Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-529X
  • E-ISSN: 2212-4063

Abstract

Background

Drug repurposing involves investigating new indications or uses for drugs that have already been approved for clinical use. Empagliflozin is a C-glycosyl compound characterized by the presence of a beta-glucosyl residue. It functions as a sodium-glucose co-transporter 2 inhibitor and is utilized to enhance glycemic control in adults diagnosed with type 2 diabetes mellitus. Additionally, it is indicated for the reduction of cardiovascular mortality risk in adult patients who have both type 2 diabetes mellitus and pre-existing cardiovascular disease.

Objective

The study's objective revolves around exploring the repurposing potential of a novel SGLT2 inhibitor acting as an antidiabetic drug named Empagliflozin through computational methods, with a specific focus on its interaction with cardioprotective key target proteins.

Methods

The study was performed by docking the empagliflozin with different target proteins (NHE1-CHP1, BIRC5, GLUT1, and XIAP) by using Autodock, and different values were recorded. The docked files were analysed by the BIOVIA Discovery Studio Visualizer. The analysis conducted in this study examines the binding free energy values of Empagliflozin with key target proteins.

Results

Results revealed that NHE1-CHP1 exhibits the lowest binding free energy, followed by BIRC5, GLUT1, and XIAP, with the highest value. This descending order of binding energies suggests varying degrees of effectiveness in binding molecules, with lower energies indicative of more potent biological activity. The analysis underscores the importance of intermolecular interactions, particularly hydrogen bond formations facilitated by oxygen, nitrogen, and carbonyl groups in compound structures. Notably, NHE1-CHP1 demonstrates superior binding interactions with Empagliflozin compared to the other target proteins, highlighting its potential as a cardioprotective agent.

Conclusion

These findings offer valuable insights into the therapeutic possibilities of Empagliflozin in cardioprotection, indicating promising avenues for further research and development in this domain.

Loading

Article metrics loading...

