Skip to content
2000
image of Harnessing Hydroxyapatite: A Review on Synthesis and Green Solution for Cadmium and Lead Contamination in Wastewater

Abstract

Wastewater management has emerged as a critical global challenge in the contemporary era. Several contaminants, like textile dyes, heavy metals, non-metals, various organic compounds, ., are discharged into water sources, causing a significant threat to the ecosystem. With the limited availability of water resources, it is required to adopt green and sustainable wastewater treatment methods aligning with the United Nations Sustainable Development Goals (SDGs) 6, 7, and 13. This review paper draws insights on Hydroxyapatite (HAP), a versatile sustainable material derived from waste sources, both biological and non-biological sources, as a promising candidate for sustainable wastewater treatment. The study described the innovations using wastes for the synthesis of HAP by diverse methods like wet, dry, high-temperature, and hybrid methods, offering flexibility and adaptability in tailoring HAP material to particular applications. Additionally, the potential to fabricate HAP in various nanoscale structures, like nanoribbons, nanoflakes, and nanocomposites, further exalts its ability for effective contaminant removal. Cadmium and Lead are the key heavy metals of significant interest, have detrimental effects on various environmental factors, and their presence necessitates effective removal strategies. HAP, with its innate properties like high stability, swift kinetics, good adsorption capacity, and availability, has emerged as a promising waste-derived adsorbent for the removal of hazardous Cd and Lead ions. This review paper provides insights on a comprehensive overview of research works on HAP-based wastewater treatment, extending its potential to address the issue of heavy metal contamination and highlighting the universal principle ‘One Health’- the health of the ecosystem and its parts.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461363673250311134721
2025-03-24
2025-05-29
Loading full text...

Full text loading...

References

  1. Singh A. Singh R. Impact and assessment of heavy metal toxicity on water quality, edible fishes and sediments in lakes: A review Trends Biosci 2017 10 8 1551 1560
    [Google Scholar]
  2. Manisalidis I. Stavropoulou E. Stavropoulos A. Bezirtzoglou E. Environmental and health impacts of air pollution: A review Front Public Health. 2020 8 14 10.3389/fpubh.2020.00014
    [Google Scholar]
  3. Sangeetha K. Vidhya G. Vasugi G. Girija E.K. Lead and cadmium removal from single and binary metal ion solution by novel hydroxyapatite/alginate/gelatin nanocomposites. J. Environ. Chem. Eng. 2018 6 1 1118 1126 10.1016/j.jece.2018.01.018
    [Google Scholar]
  4. Landin-Sandoval V.J. Mendoza-Castillo D.I. Bonilla-Petriciolet A. Aguayo-Villarreal I.A. Reynel-Avila H.E. Gonzalez-Ponce H.A. Valorization of agri-food industry wastes to prepare adsorbents for heavy metal removal from water. J. Environ. Chem. Eng. 2020 8 5 104067 10.1016/j.jece.2020.104067
    [Google Scholar]
  5. Núñez D. Elgueta E. Varaprasad K. Oyarzún P. Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Mater. Lett. 2018 230 64 68 10.1016/j.matlet.2018.07.077
    [Google Scholar]
  6. Haider A. Haider S. Han S.S. Kang I.K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review. RSC Adv. 2017 7 7442 7458 10.1039/C6RA26124H
    [Google Scholar]
  7. Huang T. Song D. Yang C. Zhang S. Nonthermal plasma-irradiated polyvalent ferromanganese binary hydro(oxide) for the removal of uranyl ions from wastewater. Environ. Res. 2023 217 114911 10.1016/j.envres.2022.114911 36427641
    [Google Scholar]
  8. Huang T. Zhou L. Liu L. Xia M. Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes. Waste Manag. 2018 75 226 235 10.1016/j.wasman.2018.01.029 29395736
    [Google Scholar]
  9. Ali H. Khan E. Sajad M.A. Phytoremediation of heavy metals--Concepts and applications. Chemosphere 2013 91 7 869 881 10.1016/j.chemosphere.2013.01.075
    [Google Scholar]
  10. Briffa J. Sinagra E. Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020 6 9 e04691 10.1016/j.heliyon.2020.e04691
    [Google Scholar]
  11. Piwowarska D. Kiedrzyńska E. Jaszczyszyn K. A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation. 54 2024 19 1436 1458 10.1080/10643389.2024.2317112
    [Google Scholar]
