Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The increasing environmental challenges posed by non-degradable plastics have spurred the development of biodegradable polymers as sustainable alternatives. This review explores the biodegradation processes, highlighting the role of microorganisms in breaking down polymers, and outlines the chemical transformations involved. Various factors influencing biodegradability, such as temperature, pH, and microbial species, are examined. The review also provides a detailed analysis of biodegradability testing standards set by ASTM, OECD, and ISO to assess the environmental impact of these materials. Synthesis techniques for biodegradable polymers from both natural and synthetic sources are discussed, along with their industrial applications in packaging, agriculture, medicine, and more. Key findings suggest that biodegradable polymers offer a viable solution to reducing pollution, carbon emissions, and reliance on petroleum-based products. The future direction for research emphasizes enhancing material properties and expanding applications to foster a sustainable approach to addressing global environmental concerns.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461347075241121063345
2025-01-10
2025-06-26
Loading full text...

Full text loading...

References

  1. MachecaA.D. MutumaB. AdalimaJ.L. MidhemeE. LúcasL.H.M. OchandaV.K. MhlangaS.D. Perspectives on plastic waste management: Challenges and possible solutions to ensure its sustainable use.Recycling2024957710.3390/recycling9050077
    [Google Scholar]
  2. GilaniI.E. SayadiS. ZouariN. Al-GhoutiM.A. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications.Bioresour. Technol. Rep.20232410160610.1016/j.biteb.2023.101606
    [Google Scholar]
  3. DubeE. OkutheG.E. Plastic and micro/nanoplastic pollution in sub-saharan africa: Challenges, impacts, and solutions.WORLD20245232534510.3390/world5020018
    [Google Scholar]
  4. ChoudhuryB.K. HaloiR. BharadwajK.K. RajkhowaS. SarmaJ. Bio-based and biodegradable plastics as alternatives to conventional plastics.Plastic and Microplastic in the Environment.Wiley202217018610.1002/9781119800897.ch9
    [Google Scholar]
  5. Teixeira-CostaB.E. AndradeC.T. Natural polymers used in edible food packaging-History, function and application trends as a sustainable alternative to synthetic plastic.Polysaccharides202131325810.3390/polysaccharides3010002
    [Google Scholar]
  6. KothawadeS.N. PandeV.V. BoleS.S. PatilP.B. SumbeR.B. WaghV.S. SuyrawanshiJ.S. AutadeK.A. Liposome-encapsulated tamoxifen citrate: A breakthrough approach to enhance therapeutic effectiveness.Int. J. Pharma. Phytopharmacol. Res.2023133384310.51847/vqv7dbJpxc
    [Google Scholar]
  7. AhmadF. SaeedQ. ShahS.M. GondalM.A. MumtazS. Environmental sustainability: Challenges and approaches.Natural Resources Conservation and Advances for Sustainability.Elsevier202224327010.1016/B978‑0‑12‑822976‑7.00019‑3
    [Google Scholar]
  8. CakmakO.K. Biodegradable polymers-A review on properties, processing, and degradation mechanism.Circ. Econ. Sustain.20244133936210.1007/s43615‑023‑00277‑y
    [Google Scholar]
  9. OkolieO. KumarA. EdwardsC. LawtonL.A. OkeA. McDonaldS. ThakurV.K. NjugunaJ. Bio-based sustainable polymers and materials: From processing to biodegradation.J. Compos. Sci.20237621310.3390/jcs7060213
    [Google Scholar]
