Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The concept of bioelectricity has been known for over half a century. Its modern application in the form of a battery or fuel cell utilizing microbes and degradable organic molecules opens up a new domain of energy production in the form of Microbial fuel cells (MFC). This technology not only supports the sustainable development goals by being green and but also facilitates the utilization of a wide range of biosubstrates, leading to coupled applications like wastewater treatment, desalination, . The development of viable models of MFC and their possible scale-up for use is a major focus of the researchers as the global energy crisis increases and the search for alternatives widens. The construction, configuration, electrodes, electrolytes, and microorganisms used play a very relevant role in determining the performance, longevity, and utility of MFC. Furthermore, exploration of the underlying biochemical mechanisms and influence of MFC components on it leading to variabilities in coulombic efficiencies and power output are key areas underlying its development. This review attempts to present a cohesive summary of important achievements in the development of MFC research attempted globally.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461349973241119105835
2025-01-03
2025-06-23
Loading full text...

Full text loading...

References

  1. AcarC. DincerI. Hydrogen production.Comprehensive Energy Systems.CanadaElsevier201814010.1016/B978‑0‑12‑809597‑3.00304‑7
    [Google Scholar]
  2. SazaliN. Wan SallehW.N. JamaludinA.S. Mhd RazaliM.N. New perspectives on fuel cell technology: A brief review.Membranes (Basel)20201059910.3390/membranes10050099 32414160
    [Google Scholar]
  3. DwivediK.A. HuangS.J. WangC.T. KumarS. Fundamental understanding of microbial fuel cell technology: Recent development and challenges.Chemosphere2022288Pt 213244610.1016/j.chemosphere.2021.132446 34653488
    [Google Scholar]
  4. AbdelkareemM.A. ElsaidK. WilberforceT. KamilM. SayedE.T. OlabiA. Environmental aspects of fuel cells: A review.Sci. Total Environ.202175214180310.1016/j.scitotenv.2020.141803 32889267
    [Google Scholar]
  5. RahimnejadM. NajafpourG.D. GhoreyshiA.A. TalebniaF. PremierG.C. BakeriG. KimJ.R. OhS.E. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture.J. Microbiol.201250457558010.1007/s12275‑012‑2135‑0 22923104
    [Google Scholar]
  6. MaddalwarS. Kumar NayakK. KumarM. SinghL. Plant microbial fuel cell: Opportunities, challenges, and prospects.Bioresour. Technol.202134112577210.1016/j.biortech.2021.125772 34411941
    [Google Scholar]
  7. MandleyS.J. DaioglouV. JungingerH.M. van VuurenD.P. WickeB. EU bioenergy development to 2050.Renew. Sustain. Energy Rev.202012710985810.1016/j.rser.2020.109858
    [Google Scholar]
  8. PotterM.C. Electrical effects accompanying the decomposition of organic compounds.Proc. R. Soc. Lond.191184571260276
    [Google Scholar]
  9. SongH.L. ZhuY. LiJ. Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells – A mini review.Arab. J. Chem.20191282236224310.1016/j.arabjc.2015.01.008
    [Google Scholar]
  10. CohenB. Thirty‐second annual meeting of the society of american bacteriologists.J. Bacteriol.1931911
    [Google Scholar]
  11. KarubeI. MatsunagaT. TsuruS. SuzukiS. Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum.Biotechnol. Bioeng.197719111727173310.1002/bit.260191112
    [Google Scholar]
  12. BennettoH.P. StirlingJ.L. TanakaK. VegaC.A. Anodic reactions in microbial fuel cells.Biotechnol. Bioeng.198325255956810.1002/bit.260250219 18548670
    [Google Scholar]
  13. HeZ. AngenentL.T. Application of bacterial biocathodes in microbial fuel cells.Electroanalysis20061819-202009201510.1002/elan.200603628
    [Google Scholar]
  14. SantoroC. AbadF.B. SerovA. KodaliM. HoweK.J. SoaviF. AtanassovP. Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content.Appl. Energy2017208253610.1016/j.apenergy.2017.10.056 29302130
    [Google Scholar]
  15. RahimnejadM. GhoreyshiA.A. NajafpourG. JafaryT. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations.Appl. Energy201188113999400410.1016/j.apenergy.2011.04.017
    [Google Scholar]
  16. TardastA. RahimnejadM. NajafpourG. GhoreyshiA.A. ZareH. Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator.Int. J. Energy Environ. Eng.2012315
    [Google Scholar]
  17. PalanisamyG. JungH.Y. SadhasivamT. KurkuriM.D. KimS.C. RohS.H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes.J. Clean. Prod.201922159862110.1016/j.jclepro.2019.02.172
    [Google Scholar]
  18. RabaeyK. VerstraeteW. Microbial fuel cells: Novel biotechnology for energy generation.Trends Biotechnol.200523629129810.1016/j.tibtech.2005.04.008 15922081
