Skip to content
2000
image of Synthesis, Properties and Applications of Magnetic Ionic Liquids: An Overview

Abstract

Ionic fluids, known as magnetic ionic liquids, are paramagnetic at room temperature and do not require the addition of magnetic particles. Magnetic ionic liquids (MILs) exhibit unique and configurable physicochemical properties of ionic liquids as well as a significant response to external magnetic fields. MILs, as opposed to ferrofluids, are transparent, particle-free magnetic liquids. Since their discovery, major work has been done on finding the perfect applications of MILs, and since the last decade, it has been established that MILs could replace conventional, toxic solvents and become the suitable green solvents that can be used for a wide range of analytical experiments. MILs have been used extensively in analytical procedures like catalytic reactions and sample preparation, and a large amount of discoveries have been made in their applications for a variety of extraction procedures. Along with these, MILs have been used not only in analytical procedures but also in bioanalytical and biomedical procedures. MILs are being used in biological/biomedical applications because of their non-toxicity, ability to mould themselves according to the usage and generally easy-to-handle properties. This review aims to share these biomedical applications of MILs along with describing how the synthesis of MILs occurs and the important characteristics that these MILs should have.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461359131250312062947
2025-03-21
2025-06-27
Loading full text...

Full text loading...

References

  1. Rogers R.D. Voth G.A. Ionic liquids. Acc. Chem. Res. 2007 40 11 1077 1078 10.1021/ar700221n 18020399
    [Google Scholar]
  2. Zhao H. Review: Current studies on some physical properties of ionic liquids. Phys. Chem. Liquids 2003 41 6 545 557 10.1080/003191031000117319
    [Google Scholar]
  3. Zhang S. Sun N. He X. Lu X. Zhang X. Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 2006 35 4 1475 1517 10.1063/1.2204959
    [Google Scholar]
  4. Lei Z. Chen B. Koo Y.M. MacFarlane D.R. Introduction: Ionic liquids. Chem. Rev. 2017 117 10 6633 6635 10.1021/acs.chemrev.7b00246 28535681
    [Google Scholar]
  5. Benedetto A. Room-temperature ionic liquids meet bio-membranes: the state-of-the-art. Biophys. Rev. 2017 9 4 309 320 10.1007/s12551‑017‑0279‑1 28779453
    [Google Scholar]
  6. Sowińska A. Maciejewska M. Guo L. Delebecq E. Task-specific ionic liquids with lactate anion applied to improve ZnO dispersibility in the ethylene-propylene-diene elastomer. Polymers (Basel) 2021 13 5 774 10.3390/polym13050774 33802422
    [Google Scholar]
  7. Shaplov A.S. Ponkratov D.O. Vygodskii Y.S. Poly(ionic liquid)s: Synthesis, properties, and application. Polym. Sci. Ser. B 2016 58 2 73 142 10.1134/S156009041602007X
    [Google Scholar]
  8. Wang H. Ma S. Sun Y. Gao M. Wang X. Detection of 4-nitrophenol by a naphthene carboxylic acid-based fluorescent dicationic ionic liquid in environmental waters and soils. Microchem. J. 2023 190 108720 10.1016/j.microc.2023.108720
    [Google Scholar]
  9. Clark K.D. Nacham O. Purslow J.A. Pierson S.A. Anderson J.L. Magnetic ionic liquids in analytical chemistry: A review. Anal. Chim. Acta 2016 934 9 21 10.1016/j.aca.2016.06.011 27506339
