Skip to content
2000
image of Exploring the Role of Secondary Metabolites from Plants and Microbes as Modulators of Macrophage Differentiation

Abstract

Recent research has uncovered that secondary metabolites-biologically active compounds produced by plants, microbes, and other organisms-play a significant role in regulating the differentiation and function of macrophages. Macrophages, key components of the innate immune system, are crucial for a wide range of physiological processes, including immune response modulation, tissue homeostasis, and host defense against pathogens. This research delves into the mechanisms by which secondary metabolites influence macrophage differentiation signaling pathways, with a focus on how specific compounds affect macrophage polarization and functional phenotypes. Understanding these effects can open new avenues for developing therapeutic strategies that target macrophage-mediated immune responses. Secondary metabolites, such as nitrogen (N) and sulfur (S) containing compounds, terpenoids, and phenolic compounds from plants and microbes, can modulate macrophage differentiation by influencing cytokine production and activity. The activation of signaling pathways in macrophages involves multiple receptors and transcription factors, including IFN-γ receptor activation leading to STAT1 activation, TLR4 triggering IRF5, NFκB, and AP1, IL-4 receptor activation leading to STAT6 and IRF4 activation, PPARγ activation via the fatty acid receptor, TLR4 increasing CREB and C/EBP levels. The complex interplay between transcription factors and cytokines is crucial for maintaining the balance between the M1 and M2 states of macrophages. Despite these insights, further research is needed to unravel the specific molecular mechanisms involved and to identify promising secondary metabolites that could be translated into clinical applications.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X327064241003072202
2024-10-11
2024-11-14
Loading full text...

Full text loading...

References

  1. Mahmood K.I. Najmuldeen H.H.R. Rachid S.K. Physiological regulation for enhancing biosynthesis of biofilm-inhibiting secondary metabolites in Streptomyces cellulosae. Cell. Mol. Biol. 2022 68 5 33 46 10.14715/cmb/2022.68.5.5 36029504
    [Google Scholar]
  2. Barna J.C.J. Williams D.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu. Rev. Microbiol. 1984 38 1 339 357 10.1146/annurev.mi.38.100184.002011 6388496
    [Google Scholar]
  3. Sande M.A. Mandell G.L. Antimicrobial agents: Tetracyclines and chloramphenicol. The pharmacological basis of therapeutics. New York Macmillan Publishers 1980 1181 1199
    [Google Scholar]
  4. Gilbert B. Natural product derivatives in tropical insect and parasite control. Pontif. Accad. Sci. Ser. Varia. 1977 41 225 239
    [Google Scholar]
  5. Nilofer N. Singh S. Singh A. Kaur P. Siddiqui A. Kumar D. Lal R. Chanotiya C. Influence of the Season on the Quantity and Chemical Composition of the Essential Oil and Synthesis of Secondary Metabolites in Cymbopogon martini (Roxb.) Wats. Agrotechniques Indus. Crops 2023 3 4 170 191
    [Google Scholar]
  6. Binesh A. Devaraj S.N. Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci. 2018 196 28 37 10.1016/j.lfs.2018.01.012 29339101
    [Google Scholar]
  7. Gautier E.L. Shay T. Miller J. Greter M. Jakubzick C. Ivanov S. Helft J. Chow A. Elpek K.G. Gordonov S. Mazloom A.R. Ma’ayan A. Chua W.J. Hansen T.H. Turley S.J. Merad M. Randolph G.J. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012 13 11 1118 1128 10.1038/ni.2419 23023392
    [Google Scholar]
  8. Sudduth T.L. Greenstein A. Wilcock D.M. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies. J. Neurosci. 2013 33 23 9684 9692 10.1523/JNEUROSCI.1220‑13.2013 23739965
    [Google Scholar]