    [Google Scholar]
  19. RenH. LeeH.S. ChaeJ. Miniaturizing microbial fuel cells for potential portable power sources: Promises and challenges.Microfluid. Nanofluidics201213335338110.1007/s10404‑012‑0986‑7
    [Google Scholar]
  20. ShahC.K. YagnikB.N. Bioelectricity production using microbial fuel cell.Res. J. Biotechnol.2013838490
    [Google Scholar]
  21. GajdaI. GreenmanJ. IeropoulosI.A. Recent advancements in real-world microbial fuel cell applications.Curr. Opin. Electrochem.201811788310.1016/j.coelec.2018.09.006 31417973
    [Google Scholar]
  22. Calabrese BartonS. GallawayJ. AtanassovP. Enzymatic biofuel cells for implantable and microscale devices.Chem. Rev.2004104104867488610.1021/cr020719k 15669171
    [Google Scholar]
  23. FalkM. Narváez VillarrubiaC.W. BabanovaS. AtanassovP. ShleevS. Biofuel cells for biomedical applications: Colonizing the animal kingdom.ChemPhysChem201314102045205810.1002/cphc.201300044 23460490
    [Google Scholar]
  24. BandodkarA.J. WangJ. Wearable biofuel cells: A review.Electroanalysis20162861188120010.1002/elan.201600019
    [Google Scholar]
  25. SantoroC. BabanovaS. ErableB. SchulerA. AtanassovP. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.Bioelectrochemistry20161081710.1016/j.bioelechem.2015.10.005 26544631
    [Google Scholar]
  26. ManoN. MaoF. HellerA. HellerA. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant.J. Am. Chem. Soc.2003125216588659410.1021/ja0346328 12785800
    [Google Scholar]
  27. JadhavD.A. Carmona-MartínezA.A. ChendakeA.D. PanditS. PantD. Modeling and optimization strategies towards performance enhancement of microbial fuel cells.Bioresour. Technol.2021320Pt A12425610.1016/j.biortech.2020.124256 33120058
    [Google Scholar]
  28. YangW. WangX. RossiR. LoganB.E. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells.Chem. Eng. J.202038012252210.1016/j.cej.2019.122522
    [Google Scholar]
  29. DasS. MangwaniN. Recent developments in microbial fuel cells: A review.J. Sci. Ind. Res. (India)20106910727731
    [Google Scholar]
  30. LoganB.E. ReganJ.M. Microbial fuel cells - Challenges and applications.Environ. Sci. Technol.200640175172518010.1021/es0627592 16999086
    [Google Scholar]
  31. YaqoobA.A. IbrahimM.N.M. Guerrero-BarajasC. Modern trend of anodes in microbial fuel cells (MFCs): An overview.Environ. Technol. Innov.20212310157910.1016/j.eti.2021.101579
    [Google Scholar]
  32. LoganB.E. WallackM.J. KimK.Y. HeW. FengY. SaikalyP.E. Assessment of microbial fuel cell configurations and power densities.Environ. Sci. Technol. Lett.20152820621410.1021/acs.estlett.5b00180
    [Google Scholar]
  33. TharaliA.D. SainN. OsborneW.J. Microbial fuel cells in bioelectricity production.Front. Life Sci.20169425226610.1080/21553769.2016.1230787
    [Google Scholar]
  34. KadierA. SimayiY. AbdeshahianP. AzmanN.F. ChandrasekharK. KalilM.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production.Alex. Eng. J.201655142744310.1016/j.aej.2015.10.008
    [Google Scholar]
  35. NandyA. KunduP.P. Configurations of microbial fuel cells.Progress and Recent Trends in Microbial Fuel Cells. DuttaK. KunduP.P. Amsterdam, The NetherlandsElsevier201846410.1016/B978‑0‑444‑64017‑8.00003‑8
    [Google Scholar]
  36. KabuteyF.T. ZhaoQ. WeiL. DingJ. AntwiP. QuashieF.K. WangW. An overview of plant microbial fuel cells (PMFCs): Configurations and applications.Renew. Sustain. Energy Rev.201911040241410.1016/j.rser.2019.05.016
    [Google Scholar]
  37. KimI.S. ChaeK.J. ChoiM.J. VerstraeteW. Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation.Environ. Eng. Res.2008132516510.4491/eer.2008.13.2.051
    [Google Scholar]
  38. LiuH. LoganB.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.Environ. Sci. Technol.200438144040404610.1021/es0499344 15298217
    [Google Scholar]
  39. KimJ. JungS. ReganJ. LoganB. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.Bioresour. Technol.200798132568257710.1016/j.biortech.2006.09.036 17097875
    [Google Scholar]
  40. JangJ. ChangI. KimB.H. Improvement of cathode reaction of a mediatorless microbial fuel cell.J. Microbiol. Biotechnol.2004142324329
    [Google Scholar]
  41. ClauwaertP. van der HaD. BoonN. VerbekenK. VerhaegeM. RabaeyK. VerstraeteW. Open air biocathode enables effective electricity generation with microbial fuel cells.Environ. Sci. Technol.200741217564756910.1021/es0709831 18044542
    [Google Scholar]
  42. AeltermanP. RabaeyK. PhamH.T. BoonN. VerstraeteW. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.Environ. Sci. Technol.200640103388339410.1021/es0525511 16749711
    [Google Scholar]
  43. ZhuH. NiuT. ShutesB. WangX. HeC. HouS. Integration of MFC reduces CH4, N2O and NH3 emissions in batch-fed wetland systems.Water Res.202222611922610.1016/j.watres.2022.119226 36257155
