Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Recent research has uncovered that secondary metabolites-biologically active compounds produced by plants, microbes, and other organisms-play a significant role in regulating the differentiation and function of macrophages. Macrophages, key components of the innate immune system, are crucial for a wide range of physiological processes, including immune response modulation, tissue homeostasis, and host defense against pathogens. This research delves into the mechanisms by which secondary metabolites influence macrophage differentiation signaling pathways, with a focus on how specific compounds affect macrophage polarization and functional phenotypes. Understanding these effects can open new avenues for developing therapeutic strategies that target macrophage-mediated immune responses. Secondary metabolites, such as nitrogen (N) and sulfur (S) containing compounds, terpenoids, and phenolic compounds from plants and microbes, can modulate macrophage differentiation by influencing cytokine production and activity. The activation of signaling pathways in macrophages involves multiple receptors and transcription factors, including IFN-γ receptor activation leading to STAT1 activation, TLR4 triggering IRF5, NFκB, and AP1, IL-4 receptor activation leading to STAT6 and IRF4 activation, PPARγ activation the fatty acid receptor, TLR4 increasing CREB and C/EBP levels. The complex interplay between transcription factors and cytokines is crucial for maintaining the balance between the M1 and M2 states of macrophages. Despite these insights, further research is needed to unravel the specific molecular mechanisms involved and to identify promising secondary metabolites that could be translated into clinical applications.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X327064241003072202
2024-10-11
2025-01-31
Loading full text...

Full text loading...

References

  1. MahmoodK.I. NajmuldeenH.H.R. RachidS.K. Physiological regulation for enhancing biosynthesis of biofilm-inhibiting secondary metabolites in Streptomyces cellulosae.Cell. Mol. Biol.2022685334610.14715/cmb/2022.68.5.536029504
    [Google Scholar]
  2. BarnaJ.C.J. WilliamsD.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group.Annu. Rev. Microbiol.198438133935710.1146/annurev.mi.38.100184.0020116388496
    [Google Scholar]
  3. SandeM.A. MandellG.L. Antimicrobial agents: Tetracyclines and chloramphenicol.The pharmacological basis of therapeutics.New YorkMacmillan Publishers198011811199
    [Google Scholar]
  4. GilbertB. Natural product derivatives in tropical insect and parasite control.Pontif. Accad. Sci. Ser. Varia.197741225239
    [Google Scholar]
  5. NiloferN. SinghS. SinghA. KaurP. SiddiquiA. KumarD. LalR. ChanotiyaC. Influence of the Season on the Quantity and Chemical Composition of the Essential Oil and Synthesis of Secondary Metabolites in Cymbopogon martini (Roxb.) Wats.Agrotechniques Indus. Crops202334170191
    [Google Scholar]
  6. BineshA. DevarajS.N. HalagowderD. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent.Life Sci.2018196283710.1016/j.lfs.2018.01.01229339101
    [Google Scholar]
  7. GautierE.L. ShayT. MillerJ. GreterM. JakubzickC. IvanovS. HelftJ. ChowA. ElpekK.G. GordonovS. MazloomA.R. Ma’ayanA. ChuaW.J. HansenT.H. TurleyS.J. MeradM. RandolphG.J. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages.Nat. Immunol.201213111118112810.1038/ni.241923023392
    [Google Scholar]
  8. SudduthT.L. GreensteinA. WilcockD.M. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies.J. Neurosci.201333239684969210.1523/JNEUROSCI.1220‑13.201323739965
    [Google Scholar]
  9. RawlingsJ.S. RoslerK.M. HarrisonD.A. The JAK/STAT signaling pathway.J. Cell Sci.200411781281128310.1242/jcs.0096315020666
    [Google Scholar]
