Skip to content
2000
image of Repurposing of Empagliflozin as Cardioprotective Drug: An in-silico Approach

Abstract

Background

Drug repurposing involves investigating new indications or uses for drugs that have already been approved for clinical use. Empagliflozin is a C-glycosyl compound characterized by the presence of a beta-glucosyl residue. It functions as a sodium-glucose co-transporter 2 inhibitor and is utilized to enhance glycemic control in adults diagnosed with type 2 diabetes mellitus. Additionally, it is indicated for the reduction of cardiovascular mortality risk in adult patients who have both type 2 diabetes mellitus and pre-existing cardiovascular disease.

Objective

The study's objective revolves around exploring the repurposing potential of a novel SGLT2 inhibitor acting as an antidiabetic drug named Empagliflozin through computational methods, with a specific focus on its interaction with cardioprotective key target proteins.

Methods

The study was performed by docking the empagliflozin with different target proteins (NHE1-CHP1, BIRC5, GLUT1, and XIAP) by using Autodock, and different values were recorded. The docked files were analysed by the BIOVIA Discovery Studio Visualizer. The in silico analysis conducted in this study examines the binding free energy values of Empagliflozin with key target proteins.

Results

Results revealed that NHE1-CHP1 exhibits the lowest binding free energy, followed by BIRC5, GLUT1, and XIAP, with the highest value. This descending order of binding energies suggests varying degrees of effectiveness in binding molecules, with lower energies indicative of more potent biological activity. The analysis underscores the importance of intermolecular interactions, particularly hydrogen bond formations facilitated by oxygen, nitrogen, and carbonyl groups in compound structures. Notably, NHE1-CHP1 demonstrates superior binding interactions with Empagliflozin compared to the other target proteins, highlighting its potential as a cardioprotective agent.

Conclusion

These findings offer valuable insights into the therapeutic possibilities of Empagliflozin in cardioprotection, indicating promising avenues for further research and development in this domain.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X341930241206063315
2024-12-16
2025-01-19
Loading full text...

Full text loading...

References

  1. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A.Z. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J. Catapano A.L. Chugh S.S. Cooper L.T. Coresh J. Criqui M. DeCleene N. Eagle K.A. Emmons-Bell S. Feigin V.L. Fernández-Solà J. Fowkes G. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N. Koroshetz W. Lavie C. Lloyd-Jones D. Lu H.S. Mirijello A. Temesgen A.M. Mokdad A. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Moraes de Oliveira G. Otto C. Owolabi M. Pratt M. Rajagopalan S. Reitsma M. Ribeiro A.L.P. Rigotti N. Rodgers A. Sable C. Shakil S. Sliwa-Hahnle K. Stark B. Sundström J. Timpel P. Tleyjeh I.M. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L. Murray C. Fuster V. Roth G.A. Mensah G.A. Johnson C.O. Addolorato G. Ammirati E. Baddour L.M. Barengo N.C. Beaton A. Benjamin E.J. Benziger C.P. Bonny A. Brauer M. Brodmann M. Cahill T.J. Carapetis J.R. Catapano A.L. Chugh S. Cooper L.T. Coresh J. Criqui M.H. DeCleene N.K. Eagle K.A. Emmons-Bell S. Feigin V.L. Fernández-Sola J. Fowkes F.G.R. Gakidou E. Grundy S.M. He F.J. Howard G. Hu F. Inker L. Karthikeyan G. Kassebaum N.J. Koroshetz W.J. Lavie C. Lloyd-Jones D. Lu H.S. Mirijello A. Misganaw A.T. Mokdad A.H. Moran A.E. Muntner P. Narula J. Neal B. Ntsekhe M. Oliveira G.M.M. Otto C.M. Owolabi M.O. Pratt M. Rajagopalan S. Reitsma M.B. Ribeiro A.L.P. Rigotti N.A. Rodgers A. Sable C.A. Shakil S.S. Sliwa K. Stark B.A. Sundström J. Timpel P. Tleyjeh I.I. Valgimigli M. Vos T. Whelton P.K. Yacoub M. Zuhlke L.J. Abbasi-Kangevari M. Abdi A. Abedi A. Aboyans V. Abrha W.A. Abu-Gharbieh E. Abushouk A.I. Acharya D. Adair T. Adebayo O.M. Ademi Z. Advani S.M. Afshari K. Afshin A. Agarwal G. Agasthi P. Ahmad S. Ahmadi S. Ahmed M.B. Aji B. Akalu Y. Akande-Sholabi W. Aklilu A. Akunna C.J. Alahdab F. Al-Eyadhy A. Alhabib K.F. Alif S.M. Alipour V. Aljunid S.M. Alla F. Almasi-Hashiani A. Almustanyir S. Al-Raddadi R.M. Amegah A.K. Amini S. Aminorroaya A. Amu H. Amugsi D.A. Ancuceanu R. Anderlini D. Andrei T. Andrei C.L. Ansari-Moghaddam A. Anteneh Z.A. Antonazzo I.C. Antony B. Anwer R. Appiah L.T. Arabloo J. Ärnlöv J. Artanti K.D. Ataro Z. Ausloos M. Avila-Burgos L. Awan A.T. Awoke M.A. Ayele H.T. Ayza M.A. Azari S. B D.B. Baheiraei N. Baig A.A. Bakhtiari A. Banach M. Banik P.C. Baptista E.A. Barboza M.A. Barua L. Basu S. Bedi N. Béjot Y. Bennett D.A. Bensenor I.M. Berman A.E. Bezabih Y.M. Bhagavathula A.S. Bhaskar S. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Brant L.C. Brenner H. Briko N.I. Butt Z.A. Caetano dos Santos F.L. Cahill L.E. Cahuana-Hurtado L. Cámera L.A. Campos-Nonato I.R. Cantu-Brito C. Car J. Carrero J.J. Carvalho F. Castañeda-Orjuela C.A. Catalá-López F. Cerin E. Charan J. Chattu V.K. Chen S. Chin K.L. Choi J-Y.J. Chu D-T. Chung S-C. Cirillo M. Coffey S. Conti S. Costa V.M. Cundiff D.K. Dadras O. Dagnew B. Dai X. Damasceno A.A.M. Dandona L. Dandona R. Davletov K. De la Cruz-Góngora V. De la Hoz F.P. De Neve J-W. Denova-Gutiérrez E. Derbew Molla M. Derseh B.T. Desai R. Deuschl G. Dharmaratne S.D. Dhimal M. Dhungana R.R. Dianatinasab M. Diaz D. Djalalinia S. Dokova K. Douiri A. Duncan B.B. Duraes A.R. Eagan A.W. Ebtehaj S. Eftekhari A. Eftekharzadeh S. Ekholuenetale M. El Nahas N. Elgendy I.Y. Elhadi M. El-Jaafary S.I. Esteghamati S. Etisso A.E. Eyawo O. Fadhil I. Faraon E.J.A. Faris P.S. Farwati M. Farzadfar F. Fernandes E. Fernandez Prendes C. Ferrara P. Filip I. Fischer F. Flood D. Fukumoto T. Gad M.M. Gaidhane S. Ganji M. Garg J. Gebre A.K. Gebregiorgis B.G. Gebregzabiher K.Z. Gebremeskel G.G. Getacher L. Obsa A.G. Ghajar A. Ghashghaee A. Ghith N. Giampaoli S. Gilani S.A. Gill P.S. Gillum R.F. Glushkova E.V. Gnedovskaya E.V. Golechha M. Gonfa K.B. Goudarzian A.H. Goulart A.C. Guadamuz J.S. Guha A. Guo Y. Gupta R. Hachinski V. Hafezi-Nejad N. Haile T.G. Hamadeh R.R. Hamidi S. Hankey G.J. Hargono A. Hartono R.K. Hashemian M. Hashi A. Hassan S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Heidari G. Herteliu C. Holla R. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Huang J. Humayun A. Iavicoli I. Ibeneme C.U. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Islam R.M. Iso H. Iwagami M. Jain V. Javaheri T. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Jonas J.B. Jonnagaddala J. Joukar F. Jozwiak J.J. Jürisson M. Kabir A. Kahlon T. Kalani R. Kalhor R. Kamath A. Kamel I. Kandel H. Kandel A. Karch A. Kasa A.S. Katoto P.D.M.C. Kayode G.A. Khader Y.S. Khammarnia M. Khan M.S. Khan M.N. Khan M. Khan E.A. Khatab K. Kibria G.M.A. Kim Y.J. Kim G.R. Kimokoti R.W. Kisa S. Kisa A. Kivimäki M. Kolte D. Koolivand A. Korshunov V.A. Koulmane Laxminarayana S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Kuate Defo B. Kucuk Bicer B. Kulkarni V. Kumar G.A. Kumar N. Kurmi O.P. Kusuma D. Kwan G.F. La Vecchia C. Lacey B. Lallukka T. Lan Q. Lasrado S. Lassi Z.S. Lauriola P. Lawrence W.R. Laxmaiah A. LeGrand K.E. Li M-C. Li B. Li S. Lim S.S. Lim L-L. Lin H. Lin Z. Lin R-T. Liu X. Lopez A.D. Lorkowski S. Lotufo P.A. Lugo A. M N.K. Madotto F. Mahmoudi M. Majeed A. Malekzadeh R. Malik A.A. Mamun A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mathur M.R. Mazzaglia G. Mehata S. Mehndiratta M.M. Meier T. Menezes R.G. Meretoja A. Mestrovic T. Miazgowski B. Miazgowski T. Michalek I.M. Miller T.R. Mirrakhimov E.M. Mirzaei H. Moazen B. Moghadaszadeh M. Mohammad Y. Mohammad D.K. Mohammed S. Mohammed M.A. Mokhayeri Y. Molokhia M. Montasir A.A. Moradi G. Moradzadeh R. Moraga P. Morawska L. Moreno Velásquez I. Morze J. Mubarik S. Muruet W. Musa K.I. Nagarajan A.J. Nalini M. Nangia V. Naqvi A.A. Narasimha Swamy S. Nascimento B.R. Nayak V.C. Nazari J. Nazarzadeh M. Negoi R.I. Neupane Kandel S. Nguyen H.L.T. Nixon M.R. Norrving B. Noubiap J.J. Nouthe B.E. Nowak C. Odukoya O.O. Ogbo F.A. Olagunju A.T. Orru H. Ortiz A. Ostroff S.M. Padubidri J.R. Palladino R. Pana A. Panda-Jonas S. Parekh U. Park E-C. Parvizi M. Pashazadeh Kan F. Patel U.K. Pathak M. Paudel R. Pepito V.C.F. Perianayagam A. Perico N. Pham H.Q. Pilgrim T. Piradov M.A. Pishgar F. Podder V. Polibin R.V. Pourshams A. Pribadi D.R.A. Rabiee N. Rabiee M. Radfar A. Rafiei A. Rahim F. Rahimi-Movaghar V. Ur Rahman M.H. Rahman M.A. Rahmani A.M. Rakovac I. Ram P. Ramalingam S. Rana J. Ranasinghe P. Rao S.J. Rathi P. Rawal L. Rawasia W.F. Rawassizadeh R. Remuzzi G. Renzaho A.M.N. Rezapour A. Riahi S.M. Roberts-Thomson R.L. Roever L. Rohloff P. Romoli M. Roshandel G. Rwegerera G.M. Saadatagah S. Saber-Ayad M.M. Sabour S. Sacco S. Sadeghi M. Saeedi Moghaddam S. Safari S. Sahebkar A. Salehi S. Salimzadeh H. Samaei M. Samy A.M. Santos I.S. Santric-Milicevic M.M. Sarrafzadegan N. Sarveazad A. Sathish T. Sawhney M. Saylan M. Schmidt M.I. Schutte A.E. Senthilkumaran S. Sepanlou S.G. Sha F. Shahabi S. Shahid I. Shaikh M.A. Shamali M. Shamsizadeh M. Shawon