    [Google Scholar]
  44. LiuH. RamnarayananR. LoganB.E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.Environ. Sci. Technol.20043872281228510.1021/es034923g 15112835
    [Google Scholar]
  45. AjayiF.F. WeigeleP.R. A terracotta bio-battery.Bioresour. Technol.2012116869110.1016/j.biortech.2012.04.019 22609660
    [Google Scholar]
  46. LiuL. ChoiS. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria.J. Power Sources201734813814410.1016/j.jpowsour.2017.03.014
    [Google Scholar]
  47. ZhuangL. ZhengY. ZhouS. YuanY. YuanH. ChenY. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.Bioresour. Technol.2012106828810.1016/j.biortech.2011.11.019 22197329
    [Google Scholar]
  48. OliotM. EtcheverryL. MosdaleA. BasseguyR. DéliaM.L. BergelA. Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance.J. Power Sources201735638939910.1016/j.jpowsour.2017.03.016
    [Google Scholar]
  49. IeropoulosI.A. StinchcombeA. GajdaI. ForbesS. Merino-JimenezI. PasternakG. Sanchez-HerranzD. GreenmanJ. Pee power urinal – microbial fuel cell technology field trials in the context of sanitation.Environ. Sci. Water Res. Technol.20162233634310.1039/C5EW00270B
    [Google Scholar]
  50. GajdaI. GreenmanJ. MelhuishC. SantoroC. LiB. CristianiP. IeropoulosI. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.Water Res.20158610811510.1016/j.watres.2015.08.014 26343045
    [Google Scholar]
  51. GajdaI. GreenmanJ. MelhuishC. IeropoulosI. Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs.Bioelectrochemistry2015104586410.1016/j.bioelechem.2015.03.001 25854995
    [Google Scholar]
  52. GajdaI. GreenmanJ. MelhuishC. IeropoulosI.A. Electricity and disinfectant production from wastewater: Microbial fuel cell as a self-powered electrolyser.Sci. Rep.2016612557110.1038/srep25571 27172836
    [Google Scholar]
  53. WinfieldJ. IeropoulosI. GreenmanJ. Investigating a cascade of seven hydraulically connected microbial fuel cells.Bioresour. Technol.201211024525010.1016/j.biortech.2012.01.095 22349196
    [Google Scholar]
  54. IeropoulosI.A. LedezmaP. StinchcombeA. PapaharalabosG. MelhuishC. GreenmanJ. Waste to real energy: The first MFC powered mobile phone.Phys. Chem. Chem. Phys.20131537153121531610.1039/c3cp52889h 23939246
    [Google Scholar]
  55. LedezmaP. GreenmanJ. IeropoulosI. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions.Bioresour. Technol.201313415816510.1016/j.biortech.2013.01.119 23500573
    [Google Scholar]
  56. WalterX.A. GajdaI. ForbesS. WinfieldJ. GreenmanJ. IeropoulosI. Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.Biotechnol. Biofuels2016919310.1186/s13068‑016‑0504‑3 27168763
    [Google Scholar]
  57. AbbasS.Z. RafatullahM. IsmailN. SyakirM.I. A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: Mechanisms and future prospective.Int. J. Energy Res.20174191242126410.1002/er.3706
    [Google Scholar]
  58. BaudlerA. SchmidtI. LangnerM. GreinerA. SchröderU. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems.Energy Environ. Sci.2015872048205510.1039/C5EE00866B
    [Google Scholar]
  59. ZhaoF. HarnischF. SchröderU. ScholzF. BogdanoffP. HerrmannI. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells.Electrochem. Commun.20057121405141010.1016/j.elecom.2005.09.032
    [Google Scholar]
  60. Ben LiewK. DaudW.R.W. GhasemiM. LeongJ.X. Su LimS. IsmailM. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review.Int. J. Hydrogen Energy201439104870488310.1016/j.ijhydene.2014.01.062
    [Google Scholar]
  61. ZhangE. CaiY. LuoY. PiaoZ. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.Can. J. Microbiol.2014601175375910.1139/cjm‑2014‑0389 25345758
    [Google Scholar]
  62. FanY. HanS.K. LiuH. Improved performance of CEA microbial fuel cells with increased reactor size.Energy Environ. Sci.2012588273828010.1039/c2ee21964f
    [Google Scholar]
  63. NeethuB. BhowmickG.D. GhangrekarM.M. Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon.Process Saf. Environ. Prot.202014328529210.1016/j.psep.2020.06.043
    [Google Scholar]
  64. SivasankarV. MylsamyP. OmineK. Microbial Fuel Cell Technology for Bioelectricity.ChamSpringer201810.1007/978‑3‑319‑92904‑0
    [Google Scholar]
  65. ZengY. ZhangH. WangZ. JiaJ. MiaoS. SongW. XiaoY. YuH. ShaoZ. YiB. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells.J. Mater. Chem. A Mater. Energy Sustain.20186156521653310.1039/C7TA10901F
    [Google Scholar]
  66. TangH. CaoT. WangA. LiangX. SalleyS.O. McAllisterJ.P. NgK.Y.S. Effect of surface modification of siliconeon Staphylococcus epidermidis adhesion and colonization.J. Biomed. Mater. Res. A200780A488589410.1002/jbm.a.30952 17072853
    [Google Scholar]
