.2016.05.01527164497
    [Google Scholar]
  29. American Diabetes AssociationDiagnosis and classification of diabetes mellitus.Diabetes Care201033110.2337/dc10‑S062
    [Google Scholar]
  30. RazaqR.A. MahdiJ.A. JawadR.A. Information about diabetes mellitus: ReviewJ. Univ. Babylon eng. sci.202083
    [Google Scholar]
  31. RondónL.J. PrivatA.M. DaulhacL. DavinN. MazurA. FialipJ. EschalierA. CourteixC. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain.J. Physiol.2010588214205421510.1113/jphysiol.2010.19700420837644
    [Google Scholar]
  32. BerraniA. LrhorfiL.A. LarbiO.M. El HessniA. ZouarhiM. ErahaliD. BengueddourR. Hypoglycemic effect of vitex agnus castus extract in diabetic rats induced by streptozotocin.Phytotherapie201816S1S40S4710.3166/phyto‑2018‑0034
    [Google Scholar]
  33. MhaidatN. M. Abu-ZaitonA. S. AlzoubiK. H. AlzoubiW. AlazabR. S. Antihyperglycemic properties of Foeniculum vulgare extract in streptozocin-induced diabetes in ratsInt. J. Pharmacol.2015111727510.3923/ijp.2015.72.75
    [Google Scholar]
  34. RoddaR. AvvariK. SanjeevaR. ChidrawarV.R. ReddyT.R. Pharmacological screening of synergistic antidiabetic efficacy of Tagetes erecta and Foeniculum vulgare.Int. J. Phytopharm.201344223229
    [Google Scholar]
  35. Samadi-NoshahrZ. HadjzadehM.A.R. Moradi-MarjanehR. Khajavi-RadA. The hepatoprotective effects of fennel seeds extract and trans: Anethole in streptozotocin‐induced liver injury in rats.Food Sci. Nutr.2021921121113110.1002/fsn3.209033598196
    [Google Scholar]
  36. CabukM. AlcicekA. BozkurtM. LmreN. Antimicrobial properties of the essential oils isolated from the aromatic plants and using possibility as alternative feed additives.Natl. Animal. Nutr. Congress182003184187
    [Google Scholar]
  37. DumonteilE. MagnanC. Ritz-LaserB. MedaP. DussoixP. GilbertM. KtorzaA. PhilippeJ. Insulin, but not glucose lowering corrects the hyperglucagonemia and increased proglucagon messenger ribonucleic acid levels observed in insulinopenic diabetes.Endocrinology1998139114540454610.1210/endo.139.11.62949794463
    [Google Scholar]
  38. ShirwaikarA. RajendranK. Dinesh KumarC. BodlaR. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats.J. Ethnopharmacol.200491117117510.1016/j.jep.2003.12.01715036485
    [Google Scholar]
  39. AlmdalT.P. VilstrupH. Strict insulin therapy normalises organ nitrogen contents and the capacity of urea nitrogen synthesis in experimental diabetes in rats.Diabetologia198831211411810.1007/BF003955583282951
    [Google Scholar]
  40. RenittaR.E. NarayananR. Cypriyana PJJ. SamrotA.V. Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice.Biocatal. Agric. Biotechnol.202028August10176310.1016/j.bcab.2020.101763
    [Google Scholar]
  41. AbbasN.A.T. El SalemA. Metformin, sitagliptin, and liraglutide modulate serum retinol-binding protein-4 level and adipocytokine production in type 2 diabetes mellitus rat model.Can. J. Physiol. Pharmacol.201896121226123110.1139/cjpp‑2017‑065030075088
    [Google Scholar]
  42. AnithaT. BalakumarC. IlangoK. Benedict JoseC. VetrivelD. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic ratsInt. J. Adv. Pharm., Biol. Chem.201432
    [Google Scholar]
  43. Mohamed MH. Entsar AS. Kholoud HR. Antidiabetic activity of cobalt–quercetin complex: A new potential candidate for diabetes treatment.J. Appl. Pharm. Sci.20201012445210.7324/JAPS.2020.101206
    [Google Scholar]
  44. El-SheikhE.S.A. GalalA.A.A. Toxic effects of sub-chronic exposure of male albino rats to emamectin benzoate and possible ameliorative role of Foeniculum vulgare essential oil.Environ. Toxicol. Pharmacol.20153931177118810.1016/j.etap.2015.04.00825935540
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X353419241203064748
Loading
/content/journals/chddt/10.2174/011871529X353419241203064748
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Diabetes; Foeniculum vulgare; hyperglycemia; methanolic extract; streptozotocin; wistar rats
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test