  10. HuW. Ralay RanaivoH. RoyS.M. BehannaH.A. WingL.K. MunozL. GuoL. Van EldikL.J. WattersonD.M. Development of a novel therapeutic suppressor of brain proinflammatory cytokine up-regulation that attenuates synaptic dysfunction and behavioral deficits.Bioorg. Med. Chem. Lett.200717241441810.1016/j.bmcl.2006.10.02817079143
    [Google Scholar]
  11. BhaiM.K.P. BineshA. ShanmugamS.A. VenkatachalamK. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos.J. Biochem. Mol. Toxicol.2024381e2358910.1002/jbt.2358937985964
    [Google Scholar]
  12. QinH. HoldbrooksA.T. LiuY. ReynoldsS.L. YanagisawaL.L. BenvenisteE.N. SOCS3 deficiency promotes M1 macrophage polarization and inflammation.J. Immunol.201218973439344810.4049/jimmunol.120116822925925
    [Google Scholar]
  13. DaleyJ.M. BrancatoS.K. ThomayA.A. ReichnerJ.S. AlbinaJ.E. The phenotype of murine wound macrophages.J. Leukoc. Biol.2009871596710.1189/jlb.040923620052800
    [Google Scholar]
  14. StolfiC. RizzoA. FranzèE. RotondiA. FantiniM.C. SarraM. CarusoR. MonteleoneI. SileriP. FranceschilliL. CaprioliF. FerreroS. MacDonaldT.T. PalloneF. MonteleoneG. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer.J. Exp. Med.2011208112279229010.1084/jem.2011110621987656
    [Google Scholar]
  15. GadangV. KohliR. MyronovychA. HuiD.Y. Perez-TilveD. JaeschkeA. MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet.Am. J. Physiol. Endocrinol. Metab.20133054E549E55610.1152/ajpendo.00197.201323860122
    [Google Scholar]
  16. KangK. ReillyS.M. KarabacakV. GanglM.R. FitzgeraldK. HatanoB. LeeC.H. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity.Cell Metab.20087648549510.1016/j.cmet.2008.04.00218522830
    [Google Scholar]
  17. OdegaardJ.I. Ricardo-GonzalezR.R. GoforthM.H. MorelC.R. SubramanianV. MukundanL. EagleA.R. VatsD. BrombacherF. FerranteA.W. ChawlaA. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance.Nature200744771481116112010.1038/nature0589417515919
    [Google Scholar]
  18. LiaoX. SharmaN. KapadiaF. ZhouG. LuY. HongH. ParuchuriK. MahabeleshwarG.H. DalmasE. VenteclefN. FlaskC.A. KimJ. DoreianB.W. LuK.Q. KaestnerK.H. HamikA. ClémentK. JainM.K. Krüppel-like factor 4 regulates macrophage polarization.J. Clin. Invest.201112172736274910.1172/JCI4544421670502
    [Google Scholar]
  19. LuyendykJ.P. SchabbauerG.A. TencatiM. HolscherT. PawlinskiR. MackmanN. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages.J. Immunol.200818064218422610.4049/jimmunol.180.6.421818322234
    [Google Scholar]
  20. ArranzA. DoxakiC. VergadiE. Martinez de la TorreY. VaporidiK. LagoudakiE.D. IeronymakiE. AndroulidakiA. VenihakiM. MargiorisA.N. StathopoulosE.N. TsichlisP.N. TsatsanisC. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.Proc. Natl. Acad. Sci. USA2012109249517952210.1073/pnas.111903810922647600
    [Google Scholar]
  21. BylesV. CovarrubiasA.J. Ben-SahraI. LammingD.W. SabatiniD.M. ManningB.D. HorngT. The TSC-mTOR pathway regulates macrophage polarization.Nat. Commun.201341283410.1038/ncomms383424280772
    [Google Scholar]
  22. BineshA. DevarajS.N. DevarajH. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis.J. Biochem. Mol. Toxicol.2020342e2242210.1002/jbt.2242231729780
    [Google Scholar]
  23. BineshA. DevarajS.N. DevarajH. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression.Biochimie2018148637110.1016/j.biochi.2018.02.01129481959
    [Google Scholar]
  24. BineshA. Devaraj SivasitambaramN. HalagowderD. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis.J. Biochem. Mol. Toxicol.2020343e2244210.1002/jbt.2244231926051
    [Google Scholar]
  25. LawrenceT. NatoliG. Transcriptional regulation of macrophage polarization: Enabling diversity with identity.Nat. Rev. Immunol.2011111175076110.1038/nri308822025054
    [Google Scholar]
  26. VerreckF.A.W. de BoerT. LangenbergD.M.L. HoeveM.A. KramerM. VaisbergE. KasteleinR. KolkA. de Waal-MalefytR. OttenhoffT.H.M. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria.Proc. Natl. Acad. Sci. USA2004101134560456510.1073/pnas.040098310115070757
    [Google Scholar]