M.S.R. Sheikh A. Shigematsu M. Shin M-J. Shin J.I. Shiri R. Shiue I. Shuval K. Siabani S. Siddiqi T.J. Silva D.A.S. Singh J.A. Mtech A.S. Skryabin V.Y. Skryabina A.A. Soheili A. Spurlock E.E. Stockfelt L. Stortecky S. Stranges S. Suliankatchi Abdulkader R. Tadbiri H. Tadesse E.G. Tadesse D.B. Tajdini M. Tariqujjaman M. Teklehaimanot B.F. Temsah M-H. Tesema A.K. Thakur B. Thankappan K.R. Thapar R. Thrift A.G. Timalsina B. Tonelli M. Touvier M. Tovani-Palone M.R. Tripathi A. Tripathy J.P. Truelsen T.C. Tsegay G.M. Tsegaye G.W. Tsilimparis N. Tusa B.S. Tyrovolas S. Umapathi K.K. Unim B. Unnikrishnan B. Usman M.S. Vaduganathan M. Valdez P.R. Vasankari T.J. Velazquez D.Z. Venketasubramanian N. Vu G.T. Vujcic I.S. Waheed Y. Wang Y. Wang F. Wei J. Weintraub R.G. Weldemariam A.H. Westerman R. Winkler A.S. Wiysonge C.S. Wolfe C.D.A. Wubishet B.L. Xu G. Yadollahpour A. Yamagishi K. Yan L.L. Yandrapalli S. Yano Y. Yatsuya H. Yeheyis T.Y. Yeshaw Y. Yilgwan C.S. Yonemoto N. Yu C. Yusefzadeh H. Zachariah G. Zaman S.B. Zaman M.S. Zamanian M. Zand R. Zandifar A. Zarghi A. Zastrozhin M.S. Zastrozhina A. Zhang Z-J. Zhang Y. Zhang W. Zhong C. Zou Z. Zuniga Y.M.H. Murray C.J.L. Fuster V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 2020 76 25 2982 3021 10.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  2. Schwalm J.D. McKee M. Huffman M.D. Yusuf S. Resource effective strategies to prevent and treat cardiovascular disease. Circulation 2016 133 8 742 755 10.1161/CIRCULATIONAHA.115.008721 26903017
    [Google Scholar]
  3. Li Y. Cao G. Jing W. Liu J. Liu M. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990−2019: Findings from 2019 global burden of disease study. Eur. J. Prev. Cardiol. 2023 30 3 276 286 10.1093/eurjpc/zwac285 36458973
    [Google Scholar]
  4. Oprea T.I. Mestres J. Drug repurposing: Far beyond new targets for old drugs. AAPS J. 2012 14 4 759 763 10.1208/s12248‑012‑9390‑1 22826034
    [Google Scholar]
  5. Turner N. Zeng X.Y. Osborne B. Rogers S. Ye J.M. Repurposing drugs to target the diabetes epidemic. Trends Pharmacol. Sci. 2016 37 5 379 389 10.1016/j.tips.2016.01.007 26900045
    [Google Scholar]
  6. Rudrapal M. Khairnar S.J. Jadhav A.G. Rudrapal M. Khairnar S.J. Jadhav A.G. Drug Repurposing (DR): An emerging approach in drug discovery. Drug Repurposing - Hypothesis, Molecular Aspects, and Therapeutic Applications IntechOpen 2020
    [Google Scholar]
  7. Meng X-Y. Zhang H-X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided. Drug Des. 2011 7 154
    [Google Scholar]
  8. Yadav J. Ahsan F. Panda P. Mahmood T. Ansari V.A. Shamim A. Empagliflozin-A sodium glucose co-transporter-2 inhibitor: Overview of its chemistry, pharmacology, and toxicology. Curr. Diabetes Rev. 2024 20 10 e230124226010 10.2174/0115733998271026231127051545 38265382
    [Google Scholar]
  9. Fox C.S. Coady S. Sorlie P.D. D’Agostino R.B. Sr Pencina M.J. Vasan R.S. Meigs J.B. Levy D. Savage P.J. Increasing cardiovascular disease burden due to diabetes mellitus: The framingham heart study. Circulation 2007 115 12 1544 1550 10.1161/CIRCULATIONAHA.106.658948 17353438