    [Google Scholar]
  10. Singh S.K. Savoy A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020 297 112038 10.1016/j.molliq.2019.112038
    [Google Scholar]
  11. Brown L.C. Hogg J.M. Swadźba-Kwaśny M. Lewis acidic ionic liquids. Top. Curr. Chem. (Cham) 2017 375 5 78 10.1007/s41061‑017‑0166‑z 28828725
    [Google Scholar]
  12. Dai X. Li J. Ma Y. Lan X. Song H. Synthesis, properties of pentaalkylguanidinium-based magnetic room temperature ionic liquids (MRTILs) and the mutual solubility of (MRTILs + cyclohexane) and (MRTILs + n-octane) binary systems. J. Mol. Liq. 2018 254 226 230 10.1016/j.molliq.2018.01.107
    [Google Scholar]
  13. Hayashi S. Hamaguchi H. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chem. Lett. 2004 33 12 1590 1591 10.1246/cl.2004.1590
    [Google Scholar]
  14. Nacham O. Clark K.D. Yu H. Anderson J.L. Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids. Chem. Mater. 2015 27 3 923 931 10.1021/cm504202v
    [Google Scholar]
  15. Pierson S.A. Nacham O. Clark K.D. Nan H. Mudryk Y. Anderson J.L. Synthesis and characterization of low viscosity hexafluoroacetylacetonate-based hydrophobic magnetic ionic liquids. New J. Chem. 2017 41 13 5498 5505 10.1039/C7NJ00206H
    [Google Scholar]
  16. Deng N. Li M. Zhao L. Lu C. de Rooy S.L. Warner I.M. Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J. Hazard. Mater. 2011 192 3 1350 1357 10.1016/j.jhazmat.2011.06.053 21783320
    [Google Scholar]
  17. Yao T. Li H. Ren Y. Feng M. Hu Y. Yan H. Peng L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech. 2022 282 120034 10.1016/j.seppur.2021.120034
    [Google Scholar]
  18. Jahromi Z. Mostafavi A. Shamspur T. Mohamadim M. Magnetic ionic liquid assisted single‐drop microextraction of ascorbic acid before its voltammetric determination. J. Sep. Sci. 2017 40 20 4041 4049 10.1002/jssc.201700664 28841257
    [Google Scholar]
  19. Chatzimitakos T.G. Anderson J.L. Stalikas C.D. Matrix solid-phase dispersion based on magnetic ionic liquids: An alternative sample preparation approach for the extraction of pesticides from vegetables. J. Chromatogr. A 2018 1581-1582 168 172 10.1016/j.chroma.2018.11.008 30424965
    [Google Scholar]
  20. Chatzimitakos T. Anagnostou P. Constantinou I. Dakidi K. Stalikas C. Magnetic ionic liquids in sample preparation: recent advances and future trends. Separations 2021 8 9 153 10.3390/separations8090153
    [Google Scholar]
  21. Bwambok D.K. Thuo M.M. Atkinson M.B.J. Mirica K.A. Shapiro N.D. Whitesides G.M. Paramagnetic ionic liquids for measurements of density using magnetic levitation. Anal. Chem. 2013 85 17 8442 8447 10.1021/ac401899u 23972068
    [Google Scholar]
  22. Elik A. Altunay N. Optimization of magnetic ionic based dispersive liquid-liquid microextraction of cadmium in water and food samples using experimental design prior to flame atomic absorption spectrophotometry. Sustain. Chem. Pharm. 2022 27 100697 10.1016/j.scp.2022.100697
    [Google Scholar]
  23. An J. Rahn K.L. Anderson J.L. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta 2017 167 268 278 10.1016/j.talanta.2017.01.079 28340720
    [Google Scholar]
  24. Mafra G. Will C. Huelsmann R. Merib J. Carasek E. A proof‐of‐concept of parallel single‐drop microextraction for the rapid and sensitive biomonitoring of pesticides in urine. J. Sep. Sci. 2021 44 9 1961 1968 10.1002/jssc.202001157 33599065