  12. Varadavenkatesan T. Vinayagam R. Pai S. Kathirvel B. Pugazhendhi A. Selvaraj R. Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings Prog. Org. Coat. 2021 151 106056 10.1016/j.porgcoat.2020.106056
    [Google Scholar]
  13. Ibrahim M. Labaki M. Giraudon J. M. Lamonier J. F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J. Hazard. Mater. 2020 383 121139 10.1016/j.jhazmat.2019.121139
    [Google Scholar]
  14. Hassanain M. Abdel-Ghafar H.M. Hamouda H.I. El-Hosiny F.I. Ewais E.M.M. Enhanced antimicrobial efficacy of hydroxyapatite-based composites for healthcare applications. Sci. Rep. 2024 14 1 26426 10.1038/s41598‑024‑76088‑4 39488578
    [Google Scholar]
  15. Piccirillo C. Castro P. M. L. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives J. Environ. Manag. 2017 193 79 91 10.1016/j.jenvman.2017.01.071
    [Google Scholar]
  16. Lin K. Structure and properties of hydroxyapatite for biomedical applications Hydroxyapatite (Hap) for Biomedical Applications Woodhead Publishing Cambridge 2015 3 19
    [Google Scholar]
  17. Uskoković V. Uskoković D. P. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater. 2011 96 1 152 191 10.1002/jbm.b.31746
    [Google Scholar]
  18. Khatun R. Water pollution: Causes, consequences, prevention method and role of WBPHED with special reference from murshidabad district Int. J. Sci. Res. Publ. 2017 7 8
    [Google Scholar]
  19. Catros S. Guillemot F. Lebraud E. Chanseau C. Perez S. Bareille R. Amédée J. Fricain J.C. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM 2010 31 4 226 233 10.1016/j.irbm.2010.04.002
    [Google Scholar]
  20. Kalbarczyk M. Szcześ A. Microwave assistant synthesis of calcium phosphate minerals using hen’s eggshells as a calcium source. Physicochem. Probl. Miner. Proces. 2020 56 6 167 177 10.37190/ppmp/127930
    [Google Scholar]
  21. Yelten-Yilmaz A. Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram. Int. 2018 44 8 9703 9710 10.1016/j.ceramint.2018.02.201
    [Google Scholar]
  22. Banerjee S. Bagchi B. Bhandary S. Kool A. Amin Hoque N. Thakur P. Das S. A facile vacuum assisted synthesis of nanoparticle impregnated hydroxyapatite composites having excellent antimicrobial properties and biocompatibility. Ceram. Int. 2018 44 1 1066 1077 10.1016/j.ceramint.2017.10.051
    [Google Scholar]
  23. Prakash M. Rajan H.K. Chandraprabha M.N. Shetty S. Mukherjee T. Girish Kumar S. Recent developments in green synthesis of hydroxyapatite nanocomposites: Relevance to biomedical and environmental applications. Green Chem. Lett. Rev. 2024 17 1 2422409 10.1080/17518253.2024.2422409
    [Google Scholar]
  24. Mahmoud M.M. Sustainable and environmentally friendly microwave synthesis of nano-hydroxyapatite from decarbonized eggshells. Materials 2024 17 8 1832 10.3390/ma17081832 38673189
    [Google Scholar]
  25. Awan A.A. Liaqat U. Hussain Z. The effect of pH on the morphological transformation of nanocrystalline hydroxyapatite during wet chemical synthesis. J. Korean Ceram. Soc. 2023 60 6 1010 1027 10.1007/s43207‑023‑00324‑2
    [Google Scholar]
  26. Kramer E. Podurgiel J. Wei M. Control of hydroxyapatite nanoparticle morphology using wet synthesis techniques: Reactant addition rate effects. Mater. Lett. 2014 131 145 147 10.1016/j.matlet.2014.05.105
    [Google Scholar]
  27. Ma G. Three common preparation methods of hydroxyapatite Conf. Ser.: Mater. Sci. Eng 2019 688 033057 10.1088/1757‑899X/688/3/033057
    [Google Scholar]
  28. Choi G. Choi A.H. Evans L.A. Akyol S. Ben-Nissan B. A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications. J. Am. Ceram. Soc. 2020 103 10 5442 5453 10.1111/jace.17118
    [Google Scholar]
  29. Chahkandi M. Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Mater. Chem. Phys. 2017 202 340 351 10.1016/j.matchemphys.2017.09.047
    [Google Scholar]
  30. Roopalakshmi S. Ravishankar R. Belaldavar S. Prasad R.G.S.V. Phani A.R. Investigation of structural and morphological characteristic of hydroxyapatite synthesized by sol-gel process. Mater. Today Proc. 2017 4 11 12026 12031 10.1016/j.matpr.2017.09.126
    [Google Scholar]
  31. Ben-Arfa B.A.E. Salvado I.M.M. Ferreira J.M.F. Pullar R.C. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater. Sci. Eng. C 2017 70 Pt 1 796 804 10.1016/j.msec.2016.09.054 27770957
    [Google Scholar]
  32. Nazeer M.A. Yilgor E. Yagci M.B. Unal U. Yilgor I. Effect of reaction solvent on hydroxyapatite synthesis in sol–gel process. R. Soc. Open Sci. 2017 4 12 171098 10.1098/rsos.171098 29308248
    [Google Scholar]