  27. MantovaniA. SicaA. SozzaniS. AllavenaP. VecchiA. LocatiM. The chemokine system in diverse forms of macrophage activation and polarization.Trends Immunol.2004251267768610.1016/j.it.2004.09.01515530839
    [Google Scholar]
  28. BineshA. DevarajS.N. HalagowderD. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis.J. Cell. Physiol.201923457040705010.1002/jcp.2745830478968
    [Google Scholar]
  29. MartinezF.O. HelmingL. GordonS. Alternative activation of macrophages: An immunologic functional perspective.Annu. Rev. Immunol.200927145148310.1146/annurev.immunol.021908.13253219105661
    [Google Scholar]
  30. MosserD.M. The many faces of macrophage activation.J. Leukoc. Biol.200373220921210.1189/jlb.060232512554797
    [Google Scholar]
  31. RaesG. Van den BerghR. De BaetselierP. GhassabehG.H. ScottonC. LocatiM. MantovaniA. SozzaniS. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells.J. Immunol.2005174116561656210.4049/jimmunol.174.11.656115905489
    [Google Scholar]
  32. PiyushbhaiM.K. BineshA. ShanmugamS.A. VenkatachalamK. Exposure to low-dose arsenic caused teratogenicity and upregulation of proinflammatory cytokines in zebrafish embryos.Biol. Trace Elem. Res.202320173487349610.1007/s12011‑022‑03418‑w36107303
    [Google Scholar]
  33. BourgaudF. GravotA. MilesiS. GontierE. Production of plant secondary metabolites: A historical perspective.Plant Sci.2001161583985110.1016/S0168‑9452(01)00490‑3
    [Google Scholar]
  34. MariappanK.V. Medicinal plants or plant derived compounds used in aquaculture.Recent Advances in Aquaculture Microbial Technology.Cambridge, MassachusettsAcademic press202315320710.1016/B978‑0‑323‑90261‑8.00003‑1
    [Google Scholar]
  35. CostaT. D. S. A. VieiraR. F. BizzoH. R. SilveiraD. GimenesM. A. Secondary metabolites.Chromatography and Its ApplicationsLondonInTechOpen2012
    [Google Scholar]
  36. Nidhi Naik Danial Kahrizi Samra Siddiqui KahriziD. Al-NajjarM.A.A. KhanM.S. SiddiquiS. Role of natural plant extracts for potential antileishmanial targets–In-depth review of the molecular mechanism.Cell. Mol. Biol.2022681011712310.14715/cmb/2022.68.10.1937114261
    [Google Scholar]
  37. SaxenaM. SaxenaJ. NemaR. SinghD. GuptaA. Phytochemistry of medicinal plants.J. Pharmacogn. Phytochem.201316168182
    [Google Scholar]
  38. AbbasF. YuY. BendahmaneM. WangH.C. Plant volatiles and color compounds: From biosynthesis to function.Physiol. Plant.20231753e1394710.1111/ppl.1394737357979
    [Google Scholar]
  39. MansfieldJ.W. Antimicrobial compounds and resistance: The role of phytoalexins and phytoanticipins.Mechanisms of resistance to plant diseases.DordrechtSpringer Netherlands200032537010.1007/978‑94‑011‑3937‑3_10
    [Google Scholar]
  40. RaskinI. RibnickyD.M. KomarnytskyS. IlicN. PoulevA. BorisjukN. BrinkerA. MorenoD.A. RipollC. YakobyN. O’NealJ.M. CornwellT. PastorI. FridlenderB. Plants and human health in the twenty-first century.Trends Biotechnol.2002201252253110.1016/S0167‑7799(02)02080‑212443874
    [Google Scholar]
  41. NcubeN.S. AfolayanA.J. OkohA.I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends.Afr. J. Biotechnol.20087121797180610.5897/AJB07.613
    [Google Scholar]
  42. LeenaE.A. AbdulrahmanE.A. NajiahE.A. Multiple approaches for the management of Alzheimer disease: Natural compounds, FDA approved drugs, and nanotechnology interventions.Cell. Mol. Biol.2022681181510.14715/cmb/2022.68.11.237114315
    [Google Scholar]
  43. ThollD. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism.Curr. Opin. Plant Biol.20069329730410.1016/j.pbi.2006.03.01416600670
    [Google Scholar]
  44. LooregipoorF. HadiN. ShojaeiyanA. Study on Quantitative and Qualitative Traits Diversity in Some Momordica charantia L. Genotypes.Agrotechniques in Industrial Crops202334211222
    [Google Scholar]
  45. AlaviM. AdulrahmanN.A. HaleemA.A. Al-RâwanduziA.D.H. KhusroA. AbdelgawadM.A. GhoneimM.M. BatihaG.E.S. KahriziD. MartinezF. KoiralaN. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria.Cell. Mol. Biol.202267515115610.14715/cmb/2021.67.5.2135818258