  9. Rawlings J.S. Rosler K.M. Harrison D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004 117 8 1281 1283 10.1242/jcs.00963 15020666
    [Google Scholar]
  10. Hu W. Ralay Ranaivo H. Roy S.M. Behanna H.A. Wing L.K. Munoz L. Guo L. Van Eldik L.J. Watterson D.M. Development of a novel therapeutic suppressor of brain proinflammatory cytokine up-regulation that attenuates synaptic dysfunction and behavioral deficits. Bioorg. Med. Chem. Lett. 2007 17 2 414 418 10.1016/j.bmcl.2006.10.028 17079143
    [Google Scholar]
  11. Bhai M.K.P. Binesh A. Shanmugam S.A. Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J. Biochem. Mol. Toxicol. 2024 38 1 e23589 10.1002/jbt.23589 37985964
    [Google Scholar]
  12. Qin H. Holdbrooks A.T. Liu Y. Reynolds S.L. Yanagisawa L.L. Benveniste E.N. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol. 2012 189 7 3439 3448 10.4049/jimmunol.1201168 22925925
    [Google Scholar]
  13. Daley J.M. Brancato S.K. Thomay A.A. Reichner J.S. Albina J.E. The phenotype of murine wound macrophages. J. Leukoc. Biol. 2009 87 1 59 67 10.1189/jlb.0409236 20052800
    [Google Scholar]
  14. Stolfi C. Rizzo A. Franzè E. Rotondi A. Fantini M.C. Sarra M. Caruso R. Monteleone I. Sileri P. Franceschilli L. Caprioli F. Ferrero S. MacDonald T.T. Pallone F. Monteleone G. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 2011 208 11 2279 2290 10.1084/jem.20111106 21987656
    [Google Scholar]
  15. Gadang V. Kohli R. Myronovych A. Hui D.Y. Perez-Tilve D. Jaeschke A. MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet. Am. J. Physiol. Endocrinol. Metab. 2013 305 4 E549 E556 10.1152/ajpendo.00197.2013 23860122
    [Google Scholar]
  16. Kang K. Reilly S.M. Karabacak V. Gangl M.R. Fitzgerald K. Hatano B. Lee C.H. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008 7 6 485 495 10.1016/j.cmet.2008.04.002 18522830
    [Google Scholar]
  17. Odegaard J.I. Ricardo-Gonzalez R.R. Goforth M.H. Morel C.R. Subramanian V. Mukundan L. Eagle A.R. Vats D. Brombacher F. Ferrante A.W. Chawla A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 2007 447 7148 1116 1120 10.1038/nature05894 17515919
    [Google Scholar]
  18. Liao X. Sharma N. Kapadia F. Zhou G. Lu Y. Hong H. Paruchuri K. Mahabeleshwar G.H. Dalmas E. Venteclef N. Flask C.A. Kim J. Doreian B.W. Lu K.Q. Kaestner K.H. Hamik A. Clément K. Jain M.K. Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 2011 121 7 2736 2749 10.1172/JCI45444 21670502
    [Google Scholar]
  19. Luyendyk J.P. Schabbauer G.A. Tencati M. Holscher T. Pawlinski R. Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J. Immunol. 2008 180 6 4218 4226 10.4049/jimmunol.180.6.4218 18322234
    [Google Scholar]
  20. Arranz A. Doxaki C. Vergadi E. Martinez de la Torre Y. Vaporidi K. Lagoudaki E.D. Ieronymaki E. Androulidaki A. Venihaki M. Margioris A.N. Stathopoulos E.N. Tsichlis P.N. Tsatsanis C. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA 2012 109 24 9517 9522 10.1073/pnas.1119038109 22647600
    [Google Scholar]
  21. Byles V. Covarrubias A.J. Ben-Sahra I. Lamming D.W. Sabatini D.M. Manning B.D. Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 2013 4 1 2834 10.1038/ncomms3834 24280772
    [Google Scholar]
  22. Binesh A. Devaraj S.N. Devaraj H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J. Biochem. Mol. Toxicol. 2020 34 2 e22422 10.1002/jbt.22422 31729780
    [Google Scholar]
  23. Binesh A. Devaraj S.N. Devaraj H. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie 2018 148 63 71 10.1016/j.biochi.2018.02.011 29481959
    [Google Scholar]
  24. Binesh A. Devaraj Sivasitambaram N. Halagowder D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J. Biochem. Mol. Toxicol. 2020 34 3 e22442 10.1002/jbt.22442 31926051
    [Google Scholar]
  25. Lawrence T. Natoli G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat. Rev. Immunol. 2011 11 11 750 761 10.1038/nri3088 22025054