  33. Buitrago-Vásquez M. Ossa-Orozco C.P. Hydrothermal synthesis of hydroxyapatite nanorods using a fruit extract template. Dyna 2018 85 204 283 288 10.15446/dyna.v85n204.65773
    [Google Scholar]
  34. Bensalah H. Bekheet M.F. Alami Younssi S. Ouammou M. Gurlo A. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J. Environ. Chem. Eng. 2018 6 1 1347 1352 10.1016/j.jece.2018.01.052
    [Google Scholar]
  35. Ryu G.U. Kim G.M. Khalid H.R. Lee H.K. The effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite using blast furnace slag. Materials 2019 12 13 2131 10.3390/ma12132131 31269736
    [Google Scholar]
  36. Wang Y. Ren X. Ma X. Su W. Zhang Y. Sun X. Li X. Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores. Cryst. Growth Des. 2015 15 4 1949 1956 10.1021/acs.cgd.5b00113
    [Google Scholar]
  37. High-temperature behaviour of ammonium dihydrogen phosphate. J Phys Conf Ser 2017 935 1 12050
    [Google Scholar]
  38. Yang H. Wang Y. Morphology control of hydroxyapatite microcrystals: Synergistic effects of citrate and CTAB. Mater. Sci. Eng. C 2016 62 160 165 10.1016/j.msec.2016.01.052 26952410
    [Google Scholar]
  39. In Y. Amornkitbamrung U. Hong M.H. Shin H. On the crystallization of hydroxyapatite under hydrothermal conditions: Role of sebacic acid as an additive. ACS Omega 2020 5 42 27204 27210 10.1021/acsomega.0c03297 33134681
    [Google Scholar]
  40. Sivaperumal V.R. Mani R. Nachiappan M.S. Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater. Charact. 2017 134 416 421 10.1016/j.matchar.2017.11.016
    [Google Scholar]
  41. Pai S. Kini M. S. Selvaraj R. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ. Sci. Pollut. Res. Int. 2021 28 10 11835 11849
    [Google Scholar]
  42. Mohd Pu’ad N. A. S. Koshy P. Abdullah H. Z. Idris M. I. Lee T. C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019 5 5 e01588 10.1016/j.heliyon.2019.e01588
    [Google Scholar]
  43. Pon-On W. Suntornsaratoon P. Charoenphandhu N. Thongbunchoo J. Krishnamra N. Tang I.M. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater. Sci. Eng. C 2016 62 183 189 10.1016/j.msec.2016.01.051 26952413
    [Google Scholar]
  44. Daneshvar H. Shafaei M. Manouchehri F. Kakaei S. Ziaie F. The role of La, Eu, Gd, and Dy lanthanides on thermoluminescence characteristics of nano-hydroxyapatite induced by gamma radiation. SN Appl. Sci. 2019 1 10 1146 10.1007/s42452‑019‑1162‑4
    [Google Scholar]
  45. Zarinfar A. Shafaei M. Ziaie F. Synthesis, characterization and thermoluminescence properties of nano-structure gadolinium doped hydroxyapatite (HAP:Gd). Procedia Mater. Sci. 2015 11 293 298 10.1016/j.mspro.2015.11.075
    [Google Scholar]
  46. Wang M.C. Chen H.T. Shih W.J. Chang H.F. Hon M.H. Hung I.M. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD). Ceram. Int. 2015 41 2 2999 3008 10.1016/j.ceramint.2014.10.135
    [Google Scholar]
  47. Harifi T. Montazer M. A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates Ultrason. Sonochem. 2015 23 1 10 10.1016/j.ultsonch.2014.08.022
    [Google Scholar]
  48. Savun-Hekimoğlu B. A review on sonochemistry and its environmental applications Acoustics 2020 2 4 766 775 10.3390/acoustics2040042
    [Google Scholar]
  49. Yadollahpour A. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics. Orient J Chem 2015 31 Special Issue1 10.13005/ojc/31.Special‑Issue1.33
    [Google Scholar]
  50. J. J. Nanostructured Materials Synthesis Using Ultrasound. Sonochemistry. Topics in Current Chemistry Collections. Colmenares J. Chatel G. Cham Springer 2017 59 94
    [Google Scholar]
  51. Orooji Y. Mortazavi-Derazkola S. Ghoreishi S.M. Amiri M. Salavati-Niasari M. Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 2020 400 123140 10.1016/j.jhazmat.2020.123140 32563904
    [Google Scholar]
  52. Edralin E.J.M. Garcia J.L. dela Rosa F.M. Punzalan E.R. Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells. Mater. Lett. 2017 196 33 36 10.1016/j.matlet.2017.03.016
    [Google Scholar]
  53. Klinkaewnarong J. Utara S. Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles. Ultrason. Sonochem. 2018 46 18 25 10.1016/j.ultsonch.2018.04.002 29739509
    [Google Scholar]
  54. Liu G. Chen K. Li J. Combustion synthesis: An effective tool for preparing inorganic materials. Scr. Mater. 2018 157 167 173 10.1016/j.scriptamat.2018.08.022
    [Google Scholar]
  55. Deng S. Yu H. Liu D. Bi Y. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor. Appl. Phys., A Mater. Sci. Process. 2017 123 10 642 10.1007/s00339‑017‑1243‑4
    [Google Scholar]