    [Google Scholar]
  46. BalandrinM. KlockeJ.I. 1 Medicinal, Aromatic, and Industrial Materials.Med. Aromat. Plants198811
    [Google Scholar]
  47. MauryaP.K. Animal biotechnology as a tool to understand and fight aging.Animal Biotechnology.Cambridge, MassachusettsAcademic Press202023525010.1016/B978‑0‑12‑811710‑1.00010‑0
    [Google Scholar]
  48. MabryT MarkhamKR ThomasMB The systematic identification of flavonoids.Berlin/Heidelberg, GermanySpringer Science & Business Media2012
    [Google Scholar]
  49. HarborneAJ Phytochemical methods a guide to modern techniques of plant analysis.Berlin/Heidelberg, GermanySpringer Science & Business Media1998
    [Google Scholar]
  50. DewickPM Medicinal natural products: A biosynthetic approach.Hoboken, New Jersey, U.S.John Wiley & Sons2002
    [Google Scholar]
  51. Garcia-BruggerA. LamotteO. VandelleE. BourqueS. LecourieuxD. PoinssotB. WendehenneD. PuginA. Early signaling events induced by elicitors of plant defenses.Mol. Plant Microbe Interact.200619771172410.1094/MPMI‑19‑071116838784
    [Google Scholar]
  52. MedinaJ.H. ViolaH. WolfmanC. MarderM. WasowskiC. CalvoD. PaladiniA.C. Overview--flavonoids: A new family of benzodiazepine receptor ligands.Neurochem. Res.199722441942510.1023/A:10273036095179130252
    [Google Scholar]
  53. Oksman-CaldenteyK.M. InzéD. Natural compounds derived from plants can be categorized into three different groups according to their final use in developing a drug.Trends Plant Sci.20049943344010.1016/j.tplants.2004.07.00615337493
    [Google Scholar]
  54. OrtegaH. Torres-MendozaD. Caballero EZ. Cubilla-RiosL. Structurally uncommon secondary metabolites derived from endophytic fungi.J. Fungi (Basel)20217757010.3390/jof707057034356949
    [Google Scholar]
  55. NisaH. KamiliA.N. NawchooI.A. ShafiS. ShameemN. BandhS.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review.Microb. Pathog.201582505910.1016/j.micpath.2015.04.00125865953
    [Google Scholar]
  56. LeoniA. LocatelliA. MorigiR. RambaldiM. 2-Indolinone a versatile scaffold for treatment of cancer: A patent review (2008–2014).Expert Opin. Ther. Pat.201626214917310.1517/13543776.2016.111805926561198
    [Google Scholar]
  57. SpeckK. MagauerT. The chemistry of isoindole natural products.Beilstein J. Org. Chem.2013912048207810.3762/bjoc.9.24324204418
    [Google Scholar]
  58. ZhangD.W. TaoX.Y. LiuJ.M. ChenR.D. ZhangM. FangX.M. YuL.Y. DaiJ.G. A new polyketide synthase−nonribosomal peptide synthetase hybrid metabolite from plant endophytic fungus Periconia sp.Chin. Chem. Lett.201627564064210.1016/j.cclet.2016.02.005
    [Google Scholar]
  59. QiC. ZhouQ. GaoW. LiuM. ChenC. LiX.N. LaiY. ZhouY. LiD. HuZ. ZhuH. ZhangY. Anti-BACE1 and anti-AchE activities of undescribed spiro-dioxolane-containing meroterpenoids from the endophytic fungus Aspergillus terreus Thom.Phytochemistry201916511204110.1016/j.phytochem.2019.05.01431203103
    [Google Scholar]
  60. CaiR. WuY. ChenS. CuiH. LiuZ. LiC. SheZ. Peniisocoumarins A–J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel.J. Nat. Prod.20188161376138310.1021/acs.jnatprod.7b0101829792702
    [Google Scholar]
  61. FengL. WangJ. LiuS. ZhangX.J. BiQ.R. HuY.Y. WangZ. TanN.H. Colletopeptides A–D, anti-inflammatory cyclic tridepsipeptides from the plant endophytic fungus Colletotrichum sp. S8.J. Nat. Prod.20198261434144110.1021/acs.jnatprod.8b0082931181925
    [Google Scholar]
  62. SunL.T. ChenY. YangH.X. LiZ.H. LiuJ.K. WangG.K. FengT. Bisabolane sesquiterpenes and α-pyrone derivative from endophytic fungus Zopfiella sp.Phytochem. Lett.202037293210.1016/j.phytol.2020.03.008
    [Google Scholar]
  63. LiangX.R. MiaoF.P. SongY.P. GuoZ.Y. JiN.Y. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27.Nat. Prod. Res.201630141605161010.1080/14786419.2015.112626426728965
    [Google Scholar]