    [Google Scholar]
  25. Chatzimitakos T. Binellas C. Maidatsi K. Stalikas C. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals. Anal. Chim. Acta 2016 910 53 59 10.1016/j.aca.2016.01.015 26873468
    [Google Scholar]
  26. Wang X. Xu G. Guo X. Chen X. Duan J. Gao Z. Zheng B. Shen Q. Effervescent tablets containing magnetic ionic liquids as a non-conventional extraction and dispersive agent for speciation of arsenite and arsenate in vegetable samples. J. Mol. Liq. 2018 272 871 877 10.1016/j.molliq.2018.10.112
    [Google Scholar]
  27. Chisvert A. Benedé J.L. Anderson J.L. Pierson S.A. Salvador A. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Anal. Chim. Acta 2017 983 130 140 10.1016/j.aca.2017.06.024 28811019
    [Google Scholar]
  28. Chapman J. Ismail A.E. Dinu C.Z. Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 2018 8 6 238 10.3390/catal8060238
    [Google Scholar]
  29. Gholinejad M. Zareh F. Sheibani H. Nájera C. Yus M. Magnetic ionic liquids as catalysts in organic reactions. J. Mol. Liq. 2022 367 120395 10.1016/j.molliq.2022.120395
    [Google Scholar]
  30. Del Sesto R.E. McCleskey T.M. Burrell A.K. Baker G.A. Thompson J.D. Scott B.L. Wilkes J.S. Williams P. Structure and magnetic behavior of transition metal based ionic liquids. Chem. Commun. (Camb.) 2008 4 447 449 10.1039/B711189D 18188463
    [Google Scholar]
  31. Yao T. Yao S. Tang D. Jing L. Wang D. Song H. Synthesis, magnetism, aqueous-two phase formation and physical properties of novel guanidinium-based magnetic ionic liquids. RSC Advances 2016 6 58 52898 52904 10.1039/C6RA09879G
    [Google Scholar]
  32. Wang T. Yu W. Li T. Wang Y. Tan J. Hu B. Nie L. Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil. New J. Chem. 2019 43 48 19232 19241 10.1039/C9NJ04015C
    [Google Scholar]
  33. Wang Y. Fu X. Liu S. Yang F. Wang J. Pan Y. Lu C. Xin T. Zhang T. A new gadolinium complex with 1, 3-bis (carboxymethyl) imidazolium chloride ionic liquid: Solvothermal synthesis, structure and magnetic properties. J. Mol. Struct. 2020 1217 128340 10.1016/j.molstruc.2020.128340
    [Google Scholar]
  34. Li M. De Rooy S.L. Bwambok D.K. El-Zahab B. DiTusa J.F. Warner I.M. Magnetic chiral ionic liquids derived from amino acids. Chem. Commun. (Camb.) 2009 45 6922 6924 10.1039/b917683g 19904348
    [Google Scholar]
  35. Abbasi N.M. Zeger V.R. Biswas A. Anderson J.L. Synthesis and characterization of magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal centers and functionalized diglycolamide ligands. J. Mol. Liq. 2022 361 119530 10.1016/j.molliq.2022.119530
    [Google Scholar]
  36. Santos E. Albo J. Irabien A. Magnetic ionic liquids: synthesis, properties and applications. RSC Advances 2014 4 75 40008 40018 10.1039/C4RA05156D
    [Google Scholar]
  37. Brown P. Butts C.P. Eastoe J. Padrón Hernández E. Machado F.L.A. de Oliveira R.J. Dication magnetic ionic liquids with tuneable heteroanions. Chem. Commun. (Camb.) 2013 49 27 2765 2767 10.1039/c3cc00103b 23443740
    [Google Scholar]
  38. Farooq M.Q. Chand D. Odugbesi G.A. Varona M. Mudryk Y. Anderson J.L. Investigating the effect of ligand and cation on the properties of metal fluorinated acetylacetonate based magnetic ionic liquids. New J. Chem. 2019 43 28 11334 11341 10.1039/C9NJ02595B
    [Google Scholar]