  10. KothawadeS. PandeV. ShinkarD. PingaleP. BorasteS. Chapter 9: Nanocarriers in ulcerative colitis.Nanocarrier Drug Delivery Systems.Berlin, BostonTherapeutic and Diagnostic Medicine. De Gruyter2024247
    [Google Scholar]
  11. SamirA. AshourF.H. HakimA.A.A. BassyouniM. Recent advances in biodegradable polymers for sustainable applications.NPJ Mater. Degrad.2022616810.1038/s41529‑022‑00277‑7
    [Google Scholar]
  12. SinghN. OgunseitanO.A. WongM.H. TangY. Sustainable materials alternative to petrochemical plastics pollution: A review analysis.Sustain. Horizons202210001610.1016/j.horiz.2022.100016
    [Google Scholar]
  13. MoshoodT.D. NawanirG. MahmudF. MohamadF. AhmadM.H. AbdulGhani, A. Biodegradable plastic applications towards sustainability: A recent innovations in the green product.Clean. Eng. Technol.2022610040410.1016/j.clet.2022.100404
    [Google Scholar]
  14. PandeV. KothawadeS. KuskarS. BoleS. ChakoleD. Fabrication of Mesoporous Silica Nanoparticles and Its Applications in Drug Delivery.IntechOpen202310.5772/intechopen.112428
    [Google Scholar]
  15. JiangD.H. SatohT. TungS.H. KuoC.C. Sustainable alternatives to nondegradable medical plastics.ACS Sustain. Chem.& Eng.202210154792480610.1021/acssuschemeng.2c00160
    [Google Scholar]
  16. KothawadeS.N. ChaudhariP.D. Development of biodegradable porous starch foam for improving oral delivery of eprosartan mesylate.Int. J. Adv. Sci. Res.20211203Suppl. 1120126
    [Google Scholar]
  17. MülhauptR. Green polymer chemistry and bio-based plastics: Dreams and reality.Macromol. Chem. Phys.2013214215917410.1002/macp.201200439
    [Google Scholar]
  18. HasheminezhadA. FarinaA. YangB. CeylanH. KimS. TutumluerE. CetinB. The utilization of recycled plastics in the transportation infrastructure systems: A comprehensive review.Constr. Build. Mater.202441113444810.1016/j.conbuildmat.2023.134448
    [Google Scholar]
  19. VermaS.K. PrasadA. KatiyarV. State of art review on sustainable biodegradable polymers with a market overview for sustainability packaging.Mat. Today Sustain.2024262410077610.1016/j.mtsust.2024.100776
    [Google Scholar]
  20. MauryaA.K. de SouzaF.M. DawseyT. GuptaR.K. Biodegradable polymers and composites: Recent development and challenges.Polym. Compos.20234542896291810.1002/pc.28023
    [Google Scholar]
  21. HasheminezhadA. NazariZ. YangB. CeylanH. KimS. A comprehensive review of sustainable solutions for reusing wind turbine blade waste materials.J. Environ. Manage.202436612173510.1016/j.jenvman.2024.121735 38972189
    [Google Scholar]
  22. HosseiniE.S. DervinS. GangulyP. DahiyaR. Biodegradable materials for sustainable health monitoring devices.ACS Appl. Bio Mater.20214116319410.1021/acsabm.0c01139 33842859
    [Google Scholar]
  23. GhoshK. JonesB.H. Roadmap to biodegradable plastics-current state and research needs.ACS Sustain. Chem.& Eng.20219186170618710.1021/acssuschemeng.1c00801
    [Google Scholar]
  24. AdamsS. AcheampongA.O. Reducing carbon emissions: The role of renewable energy and democracy.J. Clean. Prod.201924011824510.1016/j.jclepro.2019.118245
    [Google Scholar]
  25. LiuJ. YiY. WangX. Exploring factors influencing construction waste reduction: A structural equation modeling approach.J. Clean. Prod.202027612318510.1016/j.jclepro.2020.123185
    [Google Scholar]
  26. TrivediH.K. MeshramA. GuptaR. Recycling of photovoltaic modules for recovery and repurposing of materials.J. Environ. Chem. Eng.202311210950110.1016/j.jece.2023.109501
    [Google Scholar]