    [Google Scholar]
  10. McMurray J.J.V. Solomon S.D. Inzucchi S.E. Køber L. Kosiborod M.N. Martinez F.A. Ponikowski P. Sabatine M.S. Anand I.S. Bělohlávek J. Böhm M. Chiang C.E. Chopra V.K. de Boer R.A. Desai A.S. Diez M. Drozdz J. Dukát A. Ge J. Howlett J.G. Katova T. Kitakaze M. Ljungman C.E.A. Merkely B. Nicolau J.C. O’Meara E. Petrie M.C. Vinh P.N. Schou M. Tereshchenko S. Verma S. Held C. DeMets D.L. Docherty K.F. Jhund P.S. Bengtsson O. Sjöstrand M. Langkilde A.M. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019 381 21 1995 2008 10.1056/NEJMoa1911303 31535829
    [Google Scholar]
  11. Packer M. Anker S.D. Butler J. Filippatos G. Pocock S.J. Carson P. Januzzi J. Verma S. Tsutsui H. Brueckmann M. Jamal W. Kimura K. Schnee J. Zeller C. Cotton D. Bocchi E. Böhm M. Choi D.J. Chopra V. Chuquiure E. Giannetti N. Janssens S. Zhang J. Gonzalez Juanatey J.R. Kaul S. Brunner-La Rocca H.P. Merkely B. Nicholls S.J. Perrone S. Pina I. Ponikowski P. Sattar N. Senni M. Seronde M.F. Spinar J. Squire I. Taddei S. Wanner C. Zannad F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020 383 15 1413 1424 10.1056/NEJMoa2022190 32865377
    [Google Scholar]
  12. Dong Y. Gao Y. Ilie A. Kim D. Boucher A. Li B. Zhang X.C. Orlowski J. Zhao Y. Structure and mechanism of the human NHE1-CHP1 complex. Nat. Commun. 2021 12 1 3474 3481 10.1038/s41467‑021‑23496‑z 34108458
    [Google Scholar]
  13. Nežić L. Škrbić R. Amidžić L. Gajanin R. Kuča K. Jaćević V. Simvastatin protects cardiomyocytes against endotoxin-induced apoptosis and up-regulates survivin/NF-κB/p65 expression. Sci. Rep. 2018 8 1 14652 10.1038/s41598‑018‑32376‑4 30279549
    [Google Scholar]
  14. Tsang T.J. Hsueh Y.C. Wei E.I. Lundy D.J. Cheng B. Chen Y.T. Wang S.S. Hsieh P.C.H. Subcellular localization of survivin determines its function in cardiomyocytes. Theranostics 2017 7 18 4577 4590 10.7150/thno.20005 29158846
    [Google Scholar]
  15. Bo L. Zhu X.S. Zheng Z. Hu X.P. Chen P.Y. Research on the function and mechanism of survivin in heart failure mice model. Eur. Rev. Med. Pharmacol. Sci. 2017 21 16 3699 3704 28925471
    [Google Scholar]
  16. Si R. Tao L. Zhang H.F. Yu Q.J. Zhang R. Lv A.L. Zhou N. Cao F. Guo W.Y. Ren J. Wang H.C. Gao F. Survivin: A novel player in insulin cardioprotection against myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2011 50 1 16 24 10.1016/j.yjmcc.2010.08.017 20801129
    [Google Scholar]
  17. Souktani R. Pons S. Guegan C. Bouhidel O. Bruneval P. Zini R. Mandet C. Onteniente B. Berdeaux A. Ghaleh B. Cardioprotection against myocardial infarction with PTD-BIR3/RING, a XIAP mimicking protein. J. Mol. Cell. Cardiol. 2009 46 5 713 718 10.1016/j.yjmcc.2009.02.005 19233193
    [Google Scholar]
  18. Matsui T. Nagoshi T. Hong E.G. Luptak I. Hartil K. Li L. Gorovits N. Charron M.J. Kim J.K. Tian R. Rosenzweig A. Effects of chronic Akt activation on glucose uptake in the heart. Am. J. Physiol. Endocrinol. Metab. 2006 290 5 E789 E797 10.1152/ajpendo.00564.2004 16352665