  67. NiessenJ. SchröderU. ScholzF. Exploiting complex carbohydrates for microbial electricity generation? A bacterial fuel cell operating on starch.Electrochem. Commun.20046995595810.1016/j.elecom.2004.07.010
    [Google Scholar]
  68. QiaoY. LiC.M. BaoS.J. BaoQ.L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells.J. Power Sources20071701798410.1016/j.jpowsour.2007.03.048
    [Google Scholar]
  69. WatanabeK. Recent developments in microbial fuel cell technologies for sustainable bioenergy.J. Biosci. Bioeng.2008106652853610.1263/jbb.106.528 19134546
    [Google Scholar]
  70. BurkittR. WhiffenT.R. YuE.H. Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications.Appl. Catal. B201618127928810.1016/j.apcatb.2015.07.010
    [Google Scholar]
  71. YangW. ChenS. Biomass-derived carbon for electrode fabrication in microbial fuel cells: A review.Ind. Eng. Chem. Res.202059146391640410.1021/acs.iecr.0c00041
    [Google Scholar]
  72. ZhangT. ZengY. ChenS. AiX. YangH. Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes.Electrochem. Commun.20079334935310.1016/j.elecom.2006.09.025
    [Google Scholar]
  73. ZhangX. ChengS. HuangX. LoganB.E. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells.Energy Environ. Sci.20103565966410.1039/b927151a
    [Google Scholar]
  74. MilnerE.M. PopescuD. CurtisT. HeadI.M. ScottK. YuE.H. Microbial fuel cells with highly active aerobic biocathodes.J. Power Sources201632481610.1016/j.jpowsour.2016.05.055
    [Google Scholar]
  75. Rismani-YazdiH. CarverS.M. ChristyA.D. TuovinenO.H. Cathodic limitations in microbial fuel cells: An overview.J. Power Sources2008180268369410.1016/j.jpowsour.2008.02.074
    [Google Scholar]
  76. ZhouM. YangJ. WangH. JinT. HassettD.J. GuT. Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy.Bioenergy Research: Advances and Applications.Elsevier201413115210.1016/B978‑0‑444‑59561‑4.00009‑7
    [Google Scholar]
  77. YadavG. SharmaI. GhangrekarM. SenR. A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell.J. Power Sources202044922756010.1016/j.jpowsour.2019.227560
    [Google Scholar]
  78. PantD. Van BogaertG. DielsL. VanbroekhovenK. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.Bioresour. Technol.201010161533154310.1016/j.biortech.2009.10.017 19892549
    [Google Scholar]
  79. BlanchetE. PécastaingsS. ErableB. RoquesC. BergelA. Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes.Bioresour. Technol.201417322423010.1016/j.biortech.2014.09.076 25305652
    [Google Scholar]
  80. PandeyP. ShindeV.N. DeopurkarR.L. KaleS.P. PatilS.A. PantD. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery.Appl. Energy201616870672310.1016/j.apenergy.2016.01.056
    [Google Scholar]
  81. LewisK. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells.Bacteriol. Rev.196630110111310.1128/br.30.1.101‑113.1966
    [Google Scholar]
  82. BondD.R. LovleyD.R. Electricity production by Geobacter sulfurreducens attached to electrodes.Appl. Environ. Microbiol.20036931548155510.1128/AEM.69.3.1548‑1555.2003 12620842
    [Google Scholar]
  83. ParotS. DéliaM.L. BergelA. Acetate to enhance electrochemical activity of biofilms from garden compost.Electrochim. Acta20085362737274210.1016/j.electacta.2007.10.059
    [Google Scholar]
  84. ChaeK.J. ChoiM.J. LeeJ.W. KimK.Y. KimI.S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.Bioresour. Technol.2009100143518352510.1016/j.biortech.2009.02.065 19345574
    [Google Scholar]
  85. LimS.S. FontmorinJ.M. PhamH.T. MilnerE. AbdulP.M. ScottK. HeadI. YuE.H. Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction.Sci. Total Environ.202177614593410.1016/j.scitotenv.2021.145934 33647656
    [Google Scholar]
  86. PrasadG. PandaS. Microbial fuel cells: Types of MFC and different source of substrate.Int. J. Latest Technol. Eng. Man. Appl. Sci.201875158165
    [Google Scholar]
  87. LuY. FengK. WuC. ZhangL. HuJ. LuY. ZhangS. ChenJ. ZhaoJ. Co-substrate-assisted dimethyl sulfide degradation and electricity generation in a microbial fuel cell.Energy Fuels202236151452010.1021/acs.energyfuels.1c03043
    [Google Scholar]
  88. ZhangJ. ChenZ. LiuC. LiJ. AnX. WuD. SunX. ZhangB. FuL. LiF. SongH. Construction of an acetate metabolic pathway to enhance electron generation of engineered Shewanellaoneidensis.Front. Bioeng. Biotechnol.2021975795310.3389/fbioe.2021.757953 34869266
    [Google Scholar]
  89. QiuS. WangL. ZhangY. YuY. Microbial fuel cell-based biosensor for simultaneous test of sodium acetate and glucose in a mixed solution.Int. J. Environ. Res. Public Health202219191229710.3390/ijerph191912297 36231599
    [Google Scholar]
  90. CozannetM. Le GuellecS. AlainK. A variety of substrates for methanogenesis.Case Stud. Chem. Environ. Eng.2023810053310.1016/j.cscee.2023.100533
    [Google Scholar]