  27. MartiniR. XydisG. Repurposing and recycling wind turbine blades in the United States.Environ. Prog. Sustain. Energy2023421e1393210.1002/ep.13932
    [Google Scholar]
  28. FiliciottoL. RothenbergG. Biodegradable plastics: Standards, policies, and impacts.ChemSusChem2021141567210.1002/cssc.202002044 33112051
    [Google Scholar]
  29. SharmaP. LaddhaH. AgarwalM. GuptaR. Selective and effective adsorption of malachite green and methylene blue on a non-toxic, biodegradable, and reusable fenugreek galactomannan gum coupled MnO2 mesoporous hydrogel.Microporous Mesoporous Mater.202233811198210.1016/j.micromeso.2022.111982
    [Google Scholar]
  30. GoelV. LuthraP. KapurG.S. RamakumarS.S.V. Biodegradable/bio-plastics: Myths and realities.J. Polym. Environ.202129103079310410.1007/s10924‑021‑02099‑1
    [Google Scholar]
  31. TahaT.H. Abu-SaiedM.A. ElnoubyM. HashemM. AlamriS. DesoukyE.A.E. MorsyK. Profitable exploitation of biodegradable polymer including chitosan blended potato peels’ starch waste as an alternative source of petroleum plastics.Biomass Convers. Biorefin.202414120721510.1007/s13399‑021‑02244‑9
    [Google Scholar]
  32. FolinoA. KarageorgiouA. CalabròP.S. KomilisD. Biodegradation of wasted bioplastics in natural and industrial environments: A review.Sustainability (Basel)20201215603010.3390/su12156030
    [Google Scholar]
  33. KingR.B. SheldonJ.K. LongG.M. Practical environmental bioremediation: The field guide.CRC Press2023
    [Google Scholar]
  34. WuZ. ManQ. NiuH. LyuH. SongH. LiR. RenG. ZhuF. PengC. LiB. MaX. Recent advances and trends of trichloroethylene biodegradation: A critical review.Front. Microbiol.202213105316910.3389/fmicb.2022.1053169 36620007
    [Google Scholar]
  35. AliS.S. ElsamahyT. Al-TohamyR. ZhuD. MahmoudY.A.G. KoutraE. MetwallyM.A. KornarosM. SunJ. Plastic wastes biodegradation: Mechanisms, challenges and future prospects.Sci. Total Environ.202178014659010.1016/j.scitotenv.2021.146590 34030345
    [Google Scholar]
  36. RamA-rez-GarcA-aR. GohilN. SinghV. Recent advances, challenges, and opportunities in bioremediation of hazardous materials.Phytomanagement of Polluted Sites.Elsevier201910.1016/B978‑0‑12‑813912‑7.00021‑1
    [Google Scholar]
  37. AnjuS. PrajithaN. SukanyaV.S. MohananP.V. Complicity of degradable polymers in health-care applications.Mater. Today Chem.20201610023610.1016/j.mtchem.2019.100236
    [Google Scholar]
  38. GhoseA. MitraS. Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review.Environ. Pollut.202230511928510.1016/j.envpol.2022.119285 35421550
    [Google Scholar]
  39. YouX. XuN. YangX. SunW. Pollutants affect algae-bacteria interactions: A critical review.Environ. Pollut.202127611672310.1016/j.envpol.2021.116723 33611207
    [Google Scholar]
  40. QinH. HuT. ZhaiY. LuN. AliyevaJ. The improved methods of heavy metals removal by biosorbents: A review.Environ. Pollut.202025811377710.1016/j.envpol.2019.113777 31864928
    [Google Scholar]
  41. SharmaP. KumarS. PandeyA. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review.J. Environ. Chem. Eng.20219410568410.1016/j.jece.2021.105684
    [Google Scholar]
  42. TayangA. SongachanL.S. Microbial bioremediation of heavy metals.Curr. Sci.202112061013102510.18520/cs/v120/i6/1013‑1025
    [Google Scholar]
  43. KhoshtinatS. State-of-the-art review of aliphatic polyesters and polyolefins biodeterioration by microorganisms: From mechanism to characterization.Corros. Mat. Degrad.20234454257210.3390/cmd4040029