    [Google Scholar]
  19. Yoshii A. Nagoshi T. Kashiwagi Y. Kimura H. Tanaka Y. Oi Y. Ito K. Yoshino T. Tanaka T.D. Yoshimura M. Cardiac ischemia–reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity. Cardiovasc. Diabetol. 2019 18 1 85 96 10.1186/s12933‑019‑0889‑y 31262297
    [Google Scholar]
  20. Thamaraiselvi L. Selvankumar T. Wesely E.G. Nathan V.K. In silico molecular docking on bioactive compounds from indian medicinal plants against type 2 diabetic target proteins: A computational approach. Indian J. Pharm. Sci. 2021 83 1273 1279
    [Google Scholar]
  21. Muhammad S. Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn. Mag. 2015 11 42 Suppl. 1 123 10.4103/0973‑1296.157712 26109757
    [Google Scholar]
  22. Baroroh S. Molecular interaction analysis and visualization of protein-ligand docking using biovia discovery studio visualizer. Indones. J. Comput. Biol. 2023 2 22 30
    [Google Scholar]
  23. Jourdan J.P. Bureau R. Rochais C. Dallemagne P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020 72 9 1145 1151 10.1111/jphp.13273 32301512
    [Google Scholar]
  24. Karmazyn M. Pierce G.N. Fliegel L. The remaining conundrum of the role of the Na+/H+ exchanger isoform 1 (NHE1) in cardiac physiology and pathology: Can it be rectified? Rev. Cardiovasc. Med. 2022 23 8 284 10.31083/j.rcm2308284 39076631
    [Google Scholar]
  25. Arow M. Waldman M. Yadin D. Nudelman V. Shainberg A. Abraham N.G. Freimark D. Kornowski R. Aravot D. Hochhauser E. Arad M. Sodium–glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc. Diabetol. 2020 19 1 7 19 10.1186/s12933‑019‑0980‑4 31924211
    [Google Scholar]
  26. Andreadou I. Bell R.M. Bøtker H.E. Zuurbier C.J. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 7 165770 10.1016/j.bbadis.2020.165770 32194159
    [Google Scholar]
  27. Xu B. Li S. Kang B. Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc. Diabetol. 2022 21 1 83 90 10.1186/s12933‑022‑01512‑w 35614469
    [Google Scholar]
  28. Zaccardi F. Webb D.R. Htike Z.Z. Youssef D. Khunti K. Davies M.J. Efficacy and safety of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta‐analysis. Diabetes Obes. Metab. 2016 18 8 783 794 10.1111/dom.12670 27059700
    [Google Scholar]
  29. Docherty K.F. Welsh P. Verma S. De Boer R.A. O’Meara E. Bengtsson O. Køber L. Kosiborod M.N. Hammarstedt A. Langkilde A.M. Lindholm D. Little D.J. Sjöstrand M. Martinez F.A. Ponikowski P. Sabatine M.S. Morrow D.A. Schou M. Solomon S.D. Sattar N. Jhund P.S. McMurray J.J.V. Iron deficiency in heart failure and effect of dapagliflozin: Findings from DAPA-HF. Circulation 2022 146 13 980 994 10.1161/CIRCULATIONAHA.122.060511 35971840
    [Google Scholar]
  30. Swedberg K. Young J.B. Anand I.S. Cheng S. Desai A.S. Diaz R. Maggioni A.P. McMurray J.J.V. O’Connor C. Pfeffer M.A. Solomon S.D. Sun Y. Tendera M. van Veldhuisen D.J. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 2013 368 13 1210 1219 10.1056/NEJMoa1214865 23473338
    [Google Scholar]