  39. Chand D. Farooq M.Q. Pathak A.K. Li J. Smith E.A. Anderson J.L. Magnetic ionic liquids based on transition metal complexes with N -alkylimidazole ligands. New J. Chem. 2019 43 1 20 23 10.1039/C8NJ05176C
    [Google Scholar]
  40. Rosatella A.A. Siopa F. Frade R.F.M. Afonso C.A.M. New low viscous cholinium-based magnetic ionic liquids. New J. Chem. 2016 40 4 3124 3129 10.1039/C5NJ03165F
    [Google Scholar]
  41. Trujillo-Rodríguez M.J. Nacham O. Clark K.D. Pino V. Anderson J.L. Ayala J.H. Afonso A.M. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Anal. Chim. Acta 2016 934 106 113 10.1016/j.aca.2016.06.014 27506350
    [Google Scholar]
  42. Merib J. Spudeit D.A. Corazza G. Carasek E. Anderson J.L. Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection. Anal. Bioanal. Chem. 2018 410 19 4689 4699 10.1007/s00216‑017‑0823‑7 29313077
    [Google Scholar]
  43. Cao D. Xu X. Xue S. Feng X. Zhang L. An in situ derivatization combined with magnetic ionic liquid-based fast dispersive liquid-liquid microextraction for determination of biogenic amines in food samples. Talanta 2019 199 212 219 10.1016/j.talanta.2019.02.065 30952249
    [Google Scholar]
  44. Yoshida Y. Saito G. Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate(iii) anion on the physical properties of the paramagnetic ionic liquids. J. Mater. Chem. 2006 16 13 1254 10.1039/b515391c
    [Google Scholar]
  45. Zhuravlev O.E. Verolainen N.V. Voronchikhina L.I. Thermal stability of 1,3-disubstituted imidazolium tetrachloroferrates, magnetic ionic liquids. Russ. J. Appl. Chem. 2011 84 7 1158 1164 10.1134/S1070427211070068
    [Google Scholar]
  46. Tang Y. Qin B. Zhang B. Correlation between Structure and Thermal Properties of N-vinyl-3-alkylimidazolium Magnetic Ionic Liquids. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020 35 1 26 31 10.1007/s11595‑020‑2222‑8
    [Google Scholar]
  47. Wahsner J. Gale E.M. Rodríguez-Rodríguez A. Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019 119 2 957 1057 10.1021/acs.chemrev.8b00363 30350585
    [Google Scholar]
  48. Singh Gehlot P. Kumar A. Iron-Based Ionic Liquids for Magnetic Resonance Imaging Application. Industrial Applications of Ionic Liquids. London, UK IntechOpen 2023 1 107948 10.5772/intechopen.107948
    [Google Scholar]
  49. Gehlot P.S. Gupta H. Rathore M.S. Khatri K. Kumar A. Intrinsic MRI contrast from amino acid-based paramagnetic ionic liquids. Mater. Adv. 2020 1 6 1980 1987 10.1039/D0MA00339E
    [Google Scholar]
  50. Avasthi A. Caro C. Pozo-Torres E. Leal M.P. García-Martín M.L. Magnetic nanoparticles as MRI contrast agents. Top. Curr. Chem. (Cham) 2020 378 3 40 10.1007/s41061‑020‑00302‑w 32382832
    [Google Scholar]
  51. Yu X. Yuan X. Huang Z. Zhang W. Huang F. Ren L. Dual-mode fluorescence and magnetic resonance imaging by perylene diimide-based Gd-containing magnetic ionic liquids. ACS Biomater. Sci. Eng. 2020 6 11 6405 6414 10.1021/acsbiomaterials.0c01076 33449639
    [Google Scholar]
  52. Daniel C.I. Vaca Chávez F. Portugal C.A.M. Crespo J.G. Sebastião P.J. 1 H NMR relaxation study of a magnetic ionic liquid as a potential contrast agent. J. Phys. Chem. B 2015 119 35 11740 11747 10.1021/acs.jpcb.5b04772 26252801
    [Google Scholar]
  53. Santos E. Albo J. Rosatella A. Afonso C.A.M. Irabien Á. Synthesis and characterization of Magnetic Ionic Liquids (MILs) for CO2 separation. J. Chem. Technol. Biotechnol. 2014 89 6 866 871 10.1002/jctb.4323