    [Google Scholar]
  44. DongD. GuoZ. YangX. DaiY. Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics.Environ. Pollut.202434212303410.1016/j.envpol.2023.123034 38016589
    [Google Scholar]
  45. AmobonyeA. BhagwatP. SinghS. PillaiS. Plastic biodegradation: Frontline microbes and their enzymes.Sci. Total Environ.202175914353610.1016/j.scitotenv.2020.143536 33190901
    [Google Scholar]
  46. ChishtiZ. AhmadZ. ZhangX. JhaS.K. Optimization of biotic and abiotic factors liable for biodegradation of chlorpyrifos and their modeling using neural network approaches.Appl. Soil Ecol.202116610399010.1016/j.apsoil.2021.103990
    [Google Scholar]
  47. AkpotuS.O. OsegheE.O. AyandaO.S. SkeltonA.A. MsagatiT.A.M. OfomajaA.E. Photocatalysis and biodegradation of pharmaceuticals in wastewater: Effect of abiotic and biotic factors.Clean Technol. Environ. Policy20192191701172110.1007/s10098‑019‑01747‑4
    [Google Scholar]
  48. YuanJ. ShentuJ. MaB. LuZ. LuoY. XuJ. HeY. Microbial and abiotic factors of flooded soil that affect redox biodegradation of lindane.Sci. Total Environ.202178014660610.1016/j.scitotenv.2021.146606 34030285
    [Google Scholar]
  49. BriassoulisD. MistriotisA. MortierN. TosinM. A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants.J. Clean. Prod.202024211839210.1016/j.jclepro.2019.118392
    [Google Scholar]
  50. ČolnikM. Knez-HrnčičM. ŠkergetM. KnezZ. Biodegradable polymers, current trends of research and their applications, a review.Chem. Ind. Chem. Eng. Q.202026440141810.2298/CICEQ191210018C
    [Google Scholar]
  51. PatilP.D. TiwariM.S. BhangeV.P. Biodegradable plastics from renewable raw materials.Mater. Res. Found.202199378010.21741/9781644901335‑2
    [Google Scholar]
  52. Quilez-MolinaA.I. Chandra PaulU. MerinoD. AthanassiouA. Composites of thermoplastic starch and lignin-rich agricultural waste for the packaging of fatty foods.ACS Sustain. Chem.& Eng.20221047154021541310.1021/acssuschemeng.2c04326
    [Google Scholar]
  53. RanganathanS. DuttaS. MosesJ.A. AnandharamakrishnanC. Utilization of food waste streams for the production of biopolymers.Heliyon202069e0489110.1016/j.heliyon.2020.e04891 32995604
    [Google Scholar]
  54. TaibN.A.A.B. RahmanM.R. HudaD. KuokK.K. HamdanS. BakriM.K.B. JulaihiM.R.M.B. KhanA. A review on poly lactic acid (PLA) as a biodegradable polymer.Polym. Bull.20238021179121310.1007/s00289‑022‑04160‑y
    [Google Scholar]
  55. Przybysz-RomatowskaM. HaponiukJ. FormelaK. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review.Polym. Degrad. Stabil.202018210938310.1016/j.polymdegradstab.2020.109383
    [Google Scholar]
  56. SattiS.M. ShahA.A. Polyester-based biodegradable plastics: An approach towards sustainable development.Lett. Appl. Microbiol.202070641343010.1111/lam.13287 32086820
    [Google Scholar]
  57. ZaabaN.F. JaafarM. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation.Polym. Eng. Sci.20206092061207510.1002/pen.25511
    [Google Scholar]
  58. BoeyJ.Y. MohamadL. KhokY.S. TayG.S. BaidurahS. A review of the applications and biodegradation of polyhydroxyalkanoates and poly (lactic acid) and its composites.Polymers (Basel)20211310154410.3390/polym13101544 34065779
    [Google Scholar]
  59. LuZ. LiB. WeiB. ZhouG. XuY. ZhangJ. ChenH. HuaS. WuC. LiuX. NMP-induced surface self-corrosion-assisted rapid spin-coating method for synthesizing imprinted heterojunction photocatalyst anchored membrane towards high-efficiency selective degradation tetracycline.Separ. Purif. Tech.202331412360910.1016/j.seppur.2023.123609