    [Google Scholar]
  26. Verreck F.A.W. de Boer T. Langenberg D.M.L. Hoeve M.A. Kramer M. Vaisberg E. Kastelein R. Kolk A. de Waal-Malefyt R. Ottenhoff T.H.M. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 2004 101 13 4560 4565 10.1073/pnas.0400983101 15070757
    [Google Scholar]
  27. Mantovani A. Sica A. Sozzani S. Allavena P. Vecchi A. Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 25 12 677 686 10.1016/j.it.2004.09.015 15530839
    [Google Scholar]
  28. Binesh A. Devaraj S.N. Halagowder D. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis. J. Cell. Physiol. 2019 234 5 7040 7050 10.1002/jcp.27458 30478968
    [Google Scholar]
  29. Martinez F.O. Helming L. Gordon S. Alternative activation of macrophages: An immunologic functional perspective. Annu. Rev. Immunol. 2009 27 1 451 483 10.1146/annurev.immunol.021908.132532 19105661
    [Google Scholar]
  30. Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003 73 2 209 212 10.1189/jlb.0602325 12554797
    [Google Scholar]
  31. Raes G. Van den Bergh R. De Baetselier P. Ghassabeh G.H. Scotton C. Locati M. Mantovani A. Sozzani S. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J. Immunol. 2005 174 11 6561 6562 10.4049/jimmunol.174.11.6561 15905489
    [Google Scholar]
  32. Piyushbhai M.K. Binesh A. Shanmugam S.A. Venkatachalam K. Exposure to low-dose arsenic caused teratogenicity and upregulation of proinflammatory cytokines in zebrafish embryos. Biol. Trace Elem. Res. 2023 201 7 3487 3496 10.1007/s12011‑022‑03418‑w 36107303
    [Google Scholar]
  33. Bourgaud F. Gravot A. Milesi S. Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001 161 5 839 851 10.1016/S0168‑9452(01)00490‑3
    [Google Scholar]
  34. Mariappan K.V. Medicinal plants or plant derived compounds used in aquaculture. Recent Advances in Aquaculture Microbial Technology. Cambridge, Massachusetts Academic press 2023 153 207 10.1016/B978‑0‑323‑90261‑8.00003‑1
    [Google Scholar]
  35. Costa T. D. S. A. Vieira R. F. Bizzo H. R. Silveira D. Gimenes M. A. Secondary metabolites. Chromatography and Its Applications London InTechOpen 2012
    [Google Scholar]
  36. Nidhi Naik Danial Kahrizi Samra Siddiqui Kahrizi D. Al-Najjar M.A.A. Khan M.S. Siddiqui S. Role of natural plant extracts for potential antileishmanial targets–In-depth review of the molecular mechanism. Cell. Mol. Biol. 2022 68 10 117 123 10.14715/cmb/2022.68.10.19 37114261
    [Google Scholar]
  37. Saxena M. Saxena J. Nema R. Singh D. Gupta A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 2013 1 6 168 182
    [Google Scholar]
  38. Abbas F. Yu Y. Bendahmane M. Wang H.C. Plant volatiles and color compounds: From biosynthesis to function. Physiol. Plant. 2023 175 3 e13947 10.1111/ppl.13947 37357979
    [Google Scholar]
  39. Mansfield J.W. Antimicrobial compounds and resistance: The role of phytoalexins and phytoanticipins. Mechanisms of resistance to plant diseases. Dordrecht Springer Netherlands 2000 325 370 10.1007/978‑94‑011‑3937‑3_10
    [Google Scholar]
  40. Raskin I. Ribnicky D.M. Komarnytsky S. Ilic N. Poulev A. Borisjuk N. Brinker A. Moreno D.A. Ripoll C. Yakoby N. O’Neal J.M. Cornwell T. Pastor I. Fridlender B. Plants and human health in the twenty-first century. Trends Biotechnol. 2002 20 12 522 531 10.1016/S0167‑7799(02)02080‑2 12443874
    [Google Scholar]
  41. Ncube N.S. Afolayan A.J. Okoh A.I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr. J. Biotechnol. 2008 7 12 1797 1806 10.5897/AJB07.613
    [Google Scholar]
  42. Leena E.A. Abdulrahman E.A. Najiah E.A. Multiple approaches for the management of Alzheimer disease: Natural compounds, FDA approved drugs, and nanotechnology interventions. Cell. Mol. Biol. 2022 68 11 8 15 10.14715/cmb/2022.68.11.2 37114315
    [Google Scholar]