  91. ThygesenA. PoulsenF.W. MinB. AngelidakiI. ThomsenA.B. The effect of different substrates and humic acid on power generation in microbial fuel cell operation.Bioresour. Technol.200910031186119110.1016/j.biortech.2008.07.067 18815026
    [Google Scholar]
  92. HassanS.H.A. KimY.S. OhS.E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell.Enzyme Microb. Technol.201251526927310.1016/j.enzmictec.2012.07.008 22975124
    [Google Scholar]
  93. LoganB.E. Exoelectrogenic bacteria that power microbial fuel cells.Nat. Rev. Microbiol.20097537538110.1038/nrmicro2113 19330018
    [Google Scholar]
  94. AhmadF. AtiyehM.N. PereiraB. StephanopoulosG.N. A review of cellulosic microbial fuel cells: Performance and challenges.Biomass Bioenergy201315617918810.1016/j.biombioe.2013.04.006
    [Google Scholar]
  95. DengL. ZhouM. LiuC. LiuL. LiuC. DongS. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.Talanta2010811-244444810.1016/j.talanta.2009.12.022 20188944
    [Google Scholar]
  96. IeropoulosI. GreenmanJ. The future role of MFCs in biomass energy.Front. Energy Res.202311110838910.3389/fenrg.2023.1108389
    [Google Scholar]
  97. MoradianJ.M. FangZ. YongY.C. Recent advances on biomass-fueled microbial fuel cell.Bioresour. Bioprocess.2021811410.1186/s40643‑021‑00365‑7 38650218
    [Google Scholar]
  98. AgborV.B. CicekN. SparlingR. BerlinA. LevinD.B. Biomass pretreatment: Fundamentals toward application.Biotechnol. Adv.201129667568510.1016/j.biotechadv.2011.05.005 21624451
    [Google Scholar]
  99. QuanX. TaoK. QuanY. Composite vegetable degradation and electricity generation in microbial fuel cell with ultrasonic pretreatment.Environ. Eng. Manag. J.20131271423142710.30638/eemj.2013.175
    [Google Scholar]
  100. VenkatamohanS. SrikanthS. VeerraghuvuluS. MohanakrishnaG. KirankumarA. SarmaP. Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: Effect of electrode assembly and water characteristics.Bioresour. Technol.200910072240224610.1016/j.biortech.2008.10.020 19071015
    [Google Scholar]
  101. ForneroJ.J. RosenbaumM. AngenentL.T. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells.Electroanalysis2010227-883284310.1002/elan.200980011
    [Google Scholar]
  102. LiS.W. HeH. ZengR.J. ShengG.P. Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells.Chemosphere201716829329910.1016/j.chemosphere.2016.10.080 27810527
    [Google Scholar]
  103. FengC. YueX. LiF. WeiC. Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria.Biosens. Bioelectron.2013391515610.1016/j.bios.2012.06.037 22794934
    [Google Scholar]
  104. LoganB.E. MuranoC. ScottK. GrayN.D. HeadI.M. Electricity generation from cysteine in a microbial fuel cell.Water Res.200539594295210.1016/j.watres.2004.11.019 15743641
    [Google Scholar]
  105. RabaeyK. LissensG. SicilianoS.D. VerstraeteW. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.Biotechnol. Lett.200325181531153510.1023/A:1025484009367 14571978
    [Google Scholar]
  106. CatalT. LiK. BermekH. LiuH. Electricity production from twelve monosaccharides using microbial fuel cells.J. Power Sources2008175119620010.1016/j.jpowsour.2007.09.083
    [Google Scholar]
  107. ManoharA.K. MansfeldF. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions.Electrochim. Acta20095461664167010.1016/j.electacta.2008.06.047
    [Google Scholar]
  108. ElMekawyA. HegabH.M. PantD. SaintC.P. Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring.J. Appl. Microbiol.2018124130231310.1111/jam.13631 29112795
    [Google Scholar]
  109. ThapaB.S. PanditS. PatwardhanS.B. TripathiS. MathuriyaA.S. GuptaP.K. LalR.B. TusherT.R. Application of microbial fuel cell (MFC) for pharmaceutical wastewater treatment: An overview and future perspectives.Sustainability (Basel)20221414837910.3390/su14148379
    [Google Scholar]
  110. ParkY. ChoH. YuJ. MinB. KimH.S. KimB.G. LeeT. Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment.Bioresour. Technol.201723317618310.1016/j.biortech.2017.02.101 28279910
    [Google Scholar]
  111. BirdH. HeidrichE.S. LeicesterD.D. TheodosiouP. Pilot-scale Microbial Fuel Cells (MFCs): A meta-analysis study to inform full-scale design principles for optimum wastewater treatment.J. Clean. Prod.202234613122710.1016/j.jclepro.2022.131227
    [Google Scholar]
  112. DharmalingamS. KugarajahV. SugumarM. Chapter 1.7 - Membranes for microbial fuel cells.Microbial Electrochemical Technology.Elsevier201914319410.1016/B978‑0‑444‑64052‑9.00007‑8
    [Google Scholar]
  113. OhS.E. LoganB.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.Appl. Microbiol. Biotechnol.200670216216910.1007/s00253‑005‑0066‑y 16167143
    [Google Scholar]
  114. LiuH. ChengS. LoganB.E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environ. Sci. Technol.200539265866210.1021/es048927c 15707069