    [Google Scholar]
  60. PanchalS.S. VasavaD.V. Biodegradable polymeric materials: Synthetic approach.ACS Omega2020594370437910.1021/acsomega.9b04422 32175484
    [Google Scholar]
  61. FarinhaI. FreitasF. Chemically modified chitin, chitosan, and chitinous polymers as biomaterials.Handbook of chitin and chitosan.Elsevier2020436910.1016/B978‑0‑12‑817966‑6.00002‑9
    [Google Scholar]
  62. OjogboE. OgunsonaE.O. MekonnenT.H. Chemical and physical modifications of starch for renewable polymeric materials.Mater. Today Sustain.2020710002810.1016/j.mtsust.2019.100028
    [Google Scholar]
  63. TorgboS. SukyaiP. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications.Polym. Degrad. Stabil.202017910923210.1016/j.polymdegradstab.2020.109232
    [Google Scholar]
  64. ZhangB. XuW. MaY. GaoX. MingH. JiaJ. Effects of bioaugmentation by isolated Achromobacter xylosoxidans BP1 on PAHs degradation and microbial community in contaminated soil.J. Environ. Manage.202333411749110.1016/j.jenvman.2023.117491 36801800
    [Google Scholar]
  65. SafdarA. IsmailF. SafdarM. ImranM. Eco-friendly approaches for mitigating plastic pollution: Advancements and implications for a greener future.Biodegradation202435549351810.1007/s10532‑023‑10062‑1 38310578
    [Google Scholar]
  66. PanchalS.S. VasavaD.V. Fabricating approaches for synthesis of miktoarm star-shaped polymers having tailored biodegradability.Int. J. Polym. Mater.202271181407142410.1080/00914037.2021.1981319
    [Google Scholar]
  67. MeghanaM.C. NandhiniC. BennyL. GeorgeL. VargheseA. A road map on synthetic strategies and applications of biodegradable polymers.Polym. Bull.20238011115071155610.1007/s00289‑022‑04565‑9
    [Google Scholar]
  68. TorresF.G. De-la-TorreG.E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review.Int. J. Biol. Macromol.202219428930510.1016/j.ijbiomac.2021.11.187 34863968
    [Google Scholar]
  69. Alizadeh-OsgoueiM. LiY. WenC. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications.Bioact. Mater.2018412236 30533554
    [Google Scholar]
  70. MangarajS. YadavA. BalL.M. DashS.K. MahantiN.K. Application of biodegradable polymers in food packaging industry: A comprehensive review.J. Packag. Technol. Res.201931779610.1007/s41783‑018‑0049‑y
    [Google Scholar]
  71. RaiP. MehrotraS. PriyaS. GnansounouE. SharmaS.K. Recent advances in the sustainable design and applications of biodegradable polymers.Bioresour. Technol.202132512473910.1016/j.biortech.2021.124739 33509643
    [Google Scholar]
  72. BastioliC. BettariniF. General characteristics, processability, industrial applications and market evolution of biodegradable polymers.Handbook of Biodegradable Polymers202014718210.1515/9781501511967‑006
    [Google Scholar]
  73. AliG.A. ThaljiM.R. Makhlouf, AS Biodegradable materials: Fundamentals, importance, and impacts.Handbook of Biodegradable Materials.ChamSpringer2022318
    [Google Scholar]
  74. AnwarA. ImranM. IqbalH.M.N. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges.Coord. Chem. Rev.202349321532910.1016/j.ccr.2023.215329
    [Google Scholar]
  75. PradhanS. DikshitP.K. MoholkarV.S. Production, characterization, and applications of biodegradable polymer: Polyhydroxyalkanoates.Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials.SingaporeSpringer20205194
    [Google Scholar]