  64. WangN. QiuP. CuiW. YanX. ZhangB. HeS. Recent advances in multi-target anti-Alzheimer disease compounds (2013 up to the present).Curr. Med. Chem.201926305684571010.2174/092986732666618120312410230501591
    [Google Scholar]
  65. HuX. LiuS. LiuX. ZhangJ. LiangY. LiY. DPP-4 (CD26) inhibitor sitagliptin exerts anti-inflammatory effects on rat insulinoma (RINm) cells via suppressing NF-κB activation.Endocrine201755375476310.1007/s12020‑016‑1073‑827612849
    [Google Scholar]
  66. SongY.P. ShiZ.Z. MiaoF.P. FangS.T. YinX.L. JiN.Y. Tricholumin A, a highly transformed ergosterol derivative from the alga-endophytic fungus Trichoderma asperellum.Org. Lett.201820196306630910.1021/acs.orglett.8b0282130256119
    [Google Scholar]
  67. AshuE.E. XuJ. YuanZ.C. Bacteria in cancer therapeutics: A framework for effective therapeutic bacterial screening and identification.J. Cancer20191081781179310.7150/jca.3169931205534
    [Google Scholar]
  68. AnhC. KangJ. LeeH.S. TrinhP. HeoC.S. ShinH. New glycosylated secondary metabolites from marine-derived bacteria.Mar. Drugs202220746410.3390/md2007046435877757
    [Google Scholar]
  69. YoonWJ HamYM KimSS YooBS MoonJY BaikJS LeeNH HyunCG Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages.Eur Asian J. BioSci.200933130143
    [Google Scholar]
  70. DharaS. ChakrabortyK. Anti-inflammatory xenicane-type diterpenoid from the intertidal brown seaweed Sargassum ilicifolium.Nat. Prod. Res.202135245699570910.1080/14786419.2020.182542632993391
    [Google Scholar]
  71. KitajimaM TakayamaH. Lycopodium alkaloids: Isolation and asymmetric synthesis.Top Curr. Chem.201230924131
    [Google Scholar]
  72. DamarU. GersnerR. JohnstoneJ.T. SchachterS. RotenbergA. Huperzine A as a neuroprotective and antiepileptic drug: A review of preclinical research.Expert Rev. Neurother.201616667168010.1080/14737175.2016.117530327086593
    [Google Scholar]
  73. YangM. YouW. WuS. FanZ. XuB. ZhuM. LiX. XiaoY. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.BMC Genomics201718124510.1186/s12864‑017‑3615‑828330463
    [Google Scholar]
  74. HartrampfF.W.W. FurukawaT. TraunerD. A Conia‐Ene‐Type Cyclization under Basic Conditions Enables an Efficient Synthesis of (−)‐Lycoposerramine R.Angew. Chem. Int. Ed.201756389389610.1002/anie.20161002128000374
    [Google Scholar]
  75. HagemannT. BiswasS.K. LawrenceT. SicaA. LewisC.E. Regulation of macrophage function in tumors: The multifaceted role of NF-κB.Blood2009113143139314610.1182/blood‑2008‑12‑17282519171876
    [Google Scholar]
  76. LewisC.E. PollardJ.W. Distinct role of macrophages in different tumor microenvironments.Cancer Res.200666260561210.1158/0008‑5472.CAN‑05‑400516423985
    [Google Scholar]
  77. KomoharaY OhnishiK KuratsuJ TakeyaM Possible involvement of the M2 anti‐inflammatory macrophage phenotype in growth of human gliomas.J Pathol.20082161152410.1002/path.2370
    [Google Scholar]
  78. TsubokiJ. FujiwaraY. HorladH. ShiraishiD. NoharaT. TayamaS. MotoharaT. SaitoY. IkedaT. TakaishiK. TashiroH. YonemotoY. KatabuchiH. TakeyaM. KomoharaY. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages.Sci. Rep.2016612958810.1038/srep2958827404320
    [Google Scholar]
  79. IshiuchiK. HiroseD. SuzukiT. NakayamaW. JiangW.P. MonthakantiratO. WuJ.B. KitanakaS. MakinoT. Identification of lycopodium alkaloids produced by an ultraviolet-irradiated strain of Paraboeremia, an endophytic fungus from Lycopodium serratum var. longipetiolatum.J. Nat. Prod.20188151143114710.1021/acs.jnatprod.7b0062729676580
    [Google Scholar]
  80. NakayamaW. FujiwaraY. KosugeY. MonthakantiratO. FujikawaK. WatthanaS. KitanakaS. MakinoT. IshiuchiK. Phlenumdines D and E, new Lycopodium alkaloids from Phlegmariurus nummulariifolius, and their regulatory effects on macrophage differentiation during tumor development.Phytochem. Lett.2019299810310.1016/j.phytol.2018.11.010
    [Google Scholar]
  81. BouvierF. RahierA. CamaraB. Biogenesis, molecular regulation and function of plant isoprenoids.Prog. Lipid Res.200544635742910.1016/j.plipres.2005.09.00316289312