  43. Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006 9 3 297 304 10.1016/j.pbi.2006.03.014 16600670
    [Google Scholar]
  44. Looregipoor F. Hadi N. Shojaeiyan A. Study on Quantitative and Qualitative Traits Diversity in Some Momordica charantia L. Genotypes. Agrotechniques in Industrial Crops 2023 3 4 211 222
    [Google Scholar]
  45. Alavi M. Adulrahman N.A. Haleem A.A. Al-Râwanduzi A.D.H. Khusro A. Abdelgawad M.A. Ghoneim M.M. Batiha G.E.S. Kahrizi D. Martinez F. Koirala N. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell. Mol. Biol. 2022 67 5 151 156 10.14715/cmb/2021.67.5.21 35818258
    [Google Scholar]
  46. Balandrin M. Klocke J.I. 1 Medicinal, Aromatic, and Industrial Materials. Med. Aromat. Plants 1988 1 1
    [Google Scholar]
  47. Maurya P.K. Animal biotechnology as a tool to understand and fight aging. Animal Biotechnology. Cambridge, Massachusetts Academic Press 2020 235 250 10.1016/B978‑0‑12‑811710‑1.00010‑0
    [Google Scholar]
  48. Mabry T Markham KR Thomas MB The systematic identification of flavonoids. Berlin/Heidelberg, Germany Springer Science & Business Media 2012
    [Google Scholar]
  49. Harborne AJ Phytochemical methods a guide to modern techniques of plant analysis. Berlin/Heidelberg, Germany Springer Science & Business Media 1998
    [Google Scholar]
  50. Dewick PM Medicinal natural products: A biosynthetic approach. Hoboken, New Jersey, U.S. John Wiley & Sons 2002
    [Google Scholar]
  51. Garcia-Brugger A. Lamotte O. Vandelle E. Bourque S. Lecourieux D. Poinssot B. Wendehenne D. Pugin A. Early signaling events induced by elicitors of plant defenses. Mol. Plant Microbe Interact. 2006 19 7 711 724 10.1094/MPMI‑19‑0711 16838784
    [Google Scholar]
  52. Medina J.H. Viola H. Wolfman C. Marder M. Wasowski C. Calvo D. Paladini A.C. Overview--flavonoids: A new family of benzodiazepine receptor ligands. Neurochem. Res. 1997 22 4 419 425 10.1023/A:1027303609517 9130252
    [Google Scholar]
  53. Oksman-Caldentey K.M. Inzé D. Natural compounds derived from plants can be categorized into three different groups according to their final use in developing a drug. Trends Plant Sci. 2004 9 9 433 440 10.1016/j.tplants.2004.07.006 15337493
    [Google Scholar]
  54. Ortega H. Torres-Mendoza D. Caballero E Z. Cubilla-Rios L. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi (Basel) 2021 7 7 570 10.3390/jof7070570 34356949
    [Google Scholar]
  55. Nisa H. Kamili A.N. Nawchoo I.A. Shafi S. Shameem N. Bandh S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015 82 50 59 10.1016/j.micpath.2015.04.001 25865953
    [Google Scholar]
  56. Leoni A. Locatelli A. Morigi R. Rambaldi M. 2-Indolinone a versatile scaffold for treatment of cancer: A patent review (2008–2014). Expert Opin. Ther. Pat. 2016 26 2 149 173 10.1517/13543776.2016.1118059 26561198
    [Google Scholar]
  57. Speck K. Magauer T. The chemistry of isoindole natural products. Beilstein J. Org. Chem. 2013 9 1 2048 2078 10.3762/bjoc.9.243 24204418
    [Google Scholar]
  58. Zhang D.W. Tao X.Y. Liu J.M. Chen R.D. Zhang M. Fang X.M. Yu L.Y. Dai J.G. A new polyketide synthase−nonribosomal peptide synthetase hybrid metabolite from plant endophytic fungus Periconia sp. Chin. Chem. Lett. 2016 27 5 640 642 10.1016/j.cclet.2016.02.005
    [Google Scholar]
  59. Qi C. Zhou Q. Gao W. Liu M. Chen C. Li X.N. Lai Y. Zhou Y. Li D. Hu Z. Zhu H. Zhang Y. Anti-BACE1 and anti-AchE activities of undescribed spiro-dioxolane-containing meroterpenoids from the endophytic fungus Aspergillus terreus Thom. Phytochemistry 2019 165 112041 10.1016/j.phytochem.2019.05.014 31203103
    [Google Scholar]
  60. Cai R. Wu Y. Chen S. Cui H. Liu Z. Li C. She Z. Peniisocoumarins A–J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel. J. Nat. Prod. 2018 81 6 1376 1383 10.1021/acs.jnatprod.7b01018 29792702
    [Google Scholar]