  76. ZiaK.M. AkramN. TabasumS. NoreenA. AkbarM.U. Processing Technology for Bio-based Polymers: Advanced Strategies and Practical Aspects.Elsevier2021
    [Google Scholar]
  77. LiuH. JianR. ChenH. TianX. SunC. ZhuJ. YangZ. SunJ. WangC. Application of biodegradable and biocompatible nanocomposites in electronics: Current status and future directions.Nanomaterials (Basel)20199795010.3390/nano9070950 31261962
    [Google Scholar]
  78. KhalidM.Y. Al RashidA. ArifZ.U. AhmedW. ArshadH. ZaidiA.A. Natural fiber reinforced composites: Sustainable materials for emerging applications.Results Eng.20211110026310.1016/j.rineng.2021.100263
    [Google Scholar]
  79. HaiderT.P. VölkerC. KrammJ. LandfesterK. WurmF.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society.Angew. Chem. Int. Ed.2019581506210.1002/anie.201805766 29972726
    [Google Scholar]
  80. WattE. PicardM. MaldonadoB. AbdelwahabM.A. MielewskiD.F. DrzalL.T. MisraM. MohantyA.K. Ocean plastics: environmental implications and potential routes for mitigation - a perspective.RSC Advances20211135214472146210.1039/D1RA00353D 35478831
    [Google Scholar]
  81. LomwongsoponP. VarroneC. Contribution of fermentation technology to building blocks for renewable plastics.Fermentation (Basel)2022824710.3390/fermentation8020047
    [Google Scholar]
  82. Rezvani GhomiE.R. KhosraviF. Saedi ArdahaeiA.S. DaiY. NeisianyR.E. ForoughiF. WuM. DasO. RamakrishnaS. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material.Polymers (Basel)20211311185410.3390/polym13111854 34199643
    [Google Scholar]
  83. RajendranN. HanJ. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste.Waste Manag.202315616817610.1016/j.wasman.2022.11.037 36470012
    [Google Scholar]
  84. ForoughiF. Rezvani GhomiE. Morshedi DehaghiF. BorayekR. RamakrishnaS. A review on the life cycle assessment of cellulose: From properties to the potential of making it a low carbon material.Materials (Basel)202114471410.3390/ma14040714 33546379
    [Google Scholar]
  85. RameshP. VinodhS. State of art review on life cycle assessment of polymers.Int. J. Sustain. Eng.202013641142210.1080/19397038.2020.1802623
    [Google Scholar]
  86. TaghaviN. UdugamaI.A. ZhuangW.Q. BaroutianS. Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness.Biotechnol. Adv.20214910773110.1016/j.biotechadv.2021.107731 33785376
    [Google Scholar]
  87. SatchanskaG. DavidovaS. PetrovP.D. Natural and synthetic polymers for biomedical and environmental applications.Polymers (Basel)2024168115910.3390/polym16081159 38675078
    [Google Scholar]
  88. EbhodagheS.O. Natural polymeric scaffolds for tissue engineering applications.J. Biomater. Sci. Polym. Ed.202132162144219410.1080/09205063.2021.1958185 34328068
    [Google Scholar]
  89. La FuenteC.I.A. ManigliaB.C. TadiniC.C. Biodegradable polymers: A review about biodegradation and its implications and applications.Packag. Technol. Sci.2023362819510.1002/pts.2699
    [Google Scholar]
  90. KirillovaA. YeazelT.R. AsheghaliD. PetersenS.R. DortS. GallK. BeckerM.L. Fabrication of biomedical scaffolds using biodegradable polymers.Chem. Rev.202112118112381130410.1021/acs.chemrev.0c01200 33856196
    [Google Scholar]
  91. TangW. WangJ. HouH. LiY. WangJ. FuJ. LuL. GaoD. LiuZ. ZhaoF. GaoX. LingP. WangF. SunF. TanH. Review: Application of chitosan and its derivatives in medical materials.Int. J. Biol. Macromol.202324012439810.1016/j.ijbiomac.2023.124398 37059277
    [Google Scholar]