  56. Nasiri H. Khaki J.V. Shahtahmassebi N. Effect of alumina percentage on size and superparamagnetic properties of Ni-Al2O3 nanocomposite synthesized by solution combustion. Mater. Des. 2016 109 476 484 10.1016/j.matdes.2016.07.101
    [Google Scholar]
  57. Deganello F. Tyagi A. K. Solution combustion synthesis, energy and environment: Best parameters for better materials Prog. Cryst. Growth Charact. Mater. 2018 64 2 23 61 10.1016/j.pcrysgrow.2018.03.001
    [Google Scholar]
  58. Gao Y. Meng F. Li X. Wen J.Z. Li Z. Factors controlling nanosized Ni–Al 2 O 3 catalysts synthesized by solution combustion for slurry-phase CO methanation: The ratio of reducing valences to oxidizing valences in redox systems. Catal. Sci. Technol. 2016 6 21 7800 7811 10.1039/C6CY01603K
    [Google Scholar]
  59. Ajamein H. Haghighi M. On the microwave enhanced combustion synthesis of CuO–ZnO–Al2O3 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production: Effect of microwave irradiation and fuel ratio. Energy Convers. Manage. 2016 118 231 242 10.1016/j.enconman.2016.04.002
    [Google Scholar]
  60. Cox S.C. Walton R.I. Mallick K.K. Comparison of techniques for the synthesis of hydroxyapatite. Bioinspir. Biomim. Nanobiomater. 2015 4 1 37 47 10.1680/bbn.14.00010
    [Google Scholar]
  61. Kavitha M. Subramanian R. Vinoth K.S. Narayanan R. Venkatesh G. Esakkiraja N. Optimization of process parameters for solution combustion synthesis of Strontium substituted Hydroxyapatite nanocrystals using design of experiments approach. Powder Technol. 2015 271 167 181 10.1016/j.powtec.2014.10.046
    [Google Scholar]
  62. Kaygili O. Keser S. Bulut N. Ates T. Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B 2018 537 63 67 10.1016/j.physb.2018.02.007
    [Google Scholar]
  63. Batista H.A. Silva F.N. Lisboa H.M. Costa A.C.F.M. Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram. Int. 2020 46 8 11638 11646 10.1016/j.ceramint.2020.01.194
    [Google Scholar]
  64. Ealias A.M. Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application IOP Conf. Ser.: Mater. Sci. Eng 2017 263 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  65. Majerič P. Friedrich B. Rudolf R. Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone. Mater. Tehnol. 2015 49 5 791 796 10.17222/mit.2014.264
    [Google Scholar]
  66. Solero G. Synthesis of nanoparticles through flame spray pyrolysis: Experimental apparatus and preliminary results. Nanoscience Nanotechnol. 2017 7 1 21 25 10.5923/j.nn.20170701.05
    [Google Scholar]
  67. Rahemi Ardekani S. Sabour Rouh Aghdam A. Nazari M. Bayat A. Yazdani E. Saievar-Iranizad E. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter J. Anal. Appl. Pyrolysis. 2019 141 104631 10.1016/j.jaap.2019.104631
    [Google Scholar]
  68. Yokota T. Honda M. Aizawa M. Fabrication of potassium-substituted hydroxyapatite ceramics via ultrasonic spray-pyrolysis route Phosphorus Res. Bull 2017 33 35 40 10.3363/prb.33.35
    [Google Scholar]
  69. Aizawa M. Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their surface properties. Key Eng. Mater. 2012 529–530 109 113
    [Google Scholar]
  70. Hussain C.M. The use of magnetic nanoparticles in sample preparation devices and tools. Handbook of Nanomaterials in Analytical Chemistry. Elsevier 2020 75 95 10.1016/B978‑0‑12‑816699‑4.00005‑0
    [Google Scholar]
  71. Chen J. Wen Z. Zhong S. Wang Z. Wu J. Zhang Q. Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Mater. Des. 2015 87 445 449 10.1016/j.matdes.2015.08.056
    [Google Scholar]
  72. Jamil M. Silicon substituted hydroxyapatite: Preparation with Solid-State Reaction, Characterization and Dissolution Properties 2018 http://www.jmaterenvironsci.com
    [Google Scholar]
  73. Javadinejad H.R. Ebrahimi-Kahrizsangi R. Thermal and kinetic study of hydroxyapatite formation by solid‐state reaction. Int. J. Chem. Kinet. 2021 53 5 583 595 10.1002/kin.21467
    [Google Scholar]
  74. El Khouri A. Zegzouti A. Elaatmani M. Capitelli F. Bismuth-substituted hydroxyapatite ceramics synthesis: Morphological, structural, vibrational and dielectric properties. Inorg. Chem. Commun. 2019 110 107568 10.1016/j.inoche.2019.107568
    [Google Scholar]
  75. Shahatha S.H. Taha A.A. Mohammed M.A. Preparation and characterization of hydroxyapatite, titaniaporous bioceramic via polymeric sponge method. Biochem. Cell. Arch. 2020 20 1 1415 1419 10.35124/bca.2020.20.1.1415
    [Google Scholar]