    [Google Scholar]
  82. SinghM PalM SharmaRP Biological activity of the labdane diterpenes.Planta Med19996512810.1055/s‑1999‑13952
    [Google Scholar]
  83. GirónN. TravésP.G. RodríguezB. López-FontalR. BoscáL. HortelanoS. de las HerasB. Supression of inflammatory responses by labdane-type diterpenoids.Toxicol. Appl. Pharmacol.2008228217918910.1016/j.taap.2007.12.00618190942
    [Google Scholar]
  84. KarinM. YamamotoY. WangQ.M. The IKK NF-κB system: A treasure trove for drug development.Nat. Rev. Drug Discov.200431172610.1038/nrd127914708018
    [Google Scholar]
  85. LyßG. KnorreA. SchmidtT.J. PahlH.L. MerfortI. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65.J. Biol. Chem.199827350335083351610.1074/jbc.273.50.335089837931
    [Google Scholar]
  86. D’AcquistoF. LanzottiV. CarnuccioR. Cyclolinteinone, a sesterterpene from sponge Cacospongia linteiformis, prevents inducible nitric oxide synthase and inducible cyclo-oxygenase protein expression by blocking nuclear factor-κB activation in J774 macrophages.Biochem. J.2000346379379810.1042/bj346079310698708
    [Google Scholar]
  87. García-PiñeresA.J. LindenmeyerM.T. MerfortI. Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential.Life Sci.200475784185610.1016/j.lfs.2004.01.02415183076
    [Google Scholar]
  88. LeeJ.H. KooT.H. HwangB.Y. LeeJ.J. Kaurane diterpene, kamebakaurin, inhibits NF-κ B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-κ B target genes.J. Biol. Chem.200227721184111842010.1074/jbc.M20136820011877450
    [Google Scholar]
  89. AharoniS. LatiY. AviramM. FuhrmanB. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M 2 anti‐inflammatory state.Biofactors2015411445110.1002/biof.119925650983
    [Google Scholar]
  90. KhanN. KhymenetsO. Urpí-SardàM. TulipaniS. Garcia-AloyM. MonagasM. Mora-CubillosX. LlorachR. Andres-LacuevaC. Cocoa polyphenols and inflammatory markers of cardiovascular disease.Nutrients20146284488010.3390/nu602084424566441
    [Google Scholar]
  91. Cambeiro-PérezN. Figueiredo-GonzálezM. Pérez-GregorioM.R. Bessa-PereiraC. De FreitasV. SánchezB. Martínez-CarballoE. Unravelling the immunomodulatory role of apple phenolic rich extracts on human THP-1- derived macrophages using multiplatform metabolomics.Food Res. Int.202215511103710.1016/j.foodres.2022.11103735400427
    [Google Scholar]
  92. MulvihillE.E. HuffM.W. Antiatherogenic properties of flavonoids: Implications for cardiovascular health.Can. J. Cardiol.201026Suppl. A17A21A10.1016/S0828‑282X(10)71056‑420386755
    [Google Scholar]
  93. KloeschB. BeckerT. DietersdorferE. KienerH. SteinerG. Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes.Int. Immunopharmacol.201315240040510.1016/j.intimp.2013.01.00323347846
    [Google Scholar]
  94. HalliwellB. RafterJ. JennerA. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not?Am. J. Clin. Nutr.2005811Suppl.268S276S10.1093/ajcn/81.1.268S15640490
    [Google Scholar]
  95. BostJ.W. MaroonA. MaroonJ. Natural anti-inflammatory agents for pain relief.Surg. Neurol. Int.2010118010.4103/2152‑7806.7380421206541
    [Google Scholar]
  96. BastosK.R.B. BarbozaR. SardinhaL. RussoM. AlvarezJ.M. LimaM.R.D. Role of endogenous IFN-γ in macrophage programming induced by IL-12 and IL-18.J. Interferon Cytokine Res.200727539941010.1089/jir.2007.012817523872
    [Google Scholar]
  97. BernierM. KwonY.K. PandeyS.K. ZhuT.N. ZhaoR.J. MaciukA. HeH.J. DeCaboR. KoleS. Binding of manumycin A inhibits IkappaB kinase β activity.J. Biol. Chem.200628152551256110.1074/jbc.M51187820016319058
    [Google Scholar]
  98. VitaleR. D’AnielloE. GorbiS. MartellaA. SilvestriC. GiulianiM. FellousT. GentileA. CarboneM. CutignanoA. GrausoL. MagliozziL. PoleseG. D’AnielloB. DefranouxF. FellineS. TerlizziA. CalignanoA. RegoliF. Di MarzoV. AmodeoP. MolloE. Fishing for targets of alien metabolites: A novel peroxisome proliferator-activated receptor (PPAR) agonist from a marine pest.Mar. Drugs2018161143110.3390/md1611043130400299