/content/journals/chddt/10.2174/011871529X341930241206063315
2024-12-16
2025-04-06
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  2. SchwalmJ.D. McKeeM. HuffmanM.D. YusufS. Resource effective strategies to prevent and treat cardiovascular disease.Circulation2016133874275510.1161/CIRCULATIONAHA.115.00872126903017
    [Google Scholar]
  3. LiY. CaoG. JingW. LiuJ. LiuM. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990−2019: Findings from 2019 global burden of disease study.Eur. J. Prev. Cardiol.202330327628610.1093/eurjpc/zwac28536458973
    [Google Scholar]
  4. OpreaT.I. MestresJ. Drug repurposing: Far beyond new targets for old drugs.AAPS J.201214475976310.1208/s12248‑012‑9390‑122826034
    [Google Scholar]
  5. TurnerN. ZengX.Y. OsborneB. RogersS. YeJ.M. Repurposing drugs to target the diabetes epidemic.Trends Pharmacol. Sci.201637537938910.1016/j.tips.2016.01.00726900045
    [Google Scholar]
  6. RudrapalM. KhairnarS.J. JadhavA.G. RudrapalM. KhairnarS.J. JadhavA.G. Drug Repurposing (DR): An emerging approach in drug discovery.Drug Repurposing - Hypothesis, Molecular Aspects, and Therapeutic ApplicationsIntechOpen2020
    [Google Scholar]
  7. MengX-Y. ZhangH-X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Comput. Aided. Drug Des.20117154
    [Google Scholar]
  8. YadavJ. AhsanF. PandaP. MahmoodT. AnsariV.A. ShamimA. Empagliflozin-A sodium glucose co-transporter-2 inhibitor: Overview of its chemistry, pharmacology, and toxicology.Curr. Diabetes Rev.20242010e23012422601010.2174/011573399827102623112705154538265382
    [Google Scholar]
  9. FoxC.S. CoadyS. SorlieP.D. D’AgostinoR.B.Sr PencinaM.J. VasanR.S. MeigsJ.B. LevyD. SavageP.J. Increasing cardiovascular disease burden due to diabetes mellitus: The framingham heart study.Circulation2007115121544155010.1161/CIRCULATIONAHA.106.65894817353438
    [Google Scholar]
  10. McMurrayJ.J.V. SolomonS.D. InzucchiS.E. KøberL. KosiborodM.N. MartinezF.A. PonikowskiP. SabatineM.S. AnandI.S. BělohlávekJ. BöhmM. ChiangC.E. ChopraV.K. de BoerR.A. DesaiA.S. DiezM. DrozdzJ. DukátA. GeJ. HowlettJ.G. KatovaT. KitakazeM. LjungmanC.E.A. MerkelyB. NicolauJ.C. O’MearaE. PetrieM.C. VinhP.N. SchouM. TereshchenkoS. VermaS. HeldC. DeMetsD.L. DochertyK.F. JhundP.S. BengtssonO. SjöstrandM. LangkildeA.M. Dapagliflozin in patients with heart failure and reduced ejection fraction.N. Engl. J. Med.2019381211995200810.1056/NEJMoa191130331535829
    [Google Scholar]
  11. PackerM. AnkerS.D. ButlerJ. FilippatosG. PocockS.J. CarsonP. JanuzziJ. VermaS. TsutsuiH. BrueckmannM. JamalW. KimuraK. SchneeJ. ZellerC. CottonD. BocchiE. BöhmM. ChoiD.J. ChopraV. ChuquiureE. GiannettiN. JanssensS. ZhangJ. Gonzalez JuanateyJ.R. KaulS. Brunner-La RoccaH.P. MerkelyB. NichollsS.J. PerroneS. PinaI. PonikowskiP. SattarN. SenniM. SerondeM.F. SpinarJ. SquireI. TaddeiS. WannerC. ZannadF. Cardiovascular and renal outcomes with empagliflozin in heart failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa202219032865377
    [Google Scholar]
  12. DongY. GaoY. IlieA. KimD. BoucherA. LiB. ZhangX.C. OrlowskiJ. ZhaoY. Structure and mechanism of the human NHE1-CHP1 complex.Nat. Commun.20211213474348110.1038/s41467‑021‑23496‑z34108458
    [Google Scholar]
  13. NežićL. ŠkrbićR. AmidžićL. GajaninR. KučaK. JaćevićV. Simvastatin protects cardiomyocytes against endotoxin-induced apoptosis and up-regulates survivin/NF-κB/p65 expression.Sci. Rep.2018811465210.1038/s41598‑018‑32376‑430279549
    [Google Scholar]