  76. Nordin J.A. Prajitno D.H. Saidin S. Nur H. Hermawan H. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method. Mater. Sci. Eng. C 2015 51 294 299 10.1016/j.msec.2015.03.019 25842138
    [Google Scholar]
  77. Oliveira I.R. Andrade T.L. Araujo K.C.M.L. Luz A.P. Pandolfelli V.C. Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement. Ceram. Int. 2016 42 2 2542 2549 10.1016/j.ceramint.2015.10.056
    [Google Scholar]
  78. Fakharzadeh A. Ebrahimi-Kahrizsangi R. Nasiri-Tabrizi B. Jefrey Basirun W. Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram. Int. 2017 43 15 12588 12598 10.1016/j.ceramint.2017.06.136
    [Google Scholar]
  79. Javadinejad H.R. Saboktakin Rizi M. Aghababaei Mobarakeh E. Ebrahimian M. Thermal stability of nano-hydroxyapatite synthesized via mechanochemical treatment. Arab. J. Sci. Eng. 2017 42 10 4401 4408 10.1007/s13369‑017‑2498‑y
    [Google Scholar]
  80. Hannora A. Mostafa M.M. Synthesis of silica/hydroxyapatite nanocomposite by mechanochemical method Preprint 2021 10.21203/rs.3.rs‑566561/v1
    [Google Scholar]
  81. Ishak A.Q. Nik Ali N.A. Nurhaziqah A.M.S. Salleh H. Biocompatible Hydroxyapatite Derive from Selayang Fish Bone via Mechanochemical Treatment. Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 2020 307 339 344 10.4028/www.scientific.net/SSP.307.339
    [Google Scholar]
  82. Nikam A.V. Prasad B.L.V. Kulkarni A.A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018 20 35 5091 5107 10.1039/C8CE00487K
    [Google Scholar]
  83. Dąbrowska S. Chudoba T. Wojnarowicz J. Łojkowski W. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals 2018 8 10 379 10.3390/cryst8100379
    [Google Scholar]
  84. Qi C. Zhu Y.J. Ding G.J. Wu J. Chen F. Solvothermal synthesis of hydroxyapatite nanostructures with various morphologies using adenosine 5′-monophosphate sodium salt as an organic phosphorus source. RSC Advances 2015 5 5 3792 3798 10.1039/C4RA13151G
    [Google Scholar]
  85. Mary I.R. Sonia S. Viji S. Mangalaraj D. Viswanathan C. Ponpandian N. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism. Appl. Surf. Sci. 2016 361 25 32 10.1016/j.apsusc.2015.11.123
    [Google Scholar]
  86. Goto T. Cho S.H. Ohtsuki C. Sekino T. Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis. J. Environ. Chem. Eng. 2021 9 4 105738 10.1016/j.jece.2021.105738
    [Google Scholar]
  87. Nosrati H. Sarraf-Mamoory R. Ahmadi A.H. Canillas Perez M. Synthesis of graphene nanoribbons–hydroxyapatite nanocomposite applicable in biomedicine and theranostics. J. Nanotheranostics 2020 1 1 6 18 10.3390/jnt1010002
    [Google Scholar]
  88. Chen R. Shen J. The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants. Mater. Lett. 2020 259 126881 10.1016/j.matlet.2019.126881
    [Google Scholar]
  89. Molino G. Palmieri M.C. Montalbano G. Fiorilli S. Vitale-Brovarone C. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review. Biomed. Mater. 2020 15 2 022001 10.1088/1748‑605X/ab5f1a 31805539
    [Google Scholar]
  90. Singh G. Singh R. P. Jolly S. S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review J. Sol-Gel Sci. Technol. 2020 94 505 530 10.1007/s10971‑020‑05222‑1
    [Google Scholar]
  91. Padmanabhan V.P Microwave synthesis of hydroxyapatite encumbered with ascorbic acid intended for drug leaching studies. Mater. Res. Innov. 2019 24 3 171 178
    [Google Scholar]
  92. Tolga Demirtaş T. Kaynak G. Gümüşderelioğlu M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater. Sci. Eng. C 2015 49 713 719 10.1016/j.msec.2015.01.057
    [Google Scholar]
  93. Kumar G.S. Karunakaran G. Girija E.K. Kolesnikov E. Minh N.V. Gorshenkov M.V. Kuznetsov D. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method. Ceram. Int. 2018 44 10 11257 11264 10.1016/j.ceramint.2018.03.170
    [Google Scholar]
  94. Karunakaran G. Kumar G.S. Cho E.B. Sunwoo Y. Kolesnikov E. Kuznetsov D. Microwave-assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications. Ceram. Int. 2019 45 1 970 977 10.1016/j.ceramint.2018.09.273
    [Google Scholar]
  95. Lamkhao S. Phaya M. Jansakun C. Chandet N. Thongkorn K. Rujijanagul G. Bangrak P. Randorn C. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci. Rep. 2019 9 1 4015 10.1038/s41598‑019‑40488‑8 30850662
    [Google Scholar]
  96. Sharma A.K. Mishra R.R. Role of particle size in microwave processing of metallic material systems. Mater. Sci. Technol. 2018 34 2 123 137 10.1080/02670836.2017.1412043
    [Google Scholar]
  97. Martina K Combined Microwaves/Ultrasound, a Hybrid Technology Top Curr Chem 2017 374 79
    [Google Scholar]