    [Google Scholar]
  99. GegundeS. AlfonsoA. AlvariñoR. Pérez-FuentesN. BotanaL.M. Anhydroexfoliamycin, a streptomyces secondary metabolite, mitigates microglia-driven inflammation.ACS Chem. Neurosci.202112132336234610.1021/acschemneuro.1c0003334110771
    [Google Scholar]
  100. HassanF. RehmanM.S. KhanM.S. AliM.A. JavedA. NawazA. YangC. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects.Front. Genet.20191051410.3389/fgene.2019.0051431214247
    [Google Scholar]
  101. PinheiroD.M.L. de OliveiraA.H.S. CoutinhoL.G. FontesF.L. de Medeiros OliveiraR.K. OliveiraT.T. FaustinoA.L.F. Lira da SilvaV. de Melo CamposJ.T.A. LajusT.B.P. de SouzaS.J. Agnez-LimaL.F. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation.Free Radic. Biol. Med.201913082210.1016/j.freeradbiomed.2018.10.43230366059
    [Google Scholar]
  102. CuevasA. SaavedraN. SalazarL. AbdallaD. Modulation of immune function by polyphenols: Possible contribution of epigenetic factors.Nutrients2013572314233210.3390/nu507231423812304
    [Google Scholar]
  103. RossanoF. De LunaL.O. BuomminoE. CusumanoV. LosiE. CataniaM.R. Secondary metabolites of exert immunobiological effects on human monocytes.Res. Microbiol.19991501131910.1016/S0923‑2508(99)80042‑410096130
    [Google Scholar]
  104. BineshA. GnanamR. Diosgenin production from callus, suspension and hairy root cultures of Trigonalle foenum-graceum L.Adv. Bio Tech.200993340
    [Google Scholar]
  105. GoławskaS. SprawkaI. ŁukasikI. GoławskiA. Are naringenin and quercetin useful chemicals in pest-management strategies?J. Pest Sci.201487117318010.1007/s10340‑013‑0535‑524563648
    [Google Scholar]
  106. SpillerF. AlvesM.K. VieiraS.M. CarvalhoT.A. LeiteC.E. LunardelliA. PoloniJ.A. CunhaF.Q. de OliveiraJ.R. Anti-inflammatory effects of red pepper ( Capsicum baccatum ) on carrageenan- and antigen-induced inflammation.J. Pharm. Pharmacol.201060447347810.1211/jpp.60.4.001018380920
    [Google Scholar]
  107. ShiJ. ArunasalamK. YeungD. KakudaY. MittalG. JiangY. Saponins from edible legumes: Chemistry, processing, and health benefits.J. Med. Food200471677810.1089/10966200432298473415117556
    [Google Scholar]
  108. MazumderA. DwivediA. Du PlessisJ. Sinigrin and its therapeutic benefits.Molecules201621441610.3390/molecules2104041627043505
    [Google Scholar]
  109. KimJ. WieM.B. AhnM. TanakaA. MatsudaH. ShinT. Benefits of hesperidin in central nervous system disorders: A review.Anat. Cell Biol.201952436937710.5115/acb.19.11931949974
    [Google Scholar]
  110. SenZ. WeidaW. JieM. LiS. DongmingZ. XiaoguangC. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis.Phytomedicine20195738539510.1016/j.phymed.2018.12.04530849675
    [Google Scholar]
  111. CheungS.S.C. HasmanD. KhelifiD. TaiJ. SmithR.W. WarnockG.L. Devil’s Club falcarinol-type polyacetylenes inhibit pancreatic cancer cell proliferation.Nutr. Cancer201971230131110.1080/01635581.2018.155993130661403
    [Google Scholar]
  112. (a Morten Kobæk-Larsen ChristensenL.P. VachW. Ritskes-HoitingaJ. BrandtK. Inhibitory effects of feeding with carrots or (-)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon.J. Agric. Food Chem.20055351823182710.1021/jf048519s15740080
    [Google Scholar]
  113. (b Manach C ScalbertA MorandC RémésyC JiménezL Polyphenols: food sources and bioavailability. The American journal of clinical nutrition.2004 May 179572747
    [Google Scholar]
  114. (a GyllingH. PlatJ. TurleyS. GinsbergH.N. EllegårdL. JessupW. JonesP.J. LütjohannD. MaerzW. MasanaL. SilbernagelG. StaelsB. BorénJ. CatapanoA.L. De BackerG. DeanfieldJ. DescampsO.S. KovanenP.T. RiccardiG. TokgözogluL. ChapmanM.J. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.Atherosclerosis2014232234636010.1016/j.atherosclerosis.2013.11.04324468148
    [Google Scholar]
  115. (b Cheynier V. Polyphenols in foods are more complex than often thought. The American journal of clinical nutrition.