  14. TsangT.J. HsuehY.C. WeiE.I. LundyD.J. ChengB. ChenY.T. WangS.S. HsiehP.C.H. Subcellular localization of survivin determines its function in cardiomyocytes.Theranostics20177184577459010.7150/thno.2000529158846
    [Google Scholar]
  15. BoL. ZhuX.S. ZhengZ. HuX.P. ChenP.Y. Research on the function and mechanism of survivin in heart failure mice model.Eur. Rev. Med. Pharmacol. Sci.201721163699370428925471
    [Google Scholar]
  16. SiR. TaoL. ZhangH.F. YuQ.J. ZhangR. LvA.L. ZhouN. CaoF. GuoW.Y. RenJ. WangH.C. GaoF. Survivin: A novel player in insulin cardioprotection against myocardial ischemia/reperfusion injury.J. Mol. Cell. Cardiol.2011501162410.1016/j.yjmcc.2010.08.01720801129
    [Google Scholar]
  17. SouktaniR. PonsS. GueganC. BouhidelO. BrunevalP. ZiniR. MandetC. OntenienteB. BerdeauxA. GhalehB. Cardioprotection against myocardial infarction with PTD-BIR3/RING, a XIAP mimicking protein.J. Mol. Cell. Cardiol.200946571371810.1016/j.yjmcc.2009.02.00519233193
    [Google Scholar]
  18. MatsuiT. NagoshiT. HongE.G. LuptakI. HartilK. LiL. GorovitsN. CharronM.J. KimJ.K. TianR. RosenzweigA. Effects of chronic Akt activation on glucose uptake in the heart.Am. J. Physiol. Endocrinol. Metab.20062905E789E79710.1152/ajpendo.00564.200416352665
    [Google Scholar]
  19. YoshiiA. NagoshiT. KashiwagiY. KimuraH. TanakaY. OiY. ItoK. YoshinoT. TanakaT.D. YoshimuraM. Cardiac ischemia–reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity.Cardiovasc. Diabetol.2019181859610.1186/s12933‑019‑0889‑y31262297
    [Google Scholar]
  20. ThamaraiselviL. SelvankumarT. WeselyE.G. NathanV.K. In silico molecular docking on bioactive compounds from indian medicinal plants against type 2 diabetic target proteins: A computational approach.Indian J. Pharm. Sci.20218312731279
    [Google Scholar]
  21. MuhammadS. FatimaN. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides.Pharmacogn. Mag.20151142Suppl. 112310.4103/0973‑1296.15771226109757
    [Google Scholar]
  22. BarorohS. Molecular interaction analysis and visualization of protein-ligand docking using biovia discovery studio visualizer.Indones. J. Comput. Biol.202322230
    [Google Scholar]
  23. JourdanJ.P. BureauR. RochaisC. DallemagneP. Drug repositioning: A brief overview.J. Pharm. Pharmacol.20207291145115110.1111/jphp.1327332301512
    [Google Scholar]
  24. KarmazynM. PierceG.N. FliegelL. The remaining conundrum of the role of the Na+/H+ exchanger isoform 1 (NHE1) in cardiac physiology and pathology: Can it be rectified?Rev. Cardiovasc. Med.202223828410.31083/j.rcm230828439076631
    [Google Scholar]
  25. ArowM. WaldmanM. YadinD. NudelmanV. ShainbergA. AbrahamN.G. FreimarkD. KornowskiR. AravotD. HochhauserE. AradM. Sodium–glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy.Cardiovasc. Diabetol.202019171910.1186/s12933‑019‑0980‑431924211
    [Google Scholar]
  26. AndreadouI. BellR.M. BøtkerH.E. ZuurbierC.J. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models.Biochim. Biophys. Acta Mol. Basis Dis.20201866716577010.1016/j.bbadis.2020.16577032194159
    [Google Scholar]
  27. XuB. LiS. KangB. ZhouJ. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management.Cardiovasc. Diabetol.2022211839010.1186/s12933‑022‑01512‑w35614469
    [Google Scholar]
  28. ZaccardiF. WebbD.R. HtikeZ.Z. YoussefD. KhuntiK. DaviesM.J. Efficacy and safety of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta‐analysis.Diabetes Obes. Metab.201618878379410.1111/dom.1267027059700