  98. Hassan M. N. Mahmoud M. M. El-Fattah A. A. Kandil S. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes Ceram. Int.. 2016 42 3 3725 3744 10.1016/j.ceramint.2015.11.044
    [Google Scholar]
  99. Mohammadi E. Hierarchical and complex zno nanostructures by microwave-assisted synthesis: Morphologies, growth mechanism and classification. Crit. Rev. Solid State Mater. Sci. 2018 43 6 475 541
    [Google Scholar]
  100. Zhou H. Zhang M. Chai H. Hou S. Tan M. Wang L. Bhaduri S.B. Deng L. Microwave-assisted rapid preparation of Ca10Na(PO4)7 using sodium triphosphate as a phosphorus source. Ceram. Int. 2015 41 10 15111 15115 10.1016/j.ceramint.2015.08.082
    [Google Scholar]
  101. Genchi G. Sinicropi M. S. Lauria G. Carocci A. Catalano A. The effects of cadmium toxicity Int. J. Environ. Res. Public Health 2020 17 11 3782 10.3390/ijerph17113782
    [Google Scholar]
  102. Fernando M.S. Wimalasiri A.K.D.V.K. Dziemidowicz K. Williams G.R. Koswattage K.R. Dissanayake D.P. de Silva K.M.N. de Silva R.M. Biopolymer-based nanohydroxyapatite composites for the removal of fluoride, lead, cadmium, and arsenic from water. ACS Omega 2021 6 12 8517 8530 10.1021/acsomega.1c00316 33817513
    [Google Scholar]
  103. Karunakaran G. Cho E.B. Kumar G.S. Kolesnikov E. Janarthanan G. Pillai M.M. Rajendran S. Boobalan S. Gorshenkov M.V. Kuznetsov D. Ascorbic acid-assisted microwave synthesis of mesoporous Ag-doped hydroxyapatite nanorods from biowaste seashells for implant applications. ACS Appl. Bio Mater. 2019 2 5 2280 2293 10.1021/acsabm.9b00239 35030667
    [Google Scholar]
  104. Chandrasekar A. Sagadevan S. Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Full Length Research Paper is Int. J. Phys. Sci. Full Length Res. Pap. 2013 8 32 1639 1645 10.5897/IJPS2013.3990
    [Google Scholar]
  105. Liu G. Talley J.W. Na C. Larson S.L. Wolfe L.G. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters. Environ. Sci. Technol. 2010 44 4 1366 1372 10.1021/es9015734 20095528
    [Google Scholar]
  106. Zhong Q. Zhou Y. Tsang D.C.W. Liu J. Yang X. Yin M. Wu S. Wang J. Xiao T. Zhang Z. Cadmium isotopes as tracers in environmental studies: A review. Sci. Total Environ. 2020 736 139585 10.1016/j.scitotenv.2020.139585 32497890
    [Google Scholar]
  107. Cadmium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality 2004 Available from: https://www.google.co.in/books/edition/Guidelines_for_Drinking_water_Quality/SJ76COTm-nQC?hl=en&gbpv=1&dq=%5B100%5D%09Guidelines+for+drinking-water+quality:+fourth+edition+incorporating+the+first+addendum.+Geneva:+World+Health+Organization%3B+2017&pg=PR15&printsec=frontcover#v=onepage&q&f=false
  108. Zhang H. Reynolds M. Cadmium exposure in living organisms: A short review Sci. Total Environ. 2019 678 761 767 10.1016/j.scitotenv.2019.04.395
    [Google Scholar]
  109. Huang T. Song D. Zhou L. Tao H. Li A. Zhang S. Liu L. Non-thermal plasma irradiated polyaluminum chloride for the heterogeneous adsorption enhancement of Cs+ and Sr2+ in a binary system. J. Hazard. Mater. 2022 424 Pt B 127441 10.1016/j.jhazmat.2021.127441 34673396
    [Google Scholar]
  110. Wang M. Wu S. Guo J. Zhang X. Yang Y. Chen F. Zhu R. Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. J. Hazard. Mater. 2019 366 684 693 10.1016/j.jhazmat.2018.12.049 30580143
    [Google Scholar]
  111. Hasanuzzaman M. Majeti N.V.P. Fujita M. Environmental Hazards of Cadmium: Past, Present, and Future. Cadmium Toxicity and Tolerance in Plants. Academic Press 2019 163 183 10.1016/B978‑0‑12‑814864‑8.00007‑3
    [Google Scholar]
  112. Shen X. Gao X. Wei W. Zhang Y. Zhang Y. Ma L. Liu H. Han R. Lin J. Combined performance of hydroxyapatite adsorption and magnetic separation processes for Cd(II) removal from aqueous solution. J. Dispers. Sci. Technol. 2021 42 5 664 676 10.1080/01932691.2019.1703734
    [Google Scholar]
  113. Jaafar A. Darchen A. Hamzi S.E. Lakbaibi Z. Driouich A. Boussaoud A. Yaacoubi A. El Makhfouk M. Hachkar M. Optimization of cadmium ions biosorption by fish scale from aqueous solutions using factorial design analysis and Monte Carlo simulation studies. J. Environ. Chem. Eng. 2021 9 1 104727 10.1016/j.jece.2020.104727
    [Google Scholar]
  114. Huang Tao Cao Zhen-xing Jin Jun-xun Zhou Lulu Zhang Shu-wen Liu Long-fei Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system. J. Environ. Manage. 2021 280 111697 10.1016/j.jenvman.2020.111697
    [Google Scholar]