    [Google Scholar]
  115. LaiC. LiB. ChenM. ZengG. HuangD. QinL. LiuX. ChengM. WanJ. DuC. HuangF. LiuS. YiH. Simultaneous degradation of P-nitroaniline and electricity generation by using a microfiltration membrane dual-chamber microbial fuel cell.Int. J. Hydrogen Energy20184331749175710.1016/j.ijhydene.2017.11.025
    [Google Scholar]
  116. HaoYuE. ChengS. ScottK. LoganB. Microbial fuel cell performance with non-Pt cathode catalysts.J. Power Sources2007171227528110.1016/j.jpowsour.2007.07.010
    [Google Scholar]
  117. AldrovandiA. MarsiliE. StanteL. PaganinP. TabacchioniS. GiordanoA. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.Bioresour. Technol.2009100133252326010.1016/j.biortech.2009.01.041 19303285
    [Google Scholar]
  118. JadhavG.S. GhangrekarM.M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration.Bioresour. Technol.2009100271772310.1016/j.biortech.2008.07.041 18768312
    [Google Scholar]
  119. RahimnejadM. AdhamiA. DarvariS. ZirepourA. OhS.E. Microbial fuel cell as new technology for bioelectricity generation: A review.Alex. Eng. J.201554374575610.1016/j.aej.2015.03.031
    [Google Scholar]
  120. QianF. MorseD.E. Miniaturizing microbial fuel cells.Trends Biotechnol.2011292626910.1016/j.tibtech.2010.10.003 21075467
    [Google Scholar]
  121. YouJ. GreenmanJ. MelhuishC. IeropoulosI. Electricity generation and struvite recovery from human urine using microbial fuel cells.J. Chem. Technol. Biotechnol.201691364765410.1002/jctb.4617
    [Google Scholar]
  122. PeighambardoustS.J. RowshanzamirS. AmjadiM. Review of the proton exchange membranes for fuel cell applications.Int. J. Hydrogen Energy201035179349938410.1016/j.ijhydene.2010.05.017
    [Google Scholar]
  123. RoutS. NayakA.K. VaranasiJ.L. PradhanD. DasD. Enhanced energy recovery by manganese oxide/reduced graphene oxide nanocomposite as an air-cathode electrode in the single-chambered microbial fuel cell.J. Electroanal. Chem. (Lausanne)20188151710.1016/j.jelechem.2018.03.002
    [Google Scholar]
  124. RoyH. RahmanT.U. TasnimN. ArjuJ. RafidM.M. IslamM.R. PervezM.N. CaiY. NaddeoV. IslamM.S. Microbial fuel cell construction features and application for sustainable wastewater treatment.Membranes (Basel)202313549010.3390/membranes13050490 37233551
    [Google Scholar]
  125. GarbiniG.L. Barra CaraccioloA. GrenniP. Electroactive bacteria in natural ecosystems and their applications in microbial fuel cells for bioremediation: A review.Microorganisms2023115125510.3390/microorganisms11051255 37317229
    [Google Scholar]
  126. SharmaP. MutnuriS. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell.Water Sci. Technol.201979471873010.2166/wst.2019.089 30975938
    [Google Scholar]
  127. SonawaneJ.M. AdelojuS.B. GhoshP.C. Landfill leachate: A promising substrate for microbial fuel cells.Int. J. Hydrogen Energy20174237237942379810.1016/j.ijhydene.2017.03.137
    [Google Scholar]
  128. RahimnejadM. AsgharyM. FallahM. Microbial fuel cell (MFC): An innovative technology for wastewater treatment and power generation.Bioremediation of Industrial Waste for Environmental Safety.SingaporeSpringer202021523510.1007/978‑981‑13‑3426‑9_9
    [Google Scholar]
  129. GarimellaS.S.S. RachakondaS.V. PratapaS.S. MannemG.D. MahidharaG. From cells to power cells: Harnessing bacterial electron transport for microbial fuel cells (MFCs).Ann. Microbiol.20247411910.1186/s13213‑024‑01761‑y
    [Google Scholar]
  130. RafaqatS. AliN. TorresC. RittmannB. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology.RSC Advances20221227171041713710.1039/D2RA01831D 35755587
    [Google Scholar]
  131. RozendalR.A. HamelersH.V.M. RabaeyK. KellerJ. BuismanC.J.N. Towards practical implementation of bioelectrochemical wastewater treatment.Trends Biotechnol.200826845045910.1016/j.tibtech.2008.04.008 18585807
    [Google Scholar]
  132. GorbyY.A. YaninaS. McLeanJ.S. RossoK.M. MoylesD. DohnalkovaA. BeveridgeT.J. ChangI.S. KimB.H. KimK.S. CulleyD.E. ReedS.B. RomineM.F. SaffariniD.A. HillE.A. ShiL. EliasD.A. KennedyD.W. PinchukG. WatanabeK. IshiiS. LoganB. NealsonK.H. FredricksonJ.K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.Proc. Natl. Acad. Sci. USA200610330113581136310.1073/pnas.0604517103 16849424
    [Google Scholar]
  133. DihrabS.S. SopianK. AlghoulM.A. SulaimanM.Y. Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells.Renew. Sustain. Energy Rev.2009136-71663166810.1016/j.rser.2008.09.029
    [Google Scholar]
  134. VyatchinaO.F. StomD.I. GoelS. XieB. Biocathode of microbial fuel cells based on nitrate-reducing strains of Pseudomonas aeruginosa.IOP Conf. Ser. Earth Environ. Sci.2020408101208410.1088/1755‑1315/408/1/012084[IOP Publishing].