    [Google Scholar]
  116. (a MoudiM. GoR. YienC.Y. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  117. (b Mustapha N Mokdad-Bzéouich I Maatouk M Ghedira K Hennebelle T Chekir-Ghedira L. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma. Melanoma research. 2016 Jun 1 2632112
    [Google Scholar]
  118. (a KarapetianG. EngelsH. GretebeckK. GretebeckR. Effect of Caffeine on LT, VT and HRVT.Int. J. Sports Med.201233750751310.1055/s‑0032‑130190422499570
    [Google Scholar]
  119. (b Isaza JH Taninos o polifenoles vegetales. Scientia et technica.2007133138
    [Google Scholar]
  120. KaliyamurthiV. BineshA. Power of Portieria hornemannii : Influence on zebrafish antioxidant system-inflammatory cascade by combatting copper-induced inflammation.Nat. Prod. Res.202320231510.1080/14786419.2023.228016637950668
    [Google Scholar]
  121. BaronE.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science.Headache20185871139118610.1111/head.1334530152161
    [Google Scholar]
  122. ParkS.H. ParkK.H. OhM.H. KimH.H. ChoeK.I. KimS.R. ParkK.J. LeeM.W. Anti-oxidative and anti-inflammatory activities of caffeoyl hemiterpene glycosides from Spiraea prunifolia.Phytochemistry20139643043610.1016/j.phytochem.2013.09.01724161492
    [Google Scholar]
  123. StarkM.J. BurkeY.D. McKinzieJ.H. AyoubiA.S. CrowellP.L. Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol.Cancer Lett.1995961152110.1016/0304‑3835(95)03912‑G7553603
    [Google Scholar]
  124. DuffyR. WadeC. ChangR. Discovery of anticancer drugs from antimalarial natural products: A MEDLINE literature review.Drug Discov. Today20121717-1894295310.1016/j.drudis.2012.03.01322504324
    [Google Scholar]
  125. (a LindnerE. DohadwallaA.N. BhattacharyaB.K. Positive inotropic and blood pressure lowering activity of a diterpene derivative isolated from Coleus forskohli: Forskolin.Arzneimittelforschung1978282284289580393
    [Google Scholar]
  126. (b Harborne JB. Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall; 1998.
    [Google Scholar]
  127. (a) AnsariI.A. AkhtarM.S. Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment. Natural Bio-active Compounds.Chemistry, Pharmacology and Health Care PracticesBerlin, Heidelberg,SpringerLink2019Vol. 25380(b) Heinrich M. Ethnobotany and natural products: the search for new molecules, new treatments of old diseases or a better understanding of indigenous cultures?. Current Topics in Medicinal Chemistry. 2003 Jan 1;3(2): 141-5.
    [Google Scholar]
  128. RahmanM. HussainA. IqbalZ. HarwanshR. SinghL. AhmadS. Nanosuspension: A potential nanoformulation for improved delivery of poorly bioavailable drug.Micro Nanosyst.20135427328710.2174/187640290504131127121625
    [Google Scholar]
  129. BineshA. Decades-long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends.Rev. Aquacult.202113155656610.1111/raq.12486
    [Google Scholar]
  130. (a MariappanK.V. Probiotic nanoparticles for food.Recent Advances in Aquaculture Microbial Technology.Cambridge, MassachusettsAcademic press202330733810.1016/B978‑0‑323‑90261‑8.00008‑0
    [Google Scholar]
  131. (b Landau S, Silanikove N, Nitsan Z, Barkai D, Baram H, Provenza FD, Perevolotsky A. Short-term changes in eating patterns explain the effects of condensed tannins on feed intake in heifers. Applied Animal Behaviour Science. 2000 Oct 169 3199213
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X327064241003072202
Loading
/content/journals/chddt/10.2174/011871529X327064241003072202
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test