  115. Herawati R. A. Faisal M. Utilization of hydroxyapatite from tuna fish bone waste as adsorbent for cadmium from aqueous solutions IOP Conf. Ser.: Mater. Sci. Eng 2020 845 1 012025 10.1088/1757‑899X/845/1/012025
    [Google Scholar]
  116. Oulguidoum A. Bouyarmane H. Laghzizil A. Nunzi J.M. Saoiabi A. Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions. Colloid Interface Sci. Commun. 2019 30 100178 10.1016/j.colcom.2019.100178
    [Google Scholar]
  117. Faisal A.A.H. Ahmed D.N. Rezakazemi M. Sivarajasekar N. Sharma G. Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. J. Environ. Chem. Eng. 2021 9 3 105194 10.1016/j.jece.2021.105194
    [Google Scholar]
  118. Das K. C. Dhar S. S. Removal of cadmium(II) from aqueous solution by hydroxyapatite-encapsulated zinc ferrite (HAP/ZnFe2O4) nanocomposite: Kinetics and isotherm study Environ. Sci. Pollut. Res. Int. 2020 27 30 37977 37988
    [Google Scholar]
  119. Aouay R. Jebri S. Rebelo A. Ferreira J.M.F. Khattech I. Enhanced cadmium removal from water by hydroxyapatite subjected to different thermal treatments. J. Water Supply 2020 69 7 678 693 10.2166/aqua.2020.069
    [Google Scholar]
  120. Ngueagni P.T. Kumar P.S. Woumfo E.D. Abilarasu A. Joshiba G.J. Femina Carolin C. Prasannamedha G. Fotsing P.N. Siewe M. Effectiveness of a biogenic composite derived from cattle horn core/iron nanoparticles via wet chemical impregnation for cadmium (II) removal in aqueous solution. Chemosphere 2021 272 129806 10.1016/j.chemosphere.2021.129806 33601206
    [Google Scholar]
  121. Araujo G.S. Pavlaki M.D. Soares A.M.V.M. Abessa D.M.S. Loureiro S. Bioaccumulation and morphological traits in a multi-generation test with two Daphnia species exposed to lead. Chemosphere 2019 219 636 644 10.1016/j.chemosphere.2018.12.049 30554050
    [Google Scholar]
  122. Lead and Your Health 2021 Available from: https://niehs.nih.gov
  123. Periodic Table-Lead 2024 Available from: https://www.rsc.org/periodic-table/element/82/lead
  124. Mitra P. Sharma S. Purohit P. Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017 54 7-8 506 528 10.1080/10408363.2017.1408562 29214886
    [Google Scholar]
  125. Apte A. Bradford K. Dente C. Smith R.N. Lead toxicity from retained bullet fragments: A systematic review and meta-analysis. J. Trauma Acute Care Surg. 2019 87 3 707 716 10.1097/TA.0000000000002287 30939573
    [Google Scholar]
  126. Lead - Pb Chemical properties of lead - Health effects of lead - Environmental effects of lead 2024 Available from: https://www.lenntech.com/periodic/elements/pb.htm
  127. Lead in drinking-water background document for development of WHO guidelines for drinking-water quality 2003 Available from: https://apps.who.int/iris/bitstream/handle/10665/75370/WHO_SDE_WSH_03.04_09_eng.pdf
  128. Toxicological profile for Lead 2020 Available from: https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
  129. Harvey P.J. Handley H.K. Taylor M.P. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. Environ. Sci. Pollut. Res. Int. 2015 22 16 12276 12288 10.1007/s11356‑015‑4349‑2 25895456
    [Google Scholar]
  130. Gupta D. Chatterjee S. Walther C. Lead toxicity in plants: A review. Lead in Plants and the Environment. Cham Springer 2020 99 116 10.1007/978‑3‑030‑21638‑2_6
    [Google Scholar]
  131. Childhood Lead poisoning 2010 Available from: http://apps.who.int/iris/bitstream/handle/10665/136571/9789241500333_eng.pdf?sequence=1
  132. Kumar A. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020 17 7 2179 10.3390/ijerph17072179
    [Google Scholar]
  133. Fatima R. Tariq U. Mehmood M. Yaqub G. Childhood lead poisoning and associated health impacts- A brief review. Int. J. Environ. Agric. Biotechnol. 2016 1 3 422 425 10.22161/ijeab/1.3.18
    [Google Scholar]
  134. Kim W. Singh R. Modified oyster waste shells as a value-added sorbent for lead removal from water. Bull. Environ. Contam. Toxicol. 2022 108 3 518 525 10.1007/s00128‑021‑03133‑7 33704549
    [Google Scholar]
  135. Núñez D. Cáceres R. Ide W. Varaprasad K. Oyarzún P. An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water. Int. J. Biol. Macromol. 2020 165 Pt B 2711 2720 10.1016/j.ijbiomac.2020.10.055 33069824
    [Google Scholar]
  136. Liu W.K. Liaw B.S. Chang H.K. Wang Y.F. Chen P.Y. From waste to health: Synthesis of hydroxyapatite scaffolds from fish scales for lead ion removal. J. Miner. Met. Mater. Soc. 2017 69 4 713 718 10.1007/s11837‑017‑2270‑5
    [Google Scholar]