  61. Feng L. Wang J. Liu S. Zhang X.J. Bi Q.R. Hu Y.Y. Wang Z. Tan N.H. Colletopeptides A–D, anti-inflammatory cyclic tridepsipeptides from the plant endophytic fungus Colletotrichum sp. S8. J. Nat. Prod. 2019 82 6 1434 1441 10.1021/acs.jnatprod.8b00829 31181925
    [Google Scholar]
  62. Sun L.T. Chen Y. Yang H.X. Li Z.H. Liu J.K. Wang G.K. Feng T. Bisabolane sesquiterpenes and α-pyrone derivative from endophytic fungus Zopfiella sp. Phytochem. Lett. 2020 37 29 32 10.1016/j.phytol.2020.03.008
    [Google Scholar]
  63. Liang X.R. Miao F.P. Song Y.P. Guo Z.Y. Ji N.Y. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 2016 30 14 1605 1610 10.1080/14786419.2015.1126264 26728965
    [Google Scholar]
  64. Wang N. Qiu P. Cui W. Yan X. Zhang B. He S. Recent advances in multi-target anti-Alzheimer disease compounds (2013 up to the present). Curr. Med. Chem. 2019 26 30 5684 5710 10.2174/0929867326666181203124102 30501591
    [Google Scholar]
  65. Hu X. Liu S. Liu X. Zhang J. Liang Y. Li Y. DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation. Endocrine 2017 55 3 754 763 10.1007/s12020‑016‑1073‑8 27612849
    [Google Scholar]
  66. Song Y.P. Shi Z.Z. Miao F.P. Fang S.T. Yin X.L. Ji N.Y. Tricholumin A, a highly transformed ergosterol derivative from the alga-endophytic fungus Trichoderma asperellum. Org. Lett. 2018 20 19 6306 6309 10.1021/acs.orglett.8b02821 30256119
    [Google Scholar]
  67. Ashu E.E. Xu J. Yuan Z.C. Bacteria in cancer therapeutics: A framework for effective therapeutic bacterial screening and identification. J. Cancer 2019 10 8 1781 1793 10.7150/jca.31699 31205534
    [Google Scholar]
  68. Anh C. Kang J. Lee H.S. Trinh P. Heo C.S. Shin H. New glycosylated secondary metabolites from marine-derived bacteria. Mar. Drugs 2022 20 7 464 10.3390/md20070464 35877757
    [Google Scholar]
  69. Yoon WJ Ham YM Kim SS Yoo BS Moon JY Baik JS Lee NH Hyun CG Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. Eur Asian J. BioSci. 2009 3 3 130 143
    [Google Scholar]
  70. Dhara S. Chakraborty K. Anti-inflammatory xenicane-type diterpenoid from the intertidal brown seaweed Sargassum ilicifolium. Nat. Prod. Res. 2021 35 24 5699 5709 10.1080/14786419.2020.1825426 32993391
    [Google Scholar]
  71. Kitajima M Takayama H. Lycopodium alkaloids: Isolation and asymmetric synthesis. Top Curr. Chem. 2012 309 24 1 31
    [Google Scholar]
  72. Damar U. Gersner R. Johnstone J.T. Schachter S. Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: A review of preclinical research. Expert Rev. Neurother. 2016 16 6 671 680 10.1080/14737175.2016.1175303 27086593
    [Google Scholar]
  73. Yang M. You W. Wu S. Fan Z. Xu B. Zhu M. Li X. Xiao Y. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. BMC Genomics 2017 18 1 245 10.1186/s12864‑017‑3615‑8 28330463
    [Google Scholar]
  74. Hartrampf F.W.W. Furukawa T. Trauner D. A Conia‐Ene‐Type Cyclization under Basic Conditions Enables an Efficient Synthesis of (−)‐Lycoposerramine R. Angew. Chem. Int. Ed. 2017 56 3 893 896 10.1002/anie.201610021 28000374
    [Google Scholar]
  75. Hagemann T. Biswas S.K. Lawrence T. Sica A. Lewis C.E. Regulation of macrophage function in tumors: The multifaceted role of NF-κB. Blood 2009 113 14 3139 3146 10.1182/blood‑2008‑12‑172825 19171876
    [Google Scholar]
  76. Lewis C.E. Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006 66 2 605 612 10.1158/0008‑5472.CAN‑05‑4005 16423985
    [Google Scholar]
  77. Komohara Y Ohnishi K Kuratsu J Takeya M Possible involvement of the M2 anti‐inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008 216 1 15 24 10.1002/path.2370
    [Google Scholar]
  78. Tsuboki J. Fujiwara Y. Horlad H. Shiraishi D. Nohara T. Tayama S. Motohara T. Saito Y. Ikeda T. Takaishi K. Tashiro H. Yonemoto Y. Katabuchi H. Takeya M. Komohara Y. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages. Sci. Rep. 2016 6 1 29588 10.1038/srep29588 27404320
