Full text loading...
-
A Patent Review on Cardiotoxicity of Anticancerous Drugs
- Source: Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Cardiovascular & Hematological Agents), Volume 22, Issue 1, Mar 2024, p. 28 - 39
-
- 01 Mar 2024
Abstract
Chemotherapy-induced cardiotoxicity is an increasing concern and it is critical to avoid heart dysfunction induced by medications used in various cancers. Dysregulated cardiomyocyte homeostasis is a critical phenomenon of drug-induced cardiotoxicity, which hinders the cardiac tissue's natural physiological function. Drug-induced cardiotoxicity is responsible for various heart disorders such as myocardial infarction, myocardial hypertrophy, and arrhythmia, among others. Chronic cardiac stress due to drug toxicity restricts the usage of cancer medications. Anticancer medications can cause a variety of adverse effects, especially cardiovascular toxicity. This review is focused on anticancerous drugs anthracyclines, trastuzumab, nonsteroidal anti-inflammatory medications (NSAIDs), and immune checkpoint inhibitors (ICI) and associated pathways attributed to the drug-induced cardiotoxicity. Several factors responsible for enhanced cardiotoxicity are age, gender specificity, diseased conditions, and therapy are also discussed. The review also highlighted the patents assigned for different methodologies involved in the assessment and reducing cardiotoxicity. Recent advancements where the usage of trastuzumab and bevacizumab have caused cardiac dysfunction and their effects alone or in combination on cardiac cells are explained. Extensive research on patents associated with protection against cardiotoxicity has shown that chemicals like bis(dioxopiperazine)s and manganese compounds were cardioprotective when combined with other selected anticancerous drugs. Numerous patents are associated with druginduced toxicity, prevention, and diagnosis, that may aid in understanding the current issues and developing novel therapies with safer cardiovascular outcomes. Also, the advancements in technology and research going on are yet to be explored to overcome the present issue of cardiotoxicity with the development of new drug formulations.