    [Google Scholar]
  54. Fiorentini E.F. Canizo B.V. Wuilloud R.G. Determination of As in honey samples by magnetic ionic liquid-based dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Talanta 2019 198 146 153 10.1016/j.talanta.2019.01.091 30876542
    [Google Scholar]
  55. Zhu K. Wei Q. Liu K. Li H. Ren X. Design and combination of magnetic ionic liquids and hydrophobic deep eutectic solvents for safer extraction of titanium: physicochemical properties and toxicity studies. Green Chem. 2022 24 19 7481 7491 10.1039/D2GC01874H
    [Google Scholar]
  56. Kreuter J. Bica-Schröder K. Pálvölgyi Á.M. Krska R. Sommer R. Farnleitner A.H. Kolm C. Reischer G.H. A novel ionic liquid-based approach for DNA and RNA extraction simplifies sample preparation for bacterial diagnostics. Anal. Bioanal. Chem. 2024 416 29 7109 7120 10.1007/s00216‑024‑05615‑z 39516288
    [Google Scholar]
  57. Zhu C. Varona M. Anderson J.L. Magnetic ionic liquids as solvents for RNA extraction and preservation. ACS Omega 2020 5 19 11151 11159 10.1021/acsomega.0c01098 32455238
    [Google Scholar]
  58. Figueiredo N.M. Voroshylova I.V. Ferreira E.S.C. Marques J.M.C. Cordeiro M.N.D.S. Magnetic ionic liquids: current achievements and future perspectives with a focus on computational approaches. Chem. Rev. 2024 124 6 3392 3415 10.1021/acs.chemrev.3c00678 38466339
    [Google Scholar]
  59. Rykowska I. Nowak I. Wasiak W. Selected Microextraction Techniques Using Ionic Liquids in the Study of Biologically Active Compounds. Handbook of Bioanalytics. Cham Springer International Publishing 2022 957 973 10.1007/978‑3‑030‑95660‑8_45
    [Google Scholar]
  60. Marengo A. Cagliero C. Sgorbini B. Anderson J.L. Emaus M.N. Bicchi C. Bertea C.M. Rubiolo P. Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids. Plant Methods 2019 15 1 23 10.1186/s13007‑019‑0408‑x 30899320
    [Google Scholar]
  61. Clark K.D. Nacham O. Yu H. Li T. Yamsek M.M. Ronning D.R. Anderson J.L. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal. Chem. 2015 87 3 1552 1559 10.1021/ac504260t 25582771
    [Google Scholar]
  62. Emaus M.N. Anderson J.L. Simultaneous cell lysis and DNA extraction from whole blood using magnetic ionic liquids. Anal. Bioanal. Chem. 2020 412 29 8039 8049 10.1007/s00216‑020‑02941‑w 32918171
    [Google Scholar]
  63. Bowers A.N. Trujillo-Rodríguez M.J. Farooq M.Q. Anderson J.L. Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 2019 411 28 7375 7385 10.1007/s00216‑019‑02163‑9 31655857
    [Google Scholar]
  64. Emaus M.N. Clark K.D. Hinners P. Anderson J.L. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal. Bioanal. Chem. 2018 410 17 4135 4144 10.1007/s00216‑018‑1092‑9 29704032
    [Google Scholar]
  65. Clark K.D. Sorensen M. Nacham O. Anderson J.L. Preservation of DNA in nuclease-rich samples using magnetic ionic liquids. RSC Advances 2016 6 46 39846 39851 10.1039/C6RA05932E
    [Google Scholar]
  66. Ferreira Neto L.C. Alves M.S. Prichula J. Agnes G. de Oliveira T.F. Trentin D. Merib J. An affordable and semiautomated approach as a novel strategy for the extraction of DNA using magnetic ionic liquids followed by real time-polymerase chain reaction. Anal. Methods 2023 15 30 3752 3757 10.1039/D3AY00751K 37475605
    [Google Scholar]