    [Google Scholar]
  29. DochertyK.F. WelshP. VermaS. De BoerR.A. O’MearaE. BengtssonO. KøberL. KosiborodM.N. HammarstedtA. LangkildeA.M. LindholmD. LittleD.J. SjöstrandM. MartinezF.A. PonikowskiP. SabatineM.S. MorrowD.A. SchouM. SolomonS.D. SattarN. JhundP.S. McMurrayJ.J.V. Iron deficiency in heart failure and effect of dapagliflozin: Findings from DAPA-HF.Circulation20221461398099410.1161/CIRCULATIONAHA.122.06051135971840
    [Google Scholar]
  30. SwedbergK. YoungJ.B. AnandI.S. ChengS. DesaiA.S. DiazR. MaggioniA.P. McMurrayJ.J.V. O’ConnorC. PfefferM.A. SolomonS.D. SunY. TenderaM. van VeldhuisenD.J. Treatment of anemia with darbepoetin alfa in systolic heart failure.N. Engl. J. Med.2013368131210121910.1056/NEJMoa121486523473338
    [Google Scholar]
  31. NareshN.K. ButcherJ.T. LyeR.J. ChenX. IsaksonB.E. GanL.M. KramerC.M. AnnexB.H. EpsteinF.H. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet.J. Cardiovasc. Magn. Reson.2016181536110.1186/s12968‑016‑0273‑y27609091
    [Google Scholar]
  32. LeeH.C. ShiouY.L. JhuoS.J. ChangC.Y. LiuP.L. JhuangW.J. DaiZ.K. ChenW.Y. ChenY.F. LeeA.S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.Cardiovasc. Diabetol.2019181455710.1186/s12933‑019‑0849‑630935417
    [Google Scholar]
  33. SabatinoJ. De RosaS. TammèL. IaconettiC. SorrentinoS. PolimeniA. MignognaC. AmorosiA. SpaccarotellaC. YasudaM. IndolfiC. Empagliflozin prevents doxorubicin-induced myocardial dysfunction.Cardiovasc. Diabetol.20201916610.1186/s12933‑020‑01040‑532414364
    [Google Scholar]
  34. BhattD.L. SzarekM. StegP.G. CannonC.P. LeiterL.A. McGuireD.K. LewisJ.B. RiddleM.C. VoorsA.A. MetraM. LundL.H. KomajdaM. TestaniJ.M. WilcoxC.S. PonikowskiP. LopesR.D. VermaS. LapuertaP. PittB. Sotagliflozin in patients with diabetes and recent worsening heart failure.N. Engl. J. Med.2021384211712810.1056/NEJMoa203018333200892
    [Google Scholar]
  35. Santos-GallegoC.G. Requena-IbanezJ.A. San AntonioR. Garcia-RoperoA. IshikawaK. WatanabeS. PicatosteB. Vargas-DelgadoA.P. Flores-UmanzorE.J. SanzJ. FusterV. BadimonJ.J. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure.JACC Cardiovasc. Imaging202114239340710.1016/j.jcmg.2020.07.04233129742
    [Google Scholar]
  36. KawajiK. CodellaN.C.F. PrinceM.R. ChuC.W. ShakoorA. LaBountyT.M. MinJ.K. SwaminathanR.V. DevereuxR.B. WangY. WeinsaftJ.W. Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction.Circ. Cardiovasc. Imaging20092647648410.1161/CIRCIMAGING.109.87930419920046
    [Google Scholar]
  37. PabelS. WagnerS. BollenbergH. BengelP. KovácsÁ. SchachC. TirilomisP. MustrophJ. RennerA. GummertJ. FischerT. Van LinthoutS. TschöpeC. Streckfuss-BömekeK. HasenfussG. MaierL.S. HamdaniN. SossallaS. Empagliflozin directly improves diastolic function in human heart failure.Eur. J. Heart Fail.201820121690170010.1002/ejhf.132830328645
    [Google Scholar]
  38. BaartscheerA. SchumacherC.A. van BorrenM.M.G.J. BeltermanC.N.W. CoronelR. FioletJ.W.T. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model.Cardiovasc. Res.20035741015102410.1016/S0008‑6363(02)00809‑X12650879
    [Google Scholar]
  39. CroteauD. LuptakI. ChambersJ.M. HobaiI. PanagiaM. PimentelD.R. SiwikD.A. QinF. ColucciW.S. Effects of sodium‐glucose linked transporter 2 inhibition with ertugliflozin on mitochondrial function, energetics, and metabolic gene expression in the presence and absence of diabetes mellitus in mice.J. Am. Heart Assoc.20211013e01999510.1161/JAHA.120.01999534169737
    [Google Scholar]