    [Google Scholar]
  135. HuangL. ReganJ.M. QuanX. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.Bioresour. Technol.2011102131632310.1016/j.biortech.2010.06.096 20634062
    [Google Scholar]
  136. KumarA. KaturiK. LensP. LeechD. Does bioelectrochemical cell configuration and anode potential affect biofilm response?Biochem. Soc. Trans.20124061308131410.1042/BST20120130 23176473
    [Google Scholar]
  137. LovleyD.R. Electromicrobiology.Annu. Rev. Microbiol.201266139140910.1146/annurev‑micro‑092611‑150104 22746334
    [Google Scholar]
  138. HouQ. YangZ. ChenS. PeiH. Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste.Water Res.202017011530510.1016/j.watres.2019.115305 31765826
    [Google Scholar]
  139. KimH.J. ParkH.S. HyunM.S. ChangI.S. KimM. KimB.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens.Enzy. Microb. Technol.2002302145152
    [Google Scholar]
  140. RegueraG. McCarthyK.D. MehtaT. NicollJ.S. TuominenM.T. LovleyD.R. Extracellular electron transfer via microbial nanowires.Nature200543570451098110110.1038/nature03661 15973408
    [Google Scholar]
  141. ConradJ.C. GibianskyM.L. JinF. GordonV.D. MottoD.A. MathewsonM.A. StopkaW.G. ZelaskoD.C. ShroutJ.D. WongG.C.L. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa.Biophys. J.201110071608161610.1016/j.bpj.2011.02.020 21463573
    [Google Scholar]
  142. YueH. KhoshtariyaD. WaldeckD.H. GrocholJ. HildebrandtP. MurgidaD.H. On the electron transfer mechanism between cytochrome C and metal electrodes. Evidence for dynamic control at short distances.J. Phys. Chem. B200611040199061991310.1021/jp0620670 17020376
    [Google Scholar]
  143. AiyerK.S. How does electron transfer occur in microbial fuel cells?World J. Microbiol. Biotechnol.20203621910.1007/s11274‑020‑2801‑z 31955250
    [Google Scholar]
  144. UmarM.F. AbbasS.Z. Mohamad IbrahimM.N. IsmailN. RafatullahM. Insights into advancements and electrons transfer mechanisms of electrogens in benthic microbial fuel cells.Membranes (Basel)202010920510.3390/membranes10090205 32872260
    [Google Scholar]
  145. XiaC. ZhangD. PedryczW. ZhuY. GuoY. Models for microbial fuel cells: A critical review.J. Power Sources201837311913110.1016/j.jpowsour.2017.11.001
    [Google Scholar]
  146. UmarM.F. RafatullahM. AbbasS.Z. Mohamad IbrahimM.N. IsmailN. Advancement in benthic microbial fuel cells toward sustainable bioremediation and renewable energy production.Int. J. Environ. Res. Public Health2021187381110.3390/ijerph18073811 33917378
    [Google Scholar]
  147. WuS. XiaoY. WangL. ZhengY. ChangK. ZhengZ. YangZ. VarcoeJ.R. ZhaoF. Extracellular electron transfer mediated by flavins in Gram-positive Bacillus sp. WS-XY1 and yeast Pichiastipitis.Electrochim. Acta201414656456710.1016/j.electacta.2014.09.096
    [Google Scholar]
  148. YaoH. XiaoJ. TangX. Microbial fuel cell-based organic matter sensors: Principles, structures and applications.Bioengineering (Basel)202310888610.3390/bioengineering10080886 37627771
    [Google Scholar]
  149. Al-MamunA. AhmadW. BaawainM.S. KhademM. DharB.R. A review of microbial desalination cell technology: Configurations, optimization and applications.J. Clean. Prod.201818345848010.1016/j.jclepro.2018.02.054
    [Google Scholar]
  150. SaeedH.M. HusseiniG.A. YousefS. SaifJ. Al-AshehS. Abu FaraA. AzzamS. KhawagaR. AidanA. Microbial desalination cell technology: A review and a case study.Desalination201535911310.1016/j.desal.2014.12.024
    [Google Scholar]
  151. SadhukanJ. LloydJ.R. ScottK. PremierG.C. YuE.H. CurtisT. HeadI.M. A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2.Renew. Sustain. Energy Rev.20165611613210.1016/j.rser.2015.11.015
    [Google Scholar]
  152. AryalN. AmmamF. PatilS.A. PantD. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide.Green Chem.201719245748576010.1039/C7GC01801K
    [Google Scholar]
  153. ZhuX. HatzellM.C. LoganB.E. Microbial reverse-electrodialysis, electrolysis and chemical-production cell for H2 production and CO2 sequestration.Environ. Sci. Technol. Lett.20141423123510.1021/ez500073q 24741666
    [Google Scholar]
  154. JourdinL. FreguiaS. FlexerV. KellerJ. Bringing high-rate, co2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions.Environ. Sci. Technol.20165041982198910.1021/acs.est.5b04431 26810392
    [Google Scholar]
  155. ZabihallahpoorA. RahimnejadM. TalebniaF. Sediment microbial fuel cells as a new source of renewable and sustainable energy: Present status and future prospects.RSC Advances20155114941719418310.1039/C5RA15279H
    [Google Scholar]
  156. KumarV. NandyA. DasS. SalahuddinM. KunduP.P. Performance assessment of partially sulfonatedPVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells.ApplEner2015137310321