  67. Clark K.D. Yamsek M.M. Nacham O. Anderson J.L. Magnetic ionic liquids as PCR-compatible solvents for DNA extraction from biological samples. Chem. Commun. (Camb.) 2015 51 94 16771 16773 10.1039/C5CC07253K 26434366
    [Google Scholar]
  68. Wang X. Liu M. Ding X. Guanidinium Hydrophobic Magnetic Ionic Liquid-Based Dispersive Droplet Extraction for the Selective Extraction of DNA. Langmuir 2021 37 40 11665 11675 10.1021/acs.langmuir.1c01567 34581577
    [Google Scholar]
  69. Emaus M.N. Zhu C. Anderson J.L. Selective hybridization and capture of KRAS DNA from plasma and blood using ion-tagged oligonucleotide probes coupled to magnetic ionic liquids. Anal. Chim. Acta 2020 1094 1 10 10.1016/j.aca.2019.10.057 31761034
    [Google Scholar]
  70. Ding X. Clark K.D. Varona M. Emaus M.N. Anderson J.L. Magnetic ionic liquid-enhanced isothermal nucleic acid amplification and its application to rapid visual DNA analysis. Anal. Chim. Acta 2019 1045 132 140 10.1016/j.aca.2018.09.014 30454568
    [Google Scholar]
  71. Wang D. Farhana A. Biochemistry, RNA Structure. StatPearls Treasure Island (FL) StatPearls Publishing 2023 1 6 32644425
    [Google Scholar]
  72. Mushtaq S. Tayyeb A. Firdaus-e-Bareen A comparison of total RNA extraction methods for RT-PCR based differential expression of genes from Trichoderma atrobrunneum. J. Microbiol. Methods 2022 200 106535 10.1016/j.mimet.2022.106535 35798135
    [Google Scholar]
  73. Emaus M.N. Anderson J.L. Magnetic ionic liquids as microRNA extraction solvents and additives for the exponential amplification reaction. Anal. Chim. Acta 2021 1181 338900 10.1016/j.aca.2021.338900 34556230
    [Google Scholar]
  74. Ma Y. Chen Y. Peng F. Ding X. Phenylpropyl guanidinium magnetic ionic liquid for green and selective extraction of RNA. Langmuir 2022 38 42 12833 12840 10.1021/acs.langmuir.2c01763 36245232
    [Google Scholar]
  75. Xing Y. Meng B. Chen Q. Cyclodextrin-containing drug delivery systems and their applications in neurodegenerative disorders. Int. J. Mol. Sci. 2024 25 19 10834 10.3390/ijms251910834 39409162
    [Google Scholar]
  76. Mitra D. Microemulsion and its application: An inside story. Mater Today Proc 2023 83 75 82 10.1016/j.matpr.2023.01.149
    [Google Scholar]
  77. Dai X. Qiang X. Gao J. Teng J. Zang H. Song H. Phase behaviors and characterization of magnetic microemulsions containing pentaalkylguanidinium-based magnetic room-temperature ionic liquids (MRTILs). New J. Chem. 2018 42 11 8783 8790 10.1039/C8NJ01049H
    [Google Scholar]
  78. Suhail N. Alzahrani A.K. Basha W.J. Kizilbash N. Zaidi A. Ambreen J. Khachfe H.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Front. Nanotechnol. 2021 3 754889 10.3389/fnano.2021.754889
    [Google Scholar]
  79. Li L. Qu J. Liu W. Peng B. Cong S. Yu H. Zhang B. Li Y. Advancements in characterization techniques for microemulsions: from molecular insights to macroscopic phenomena. Molecules 2024 29 12 2901 10.3390/molecules29122901 38930964
    [Google Scholar]
  80. Egito E.S.T. Amaral-Machado L. Alencar E.N. Oliveira A.G. Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv. Transl. Res. 2021 11 5 2108 2133 10.1007/s13346‑020‑00872‑8 33164165
    [Google Scholar]
  81. Klier J. Tucker C.J. Kalantar T.H. Green D.P. Properties and applications of microemulsions. Adv. Mater. 2000 12 23 1751 1757 10.1002/1521‑4095(200012)12:23<1751::AID‑ADMA1751>3.0.CO;2‑I
    [Google Scholar]