  92. CiolacuD.E. NicuR. CiolacuF. Natural polymers in heart valve tissue engineering: Strategies, advances and challenges.Biomedicines2022105109510.3390/biomedicines10051095 35625830
    [Google Scholar]
  93. DingY. ZhuZ. ZhangX. WangJ. Novel functional dressing materials for intraoral wound care.Adv. Healthc. Mater.20241323240091210.1002/adhm.202400912 38716872
    [Google Scholar]
  94. MangalM. RaoC.V. BanerjeeT. Bioplastic: An eco-friendly alternative to non-biodegradable plastic.Polym. Int.2023721198499610.1002/pi.6555
    [Google Scholar]
  95. Bhuvanesh KumarM. SathiyaP. Methods and materials for additive manufacturing: A critical review on advancements and challenges.Thin-walled Struct.202115910722810.1016/j.tws.2020.107228
    [Google Scholar]
  96. PolliceR. dos Passos GomesG. AldeghiM. HickmanR.J. KrennM. LavigneC. Lindner-D’AddarioM. NigamA. SerC.T. YaoZ. Aspuru-GuzikA. Data-driven strategies for accelerated materials design.Acc. Chem. Res.202154484986010.1021/acs.accounts.0c00785 33528245
    [Google Scholar]
  97. RenZ.W. WangZ.Y. DingY.W. DaoJ.W. LiH.R. MaX. YangX.Y. ZhouZ.Q. LiuJ.X. MiC.H. GaoZ.C. PeiH. WeiD.X. Polyhydroxyalkanoates: The natural biopolyester for future medical innovations.Biomater. Sci.202311186013603410.1039/D3BM01043K 37522312
    [Google Scholar]
  98. AgarwalS. Biodegradable polymers: Present opportunities and challenges in providing a microplastic-free environment.Macromol. Chem. Phys.20202216200001710.1002/macp.202000017
    [Google Scholar]
  99. RameshKumarS. ShaijuP. O’ConnorK.E. PR.B. Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends.Curr. Opin. Green Sustain. Chem.202021758110.1016/j.cogsc.2019.12.005
    [Google Scholar]
  100. YinG.Z. YangX.M. Biodegradable polymers: A cure for the planet, but a long way to go.J. Polym. Res.20202723810.1007/s10965‑020‑2004‑1
    [Google Scholar]
  101. MoshoodT.D. NawanirG. MahmudF. MohamadF. AhmadM.H. AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution?Cur. Res. Green Sustain. Chem.2022510027310.1016/j.crgsc.2022.100273
    [Google Scholar]
  102. ManfraL. MarengoV. LibralatoG. CostantiniM. De FalcoF. CoccaM. Biodegradable polymers: A real opportunity to solve marine plastic pollution?J. Hazard. Mater.202141612576310.1016/j.jhazmat.2021.125763 33839500
    [Google Scholar]
  103. MazhanduZ.S. MuzendaE. MamvuraT.A. BelaidM. NhubuT. Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities.Sustainability (Basel)20201220836010.3390/su12208360
    [Google Scholar]
  104. SternbergJ. SequerthO. PillaS. Green chemistry design in polymers derived from lignin: Review and perspective.Prog. Polym. Sci.202111310134410.1016/j.progpolymsci.2020.101344
    [Google Scholar]
  105. KarS. SandersonH. RoyK. BenfenatiE. LeszczynskiJ. Green chemistry in the synthesis of pharmaceuticals.Chem. Rev.202212233637371010.1021/acs.chemrev.1c00631 34910451
    [Google Scholar]
  106. ZimmermanJ.B. AnastasP.T. ErythropelH.C. LeitnerW. Designing for a green chemistry future.Science2020367647639740010.1126/science.aay3060 31974246
    [Google Scholar]
  107. JhaS. AkulaB. EnyiomaH. NovakM. AminV. LiangH. Biodegradable biobased polymers: A review of the state of the art, challenges, and future directions.Polymers (Basel)20241616226210.3390/polym16162262 39204482
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461347075241121063345
Loading
/content/journals/cgc/10.2174/0122133461347075241121063345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test