    [Google Scholar]
  157. KumarV. MondalS. NandyA. KunduP.P. Analysis of polybenzimidazole and polyvinylpyrrolidone blend membranes as separating barrier in single chambered microbial fuel cells.Biochem. Eng. J.2016111344210.1016/j.bej.2016.03.003
    [Google Scholar]
  158. RaghavuluS.V. MohanS.V. GoudR.K. SarmaP.N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes.Electrochem. Commun.200911237137510.1016/j.elecom.2008.11.038
    [Google Scholar]
  159. SantoroC. Flores-CadengoC. SoaviF. KodaliM. Merino-JimenezI. GajdaI. GreenmanJ. IeropoulosI. AtanassovP. Ceramic microbial fuel cells stack: power generation in standard and supercapacitive mode.Sci. Rep.201881328110.1038/s41598‑018‑21404‑y 29459777
    [Google Scholar]
  160. MorrisJ.M. JinS. CrimiB. PrudenA. Microbial fuel cell in enhancing anaerobic biodegradation of diesel.Chem. Eng. J.2009146216116710.1016/j.cej.2008.05.028
    [Google Scholar]
  161. GreenmanJ. GálvezA. GiustiL. IeropoulosI. Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter.Enzyme Microb. Technol.200944211211910.1016/j.enzmictec.2008.09.012
    [Google Scholar]
  162. SlateA.J. WhiteheadK.A. BrownsonD.A.C. BanksC.E. Microbial fuel cells: An overview of current technology.Renew. Sustain. Energy Rev.2019101608110.1016/j.rser.2018.09.044
    [Google Scholar]
  163. LeeY.Y. KimT.G. ChoK.S. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201651131131113810.1080/10934529.2016.1199926 27428492
    [Google Scholar]
  164. SunJ. HuY. BiZ. CaoY. Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation.J. Power Sources2009187247147910.1016/j.jpowsour.2008.11.022
    [Google Scholar]
  165. RathourR. PatelD. ShaikhS. DesaiC. Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures.Bioresour. Technol.201928512134910.1016/j.biortech.2019.121349 31004945
    [Google Scholar]
  166. KumarS.S. KumarV. MalyanS.K. SharmaJ. MathimaniT. MaskarenjM.S. GhoshP.C. PugazhendhiA. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams.Fuel201925411552610.1016/j.fuel.2019.05.109
    [Google Scholar]
  167. DingH. LiY. LuA. JinS. QuanC. WangC. WangX. ZengC. YanY. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode.Bioresour. Technol.2010101103500350510.1016/j.biortech.2009.11.107 20093012
    [Google Scholar]
  168. HouB. HuY. SunJ. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.Bioresour. Technol.201211110511010.1016/j.biortech.2012.02.017 22386629
    [Google Scholar]
  169. FangZ. SongH. CangN. LiX. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions.Biosens. Bioelectron.20156813514110.1016/j.bios.2014.12.047 25562740
    [Google Scholar]
  170. ZhengT. XuB. JiY. ZhangW. XinF. DongW. WeiP. MaJ. JiangM. Microbial fuel cell-assisted utilization of glycerol for succinate production by mutant of Actinobacillus succinogenes.Biotechnol. Biofuels20211412310.1186/s13068‑021‑01882‑5 33451363
    [Google Scholar]
  171. PariharP.S. KeshavkantS. JadhavS.K. Electrogenic potential of Enterococcus faecalis DWW1 isolated from the anodic biofilm of a dairy wastewater fed dual chambered microbial fuel cell.J. Water Process Eng.20224510250310.1016/j.jwpe.2021.102503
    [Google Scholar]
  172. NimjeV.R. ChenC.Y. ChenH.R. ChenC.C. HuangY.M. TsengM.J. ChengK.C. ChangY.F. Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis.Bioresour. Technol.201210431532310.1016/j.biortech.2011.09.129 22123299
    [Google Scholar]
  173. SunG. RodriguesD.S. ThygesenA. DanielG. FernandoD. MeyerA.S. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens.Chin. J. Chem. Eng.201624337938710.1016/j.cjche.2015.11.002
    [Google Scholar]
  174. ChoudhuryP. Prasad UdayU.S. BandyopadhyayT.K. RayR.N. BhuniaB. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review.Bioengineered20178547148710.1080/21655979.2016.1267883 28453385
    [Google Scholar]
  175. KumarS.S. KumarV. Gnaneswar GudeV. MalyanS.K. PugazhendhiA. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater.Bioresour. Technol.202030612311010.1016/j.biortech.2020.123110 32172090
    [Google Scholar]
  176. NgI.S. HsuehC.C. ChenB.Y. Electron transport phenomena of electroactive bacteria in microbial fuel cells: A review of Proteus hauseri.Bioresour. Bioprocess.2017415310.1186/s40643‑017‑0183‑3
    [Google Scholar]
  177. VicariF. D’AngeloA. GaliaA. QuatriniP. ScialdoneO. A single-chamber membraneless microbial fuel cell exposed to air using Shewanella putrefaciens.J. Electroanal. Chem. (Lausanne)201678326827310.1016/j.jelechem.2016.11.010
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461349973241119105835
Loading
/content/journals/cgc/10.2174/0122133461349973241119105835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test