    [Google Scholar]
  79. Ishiuchi K. Hirose D. Suzuki T. Nakayama W. Jiang W.P. Monthakantirat O. Wu J.B. Kitanaka S. Makino T. Identification of lycopodium alkaloids produced by an ultraviolet-irradiated strain of Paraboeremia, an endophytic fungus from Lycopodium serratum var. longipetiolatum. J. Nat. Prod. 2018 81 5 1143 1147 10.1021/acs.jnatprod.7b00627 29676580
    [Google Scholar]
  80. Nakayama W. Fujiwara Y. Kosuge Y. Monthakantirat O. Fujikawa K. Watthana S. Kitanaka S. Makino T. Ishiuchi K. Phlenumdines D and E, new Lycopodium alkaloids from Phlegmariurus nummulariifolius, and their regulatory effects on macrophage differentiation during tumor development. Phytochem. Lett. 2019 29 98 103 10.1016/j.phytol.2018.11.010
    [Google Scholar]
  81. Bouvier F. Rahier A. Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 2005 44 6 357 429 10.1016/j.plipres.2005.09.003 16289312
    [Google Scholar]
  82. Singh M Pal M Sharma RP Biological activity of the labdane diterpenes. Planta Med 1999 65 1 2 8 10.1055/s‑1999‑13952
    [Google Scholar]
  83. Girón N. Través P.G. Rodríguez B. López-Fontal R. Boscá L. Hortelano S. de las Heras B. Supression of inflammatory responses by labdane-type diterpenoids. Toxicol. Appl. Pharmacol. 2008 228 2 179 189 10.1016/j.taap.2007.12.006 18190942
    [Google Scholar]
  84. Karin M. Yamamoto Y. Wang Q.M. The IKK NF-κB system: A treasure trove for drug development. Nat. Rev. Drug Discov. 2004 3 1 17 26 10.1038/nrd1279 14708018
    [Google Scholar]
  85. Lyß G. Knorre A. Schmidt T.J. Pahl H.L. Merfort I. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J. Biol. Chem. 1998 273 50 33508 33516 10.1074/jbc.273.50.33508 9837931
    [Google Scholar]
  86. D’Acquisto F. Lanzotti V. Carnuccio R. Cyclolinteinone, a sesterterpene from sponge Cacospongia linteiformis, prevents inducible nitric oxide synthase and inducible cyclo-oxygenase protein expression by blocking nuclear factor-κB activation in J774 macrophages. Biochem. J. 2000 346 3 793 798 10.1042/bj3460793 10698708
    [Google Scholar]
  87. García-Piñeres A.J. Lindenmeyer M.T. Merfort I. Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci. 2004 75 7 841 856 10.1016/j.lfs.2004.01.024 15183076
    [Google Scholar]
  88. Lee J.H. Koo T.H. Hwang B.Y. Lee J.J. Kaurane diterpene, kamebakaurin, inhibits NF-κ B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-κ B target genes. J. Biol. Chem. 2002 277 21 18411 18420 10.1074/jbc.M201368200 11877450
    [Google Scholar]
  89. Aharoni S. Lati Y. Aviram M. Fuhrman B. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M 2 anti‐inflammatory state. Biofactors 2015 41 1 44 51 10.1002/biof.1199 25650983
    [Google Scholar]
  90. Khan N. Khymenets O. Urpí-Sardà M. Tulipani S. Garcia-Aloy M. Monagas M. Mora-Cubillos X. Llorach R. Andres-Lacueva C. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014 6 2 844 880 10.3390/nu6020844 24566441
    [Google Scholar]
  91. Cambeiro-Pérez N. Figueiredo-González M. Pérez-Gregorio M.R. Bessa-Pereira C. De Freitas V. Sánchez B. Martínez-Carballo E. Unravelling the immunomodulatory role of apple phenolic rich extracts on human THP-1- derived macrophages using multiplatform metabolomics. Food Res. Int. 2022 155 111037 10.1016/j.foodres.2022.111037 35400427
    [Google Scholar]
  92. Mulvihill E.E. Huff M.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health. Can. J. Cardiol. 2010 26 Suppl. A 17A 21A 10.1016/S0828‑282X(10)71056‑4 20386755
    [Google Scholar]
  93. Kloesch B. Becker T. Dietersdorfer E. Kiener H. Steiner G. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int. Immunopharmacol. 2013 15 2 400 405 10.1016/j.intimp.2013.01.003 23347846
    [Google Scholar]
  94. Halliwell B. Rafter J. Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005 81 1 Suppl. 268S 276S 10.1093/ajcn/81.1.268S 15640490