  31. Naresh N.K. Butcher J.T. Lye R.J. Chen X. Isakson B.E. Gan L.M. Kramer C.M. Annex B.H. Epstein F.H. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J. Cardiovasc. Magn. Reson. 2016 18 1 53 61 10.1186/s12968‑016‑0273‑y 27609091
    [Google Scholar]
  32. Lee H.C. Shiou Y.L. Jhuo S.J. Chang C.Y. Liu P.L. Jhuang W.J. Dai Z.K. Chen W.Y. Chen Y.F. Lee A.S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc. Diabetol. 2019 18 1 45 57 10.1186/s12933‑019‑0849‑6 30935417
    [Google Scholar]
  33. Sabatino J. De Rosa S. Tammè L. Iaconetti C. Sorrentino S. Polimeni A. Mignogna C. Amorosi A. Spaccarotella C. Yasuda M. Indolfi C. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc. Diabetol. 2020 19 1 66 10.1186/s12933‑020‑01040‑5 32414364
    [Google Scholar]
  34. Bhatt D.L. Szarek M. Steg P.G. Cannon C.P. Leiter L.A. McGuire D.K. Lewis J.B. Riddle M.C. Voors A.A. Metra M. Lund L.H. Komajda M. Testani J.M. Wilcox C.S. Ponikowski P. Lopes R.D. Verma S. Lapuerta P. Pitt B. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 2021 384 2 117 128 10.1056/NEJMoa2030183 33200892
    [Google Scholar]
  35. Santos-Gallego C.G. Requena-Ibanez J.A. San Antonio R. Garcia-Ropero A. Ishikawa K. Watanabe S. Picatoste B. Vargas-Delgado A.P. Flores-Umanzor E.J. Sanz J. Fuster V. Badimon J.J. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure. JACC Cardiovasc. Imaging 2021 14 2 393 407 10.1016/j.jcmg.2020.07.042 33129742
    [Google Scholar]
  36. Kawaji K. Codella N.C.F. Prince M.R. Chu C.W. Shakoor A. LaBounty T.M. Min J.K. Swaminathan R.V. Devereux R.B. Wang Y. Weinsaft J.W. Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction. Circ. Cardiovasc. Imaging 2009 2 6 476 484 10.1161/CIRCIMAGING.109.879304 19920046
    [Google Scholar]
  37. Pabel S. Wagner S. Bollenberg H. Bengel P. Kovács Á. Schach C. Tirilomis P. Mustroph J. Renner A. Gummert J. Fischer T. Van Linthout S. Tschöpe C. Streckfuss-Bömeke K. Hasenfuss G. Maier L.S. Hamdani N. Sossalla S. Empagliflozin directly improves diastolic function in human heart failure. Eur. J. Heart Fail. 2018 20 12 1690 1700 10.1002/ejhf.1328 30328645
    [Google Scholar]
  38. Baartscheer A. Schumacher C.A. van Borren M.M.G.J. Belterman C.N.W. Coronel R. Fiolet J.W.T. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc. Res. 2003 57 4 1015 1024 10.1016/S0008‑6363(02)00809‑X 12650879
    [Google Scholar]
  39. Croteau D. Luptak I. Chambers J.M. Hobai I. Panagia M. Pimentel D.R. Siwik D.A. Qin F. Colucci W.S. Effects of sodium‐glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice. J. Am. Heart Assoc. 2021 10 13 e019995 10.1161/JAHA.120.019995 34169737
    [Google Scholar]
  40. Doliba N.M. Babsky A.M. Osbakken M.D. The role of sodium in diabetic cardiomyopathy. Front. Physiol. 2018 9 1473 10.3389/fphys.2018.01473 30405433
    [Google Scholar]
  41. Vettor R. Inzucchi S.E. Fioretto P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects. Diabetologia 2017 60 3 395 398 10.1007/s00125‑016‑4194‑y 28074254
    [Google Scholar]