  137. Stevens M.G.F. Batlokwa B.S. Environmentally friendly and cheap removal of Lead (II) and Zinc (II) from wastewater with fish scales waste remains. Int. J. Chem. 2017 9 4 22 10.5539/ijc.v9n4p22
    [Google Scholar]
  138. Safatian F. Doago Z. Torabbeigi M. Rahmani Shams H. Ahadi N. Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg sells with microwave irradiation. Appl. Water Sci. 2019 9 4 108 10.1007/s13201‑019‑0979‑8
    [Google Scholar]
  139. Zhu Y. Jiang Y. Zhu Z. Deng H. Ding H. Li Y. Zhang L. Lin J. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal. J. Clean. Prod. 2018 187 650 661 10.1016/j.jclepro.2018.03.275
    [Google Scholar]
  140. Bernalte E. Kamieniak J. Randviir E.P. Bernalte-García Á. Banks C.E. The preparation of hydroxyapatite from unrefined calcite residues and its application for lead removal from aqueous solutions. RSC Advances 2019 9 7 4054 4062 10.1039/C8RA04701D 35518096
    [Google Scholar]
  141. Cheraghipour E. Pakshir M. Process optimization and modeling of Pb(II) ions adsorption on chitosan-conjugated magnetite nano-biocomposite using response surface methodology. Chemosphere 2020 260 127560 10.1016/j.chemosphere.2020.127560 32688314
    [Google Scholar]
  142. Singh R. Bhateria R. Experimental and modeling process optimization of Lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega 2020 5 19 10826 10837 10.1021/acsomega.0c00450 32455203
    [Google Scholar]
  143. Yang H. Masse S. Rouelle M. Aubry E. Li Y. Roux C. Journaux Y. Li L. Coradin T. Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal. Int. J. Environ. Sci. Technol. 2015 12 4 1173 1182 10.1007/s13762‑014‑0514‑2
    [Google Scholar]
  144. Ain Q.U. Zhang H. Yaseen M. Rasheed U. Liu K. Subhan S. Tong Z. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb(II), Cd(II), and crystal violet from aqueous solution. J. Clean. Prod. 2020 247 119088 10.1016/j.jclepro.2019.119088
    [Google Scholar]
  145. Zhuang F. Tan R. Shen W. Zhang X. Xu W. Song W. Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution. J. Alloys Compd. 2015 637 531 537 10.1016/j.jallcom.2015.02.216
    [Google Scholar]
  146. Anutrasakda W. Phasuk A. Tangku C. Effect of different CO32− to PO43− molar ratios on the properties, morphology, and Pb(II) removal performance of carbonated hydroxyapatite. J. Environ. Chem. Eng. 2021 9 1 104658 10.1016/j.jece.2020.104658
    [Google Scholar]
  147. Albert B. R. Cheetham A. K. Stuart J. A. Adams C. J. Investigations on P zeolites: Synthesis, characterisation, and structure of highly crystalline low-silica NaP Microporous Mesoporous Mater. 1998 21 1-3 133 142 10.1016/S1387‑1811(97)00059‑0
    [Google Scholar]
  148. Ahmed D. N. Faisal A. A.H. Effect of operational conditions on the removal of cadmium ions from simulated wastewater using composite sorbent Plant Arch. 2021 21 Suppliment-1 82 85 10.51470/PLANTARCHIVES.2021.v21.S1.016
    [Google Scholar]
  149. Ramdani A. Kadeche A. Adjdir M. Taleb Z. Ikhou D. Taleb S. Deratani A. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials. Water Pract. Technol. 2020 15 1 130 141 10.2166/wpt.2020.003
    [Google Scholar]
  150. Mahmoudi E. Azizkhani S. Mohammad A.W. Ng L.Y. Benamor A. Ang W.L. Ba-Abbad M. Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent. J. Environ. Sci. 2020 98 151 160 10.1016/j.jes.2020.05.013 33097147
    [Google Scholar]
  151. Googerdchian F. Moheb A. Emadi R. Lead sorption properties of nanohydroxyapatite–alginate composite adsorbents. Chem. Eng. J. 2012 200-202 471 479 10.1016/j.cej.2012.06.084
    [Google Scholar]
  152. Huang G. Wang D. Ma S. Chen J. Jiang L. Wang P. A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J. Colloid Interface Sci. 2015 445 294 302 10.1016/j.jcis.2014.12.099 25626135
    [Google Scholar]
  153. Liu G. Liao L. Dai Z. Qi Q. Wu J. Ma L.Q. Tang C. Xu J. Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions. Chem. Eng. J. 2020 395 125108 10.1016/j.cej.2020.125108
    [Google Scholar]
  154. Šolić M. Maletić S. Isakovski M.K. Nikić J. Watson M. Kónya Z. Rončević S. Removing low levels of Cd(II) and Pb(II) by adsorption on two types of oxidized multiwalled carbon nanotubes. J. Environ. Chem. Eng. 2021 9 4 105402 10.1016/j.jece.2021.105402
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461363673250311134721
Loading
/content/journals/cgc/10.2174/0122133461363673250311134721
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: lead ; wastewater treatment ; Hydroxyapatite ; ecosystem ; cadmium ; nanoscale structures
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test