    [Google Scholar]
  95. Bost J.W. Maroon A. Maroon J. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010 1 1 80 10.4103/2152‑7806.73804 21206541
    [Google Scholar]
  96. Bastos K.R.B. Barboza R. Sardinha L. Russo M. Alvarez J.M. Lima M.R.D. Role of endogenous IFN-γ in macrophage programming induced by IL-12 and IL-18. J. Interferon Cytokine Res. 2007 27 5 399 410 10.1089/jir.2007.0128 17523872
    [Google Scholar]
  97. Bernier M. Kwon Y.K. Pandey S.K. Zhu T.N. Zhao R.J. Maciuk A. He H.J. DeCabo R. Kole S. Binding of manumycin A inhibits IkappaB kinase β activity. J. Biol. Chem. 2006 281 5 2551 2561 10.1074/jbc.M511878200 16319058
    [Google Scholar]
  98. Vitale R. D’Aniello E. Gorbi S. Martella A. Silvestri C. Giuliani M. Fellous T. Gentile A. Carbone M. Cutignano A. Grauso L. Magliozzi L. Polese G. D’Aniello B. Defranoux F. Felline S. Terlizzi A. Calignano A. Regoli F. Di Marzo V. Amodeo P. Mollo E. Fishing for targets of alien metabolites: A novel peroxisome proliferator-activated receptor (PPAR) agonist from a marine pest. Mar. Drugs 2018 16 11 431 10.3390/md16110431 30400299
    [Google Scholar]
  99. Gegunde S. Alfonso A. Alvariño R. Pérez-Fuentes N. Botana L.M. Anhydroexfoliamycin, a streptomyces secondary metabolite, mitigates microglia-driven inflammation. ACS Chem. Neurosci. 2021 12 13 2336 2346 10.1021/acschemneuro.1c00033 34110771
    [Google Scholar]
  100. Hassan F. Rehman M.S. Khan M.S. Ali M.A. Javed A. Nawaz A. Yang C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet. 2019 10 514 10.3389/fgene.2019.00514 31214247
    [Google Scholar]
  101. Pinheiro D.M.L. de Oliveira A.H.S. Coutinho L.G. Fontes F.L. de Medeiros Oliveira R.K. Oliveira T.T. Faustino A.L.F. Lira da Silva V. de Melo Campos J.T.A. Lajus T.B.P. de Souza S.J. Agnez-Lima L.F. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation. Free Radic. Biol. Med. 2019 130 8 22 10.1016/j.freeradbiomed.2018.10.432 30366059
    [Google Scholar]
  102. Cuevas A. Saavedra N. Salazar L. Abdalla D. Modulation of immune function by polyphenols: Possible contribution of epigenetic factors. Nutrients 2013 5 7 2314 2332 10.3390/nu5072314 23812304
    [Google Scholar]
  103. Rossano F. De Luna L.O. Buommino E. Cusumano V. Losi E. Catania M.R. Secondary metabolites of exert immunobiological effects on human monocytes. Res. Microbiol. 1999 150 1 13 19 10.1016/S0923‑2508(99)80042‑4 10096130
    [Google Scholar]
  104. Binesh A. Gnanam R. Diosgenin production from callus, suspension and hairy root cultures of Trigonalle foenum-graceum L. Adv. Bio Tech. 2009 9 33 40
    [Google Scholar]
  105. Goławska S. Sprawka I. Łukasik I. Goławski A. Are naringenin and quercetin useful chemicals in pest-management strategies? J. Pest Sci. 2014 87 1 173 180 10.1007/s10340‑013‑0535‑5 24563648
    [Google Scholar]
  106. Spiller F. Alves M.K. Vieira S.M. Carvalho T.A. Leite C.E. Lunardelli A. Poloni J.A. Cunha F.Q. de Oliveira J.R. Anti-inflammatory effects of red pepper ( Capsicum baccatum ) on carrageenan- and antigen-induced inflammation. J. Pharm. Pharmacol. 2010 60 4 473 478 10.1211/jpp.60.4.0010 18380920
    [Google Scholar]
  107. Shi J. Arunasalam K. Yeung D. Kakuda Y. Mittal G. Jiang Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004 7 1 67 78 10.1089/109662004322984734 15117556
    [Google Scholar]
  108. Mazumder A. Dwivedi A. Du Plessis J. Sinigrin and its therapeutic benefits. Molecules 2016 21 4 416 10.3390/molecules21040416 27043505
    [Google Scholar]
  109. Kim J. Wie M.B. Ahn M. Tanaka A. Matsuda H. Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol. 2019 52 4 369 377 10.5115/acb.19.119 31949974
    [Google Scholar]
  110. Sen Z. Weida W. Jie M. Li S. Dongming Z. Xiaoguang C. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis. Phytomedicine 2019 57 385 395 10.1016/j.phymed.2018.12.045 30849675