  82. Ait-Touchente Z. Zine N. Jaffrezic-Renault N. Errachid A. Lebaz N. Fessi H. Elaissari A. Exploring the versatility of microemulsions in cutaneous drug delivery: opportunities and challenges. Nanomaterials (Basel) 2023 13 10 1688 10.3390/nano13101688 37242104
    [Google Scholar]
  83. Xiong Y. Mi B.B. Shahbazi M.A. Xia T. Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil. Med. Res. 2024 11 1 69 10.1186/s40779‑024‑00573‑0 39434177
    [Google Scholar]
  84. Sivakumar M. Muthu Y. Elumalai K. Advancements in drug delivery systems: a focus on microsphere-based targeted delivery. Biomed. Mater. Devices 2024 6 00245 10.1007/s44174‑024‑00245‑6
    [Google Scholar]
  85. Klee A. Prevost S. Kunz W. Schweins R. Kiefer K. Gradzielski M. Magnetic microemulsions based on magnetic ionic liquids. Phys. Chem. Chem. Phys. 2012 14 44 15355 15360 10.1039/c2cp43048g 23060241
    [Google Scholar]
  86. Klee A. Prevost S. Gasser U. Gradzielski M. Understanding and optimizing microemulsions with magnetic room temperature ionic liquids (MRTILs). J. Phys. Chem. B. 2015 119 10 4133 4142 10.1021/jp512545c 25679318
    [Google Scholar]
  87. Dai X. Qiang X. Yao T. Chen P. Magnetic microemulsions stabilized by alkyltrimethylammonium-based magnetic ionic liquids surfactants (MILSs). J. Phys. Chem. B 2021 125 7 1846 1851 10.1021/acs.jpcb.0c09305 33570956
    [Google Scholar]
  88. de la Fuente-Nunez C. Brown P. Torres M.D.T. Cao J. Lu T.K. Magnetic surfactant ionic liquids and polymers with tetrahaloferrate (III) anions as antimicrobial agents with low cytotoxicity. Coll. Interf. Sci. Commun. 2018 22 11 13 10.1016/j.colcom.2017.11.002
    [Google Scholar]
  89. Tulsiyan K.D. Mahalik A. Dandekar B.R. Mondal J. Biswal H.S. Enhancement of peroxidase activity in magnetic ionic liquids. ACS Sustain. Chem. Eng. 2023 11 23 8487 8494 10.1021/acssuschemeng.3c00740
    [Google Scholar]
  90. Kulshrestha A. Gehlot P.S. Kumar A. Magnetic proline-based ionic liquid surfactant as a nano-carrier for hydrophobic drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2020 8 15 3050 3057 10.1039/D0TB00176G 32196055
    [Google Scholar]
  91. Kulshrestha A. Sharma S. Singh K. Kumar A. Magnetoresponsive biocomposite hydrogels comprising gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery. Mater. Adv. 2022 3 1 484 492 10.1039/D1MA00758K
    [Google Scholar]
  92. Tang L. Xiao Q. Mei Y. He S. Zhang Z. Wang R. Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J. Nanobiotechnology 2021 19 1 423 10.1186/s12951‑021‑01174‑y 34915901
    [Google Scholar]
  93. Fernandes L. Meira R. Correia D. Ribeiro C. Fernandez E. Tubio C. Lanceros-Méndez S. Electrospun magnetic ionic liquid based electroactive materials for tissue engineering applications. Nanomaterials (Basel) 2022 12 17 3072 10.3390/nano12173072 36080109
    [Google Scholar]
  94. BelBruno J.J. Molecularly imprinted polymers. Chem. Rev. 2019 119 1 94 119 10.1021/acs.chemrev.8b00171 30246529
    [Google Scholar]
  95. Xu W. Dai Q. Wang Y. Hu X. Xu P. Ni R. Meng J. Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme. RSC Advances 2018 8 39 21850 21856 10.1039/C8RA03818J 35541737
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461359131250312062947
Loading
/content/journals/cgc/10.2174/0122133461359131250312062947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test