  40. DolibaN.M. BabskyA.M. OsbakkenM.D. The role of sodium in diabetic cardiomyopathy.Front. Physiol.20189147310.3389/fphys.2018.0147330405433
    [Google Scholar]
  41. VettorR. InzucchiS.E. FiorettoP. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects.Diabetologia201760339539810.1007/s00125‑016‑4194‑y28074254
    [Google Scholar]
  42. TsampasianV. SwiftA.J. AssadiH. ChowdharyA. SwobodaP. SammutE. DastidarA. CabreroJ.B. Del ValJ.R. NairS. NijveldtR. RydingA. SawhC. Bucciarelli-DucciC. LeveltE. VassiliouV. GargP. Myocardial inflammation and energetics by cardiac MRI: A review of emerging techniques.BMC Med. Imaging202121116410.1186/s12880‑021‑00695‑034749671
    [Google Scholar]
  43. PedersenS.F. CounillonL. The SLC9A-C Mammalian Na + /H + exchanger family: Molecules, mechanisms, and physiology.Physiol. Rev.20199942015211310.1152/physrev.00028.201831507243
    [Google Scholar]
  44. FliegelL. The Na+/H+ exchanger isoform 1.Int. J. Biochem. Cell Biol.2005371333710.1016/j.biocel.2004.02.00615381146
    [Google Scholar]
  45. VercalsterenE. KarampatsiD. BuizzaC. NyströmT. KleinT. PaulG. PatroneC. DarsaliaV. The SGLT2 inhibitor empagliflozin promotes post-stroke functional recovery in diabetic mice.Cardiovasc. Diabetol.202423123117
    [Google Scholar]
  46. DuttaJ. FanY. GuptaN. FanG. GélinasC. Current insights into the regulation of programmed cell death by NF-κB.Oncogene200625516800681610.1038/sj.onc.120993817072329
    [Google Scholar]
  47. LeeB.S. OhJ. KangS.K. ParkS. LeeS.H. ChoiD. ChungJ.H. ChungY.W. KangS.M. Insulin protects cardiac myocytes from doxorubicin toxicity by sp1-mediated transactivation of survivin.PLoS One2015108e013543810.1371/journal.pone.013543826271039
    [Google Scholar]
  48. Di FrancoA. CantiniG. TaniA. CoppiniR. Zecchi-OrlandiniS. RaimondiL. LuconiM. MannucciE. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: A new potential pharmacological target.Int. J. Cardiol.2017243869010.1016/j.ijcard.2017.05.03228526540
    [Google Scholar]
  49. BanerjeeS.K. McGaffinK.R. Pastor-SolerN.M. AhmadF. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states.Cardiovasc. Res.200984111111810.1093/cvr/cvp19019509029
    [Google Scholar]
  50. RamratnamM. SharmaR.K. D’AuriaS. LeeS.J. WangD. HuangX.Y.N. AhmadF. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice.J. Am. Heart Assoc.201434e000899e00090610.1161/JAHA.114.00089925092788
    [Google Scholar]
  51. UtomoD.H. WidodoN. Rifa’iM. Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening.Bioinformation20128942642910.6026/9732063000842622715313
    [Google Scholar]
  52. BikadiZ. HazaiE. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock.J. Cheminform.2009111510.1186/1758‑2946‑1‑1520150996
    [Google Scholar]
  53. MuthukrishnanS. GR. VargheseB.S. Lead molecule identification From Vitex trifolia linn for helminthiasis using in vitro and in silico methods.Int. J. Pharm. Pharm. Sci.2020129510310.22159/ijpps.2020v12i2.36353
    [Google Scholar]
  54. JungS.H. LeeJ.M. LeeH.J. KimC.Y. LeeE.H. UmB.H. Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra.Biol. Pharm. Bull.20073081569157210.1248/bpb.30.156917666823
    [Google Scholar]
/content/journals/chddt/10.2174/011871529X341930241206063315
Loading
/content/journals/chddt/10.2174/011871529X341930241206063315
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cardioprotective; diabetes mellitus; docking; empagliflozin; in silico; SGLT2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test