  42. Tsampasian V. Swift A.J. Assadi H. Chowdhary A. Swoboda P. Sammut E. Dastidar A. Cabrero J.B. Del Val J.R. Nair S. Nijveldt R. Ryding A. Sawh C. Bucciarelli-Ducci C. Levelt E. Vassiliou V. Garg P. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques. BMC Med. Imaging 2021 21 1 164 10.1186/s12880‑021‑00695‑0 34749671
    [Google Scholar]
  43. Pedersen S.F. Counillon L. The SLC9A-C Mammalian Na + /H + exchanger family: Molecules, mechanisms, and physiology. Physiol. Rev. 2019 99 4 2015 2113 10.1152/physrev.00028.2018 31507243
    [Google Scholar]
  44. Fliegel L. The Na+/H+ exchanger isoform 1. Int. J. Biochem. Cell Biol. 2005 37 1 33 37 10.1016/j.biocel.2004.02.006 15381146
    [Google Scholar]
  45. Vercalsteren E. Karampatsi D. Buizza C. Nyström T. Klein T. Paul G. Patrone C. Darsalia V. The SGLT2 inhibitor empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc. Diabetol. 2024 231 23 1 17
    [Google Scholar]
  46. Dutta J. Fan Y. Gupta N. Fan G. Gélinas C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene 2006 25 51 6800 6816 10.1038/sj.onc.1209938 17072329
    [Google Scholar]
  47. Lee B.S. Oh J. Kang S.K. Park S. Lee S.H. Choi D. Chung J.H. Chung Y.W. Kang S.M. Insulin protects cardiac myocytes from doxorubicin toxicity by sp1-mediated transactivation of survivin. PLoS One 2015 10 8 e0135438 10.1371/journal.pone.0135438 26271039
    [Google Scholar]
  48. Di Franco A. Cantini G. Tani A. Coppini R. Zecchi-Orlandini S. Raimondi L. Luconi M. Mannucci E. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: A new potential pharmacological target. Int. J. Cardiol. 2017 243 86 90 10.1016/j.ijcard.2017.05.032 28526540
    [Google Scholar]
  49. Banerjee S.K. McGaffin K.R. Pastor-Soler N.M. Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc. Res. 2009 84 1 111 118 10.1093/cvr/cvp190 19509029
    [Google Scholar]
  50. Ramratnam M. Sharma R.K. D’Auria S. Lee S.J. Wang D. Huang X.Y.N. Ahmad F. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J. Am. Heart Assoc. 2014 3 4 e000899 e000906 10.1161/JAHA.114.000899 25092788
    [Google Scholar]
  51. Utomo D.H. Widodo N. Rifa’i M. Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening. Bioinformation 2012 8 9 426 429 10.6026/97320630008426 22715313
    [Google Scholar]
  52. Bikadi Z. Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform. 2009 1 1 15 10.1186/1758‑2946‑1‑15 20150996
    [Google Scholar]
  53. Muthukrishnan S. G R. Varghese B.S. Lead molecule identification From Vitex trifolia linn for helminthiasis using in vitro and in silico methods. Int. J. Pharm. Pharm. Sci. 2020 12 95 103 10.22159/ijpps.2020v12i2.36353
    [Google Scholar]
  54. Jung S.H. Lee J.M. Lee H.J. Kim C.Y. Lee E.H. Um B.H. Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra. Biol. Pharm. Bull. 2007 30 8 1569 1572 10.1248/bpb.30.1569 17666823
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X341930241206063315
Loading
/content/journals/chddt/10.2174/011871529X341930241206063315
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: diabetes mellitus ; in silico ; docking ; empagliflozin ; SGLT2 ; cardioprotective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test