    [Google Scholar]
  111. Cheung S.S.C. Hasman D. Khelifi D. Tai J. Smith R.W. Warnock G.L. Devil’s Club falcarinol-type polyacetylenes inhibit pancreatic cancer cell proliferation. Nutr. Cancer 2019 71 2 301 311 10.1080/01635581.2018.1559931 30661403
    [Google Scholar]
  112. Morten Kobæk-Larsen Christensen L.P. Vach W. Ritskes-Hoitinga J. Brandt K. Inhibitory effects of feeding with carrots or (-)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J. Agric. Food Chem. 2005 53 5 1823 1827 10.1021/jf048519s 15740080
    [Google Scholar]
  113. Gylling H. Plat J. Turley S. Ginsberg H.N. Ellegård L. Jessup W. Jones P.J. Lütjohann D. Maerz W. Masana L. Silbernagel G. Staels B. Borén J. Catapano A.L. De Backer G. Deanfield J. Descamps O.S. Kovanen P.T. Riccardi G. Tokgözoglu L. Chapman M.J. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014 232 2 346 360 10.1016/j.atherosclerosis.2013.11.043 24468148
    [Google Scholar]
  114. Moudi M. Go R. Yien C.Y. Nazre M. Vinca alkaloids. Int. J. Prev. Med. 2013 4 11 1231 1235 24404355
    [Google Scholar]
  115. Karapetian G. Engels H. Gretebeck K. Gretebeck R. Effect of Caffeine on LT, VT and HRVT. Int. J. Sports Med. 2012 33 7 507 513 10.1055/s‑0032‑1301904 22499570
    [Google Scholar]
  116. Kaliyamurthi V. Binesh A. Power of Portieria hornemannii : Influence on zebrafish antioxidant system-inflammatory cascade by combatting copper-induced inflammation. Nat. Prod. Res. 2023 2023 1 5 10.1080/14786419.2023.2280166 37950668
    [Google Scholar]
  117. Baron E.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache 2018 58 7 1139 1186 10.1111/head.13345 30152161
    [Google Scholar]
  118. Park S.H. Park K.H. Oh M.H. Kim H.H. Choe K.I. Kim S.R. Park K.J. Lee M.W. Anti-oxidative and anti-inflammatory activities of caffeoyl hemiterpene glycosides from Spiraea prunifolia. Phytochemistry 2013 96 430 436 10.1016/j.phytochem.2013.09.017 24161492
    [Google Scholar]
  119. Stark M.J. Burke Y.D. McKinzie J.H. Ayoubi A.S. Crowell P.L. Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer Lett. 1995 96 1 15 21 10.1016/0304‑3835(95)03912‑G 7553603
    [Google Scholar]
  120. Duffy R. Wade C. Chang R. Discovery of anticancer drugs from antimalarial natural products: A MEDLINE literature review. Drug Discov. Today 2012 17 17-18 942 953 10.1016/j.drudis.2012.03.013 22504324
    [Google Scholar]
  121. Lindner E. Dohadwalla A.N. Bhattacharya B.K. Positive inotropic and blood pressure lowering activity of a diterpene derivative isolated from Coleus forskohli: Forskolin. Arzneimittelforschung 1978 28 2 284 289 580393
    [Google Scholar]
  122. Ansari I.A. Akhtar M.S. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment. Natural Bio-active Compounds. Chemistry, Pharmacology and Health Care Practices Berlin, Heidelberg, SpringerLink 2019 Vol. 2 53 80
    [Google Scholar]
  123. Rahman M. Hussain A. Iqbal Z. Harwansh R. Singh L. Ahmad S. Nanosuspension: A potential nanoformulation for improved delivery of poorly bioavailable drug. Micro Nanosyst. 2013 5 4 273 287 10.2174/187640290504131127121625
    [Google Scholar]
  124. Binesh A. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev. Aquacult. 2021 13 1 556 566 10.1111/raq.12486
    [Google Scholar]
  125. Mariappan K.V. Probiotic nanoparticles for food. Recent Advances in Aquaculture Microbial Technology. Cambridge, Massachusetts Academic press 2023 307 338 10.1016/B978‑0‑323‑90261‑8.00008‑0
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X327064241003072202
Loading
/content/journals/chddt/10.2174/011871529X327064241003072202
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: plants and microbes ; macrophage ; Inflammatory diseases ; secondary metabolites
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test