Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Quinoline is a biologically important class of N-based heterocyclic compound. It has attracted the attention of the researchers since the 19th century. The researchers have identified more than 600 quinoline compounds to date. Further, these exhibit several biological activities such as antibacterial, antifungal, antimalarial, antiviral, anti-inflammatory, antiparasitic, insecticidal, and other activities. Microwave-assisted synthesis is a promising green technique for synthesizing organic and heterocyclic compounds. The present review provides an overview of the literature available on microwave-promoted synthetic methodologies for the synthesis of quinoline derivatives that have appeared in the last ten years. Since the major goal of this work is to highlight the sustainable nature of microwave-promoted methods, the green features of each research report are presented. It covers recent synthetic strategies both under homogeneous and heterogeneous catalytic approaches. Significant decreases in reaction times, enhancement in overall yields, and greater atom economy can be observed in the documented research. We believe that this work will definitely help in the search for novel and environmentally benign routes for the synthesis of quinoline-related potential lead molecules.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461335061241101114827
2025-01-01
2025-06-21
Loading full text...

Full text loading...

References

  1. AchanJ. TalisunaA.O. ErhartA. YekaA. TibenderanaJ.K. BaliraineF.N. RosenthalP.J. D’AlessandroU. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria.Malar. J.201110114415510.1186/1475‑2875‑10‑144 21609473
    [Google Scholar]
  2. KalitaJ. ChetiaD. RudrapalM. Molecular docking, druglikeness studies and ADMET prediction of quinoline imines for antimalarial activity.J. Med. Chem. Drug Des.2019217
    [Google Scholar]
  3. RitzmannN.H. MährleinA. ErnstS. HenneckeU. DreesS.L. FetznerS. Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine Gammaproteobacterium, modulates their antibacterial activity.Environ. Microbiol.20192172595260910.1111/1462‑2920.14654 31087606
    [Google Scholar]
  4. BaiX. ChenY. LiuZ. ZhangL. ZhangT. FengB. Synthesis, antimicrobial activities, and molecular docking studies of dihydro triazine derivatives bearing a quinoline moiety.Chem. Biodivers.2019166e190005610.1002/cbdv.201900056 30957398
    [Google Scholar]
  5. KumarS. BawaS. DrabuS. PandaB.P. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents.Med. Chem. Res.20112081340134810.1007/s00044‑010‑9463‑6
    [Google Scholar]
  6. SureshkumarK. MaheshwaranV. Dharma RaoT. ThemmilaK. PonnuswamyM.N. KadhirvelS. DhandayuthamS. Synthesis, characterization, crystal structure, in-vitro anti-inflammatory and molecular docking studies of 5-mercapto-1-substituted tetrazole incorporated quinoline derivative.J. Mol. Struct.2017114631432310.1016/j.molstruc.2017.05.085
    [Google Scholar]
  7. AbadiA.H. HegazyG.H. El-ZaherA.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents.Bioorg. Med. Chem.200513205759576510.1016/j.bmc.2005.05.053 16002298
    [Google Scholar]
  8. FranckX. FournetA. PrinaE. MahieuxR. HocquemillerR. FigadèreB. Biological evaluation of substituted quinolines.Bioorg. Med. Chem. Lett.200414143635363810.1016/j.bmcl.2004.05.026 15203133
    [Google Scholar]
  9. RossiterS. PéronJ.M. WhitfieldP.J. JonesK. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes.Bioorg. Med. Chem. Lett.200515214806480810.1016/j.bmcl.2005.07.044 16165359
    [Google Scholar]
  10. CaiZ. ZhouW. SunL. Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents.Bioorg. Med. Chem.200715247809782910.1016/j.bmc.2007.08.044 17851082
    [Google Scholar]
  11. AbdelbasetM.S. Abdel-AzizM. Abuo-RahmaG.E.D.A. AbdelrahmanM.H. RamadanM. YoussifB.G. Novel quinoline derivatives carrying nitrones/oximes nitric oxide donors: Design, synthesis, antiproliferative and caspase-3 activation activities.Arch Pharm. Chem. Life Sci.20183521e180027010.1002/ardp.201800270 30500087
    [Google Scholar]
  12. OverackerR.D. BanerjeeS. NeuhausG.F. Milicevic SephtonS. HerrmannA. StrotherJ.A. Brack-WernerR. BlakemoreP.R. LoesgenS. Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl)quinoline.Bioorg. Med. Chem.201927163595360410.1016/j.bmc.2019.06.044 31285097
    [Google Scholar]
  13. GopiP. LokeshR. SarveswariS. Synthesis of quinoline motif and their virtual HIV protease inhibition analysis, anti-proliferative probing on HCT116 Cell Line.ChemistrySelect20194257627763310.1002/slct.201901231
    [Google Scholar]
  14. GuptaD. JamwalD. RanaD. KatochA. 26-Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. InamuddinA.M. AsiriA. MohammadA. Applications of Nanocomposite Materials in Drug Delivery.Woodhead Publishing201861963210.1016/B978‑0‑12‑813741‑3.00027‑3
    [Google Scholar]
  15. AbdelsalamE.A. ZagharyW.A. AminK.M. Abou TalebN.A. MekaweyA.A.I. EldehnaW.M. Abdel-AzizH.A. HammadS.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors.Bioorg. Chem.20198910298510298510.1016/j.bioorg.2019.102985 31121559
    [Google Scholar]
  16. MandewaleM.C. PatilU.C. ShedgeS.V. DappadwadU.R. YamgarR.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents.Beni. Suef Univ. J. Basic Appl. Sci.20176435436110.1016/j.bjbas.2017.07.005
    [Google Scholar]
  17. ShermanA.R. "Quinoline". e-EROS Encyclopedia of Reagents for Organic Synthesis.Encyclopedia of Reagents for Organic SynthesisResearchGate20111410.1002/047084289X.rn01370
    [Google Scholar]
  18. AltinolcekN. BattalA. TavasliM. CameronJ. PevelerW.J. YuH.A. SkabaraP.J. Yellowish-orange and red emitting quinoline-based iridium(III) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application.Synth. Met.202026811650411660410.1016/j.synthmet.2020.116504
    [Google Scholar]
  19. ShaoX. LiuW. GuoR. ChenJ. ZhouN. A novel quinoline derivative containing a phenanthroimidazole moiety: Synthesis, physical properties and light-emitting diodes application.Dyes Pigments202118810919810920410.1016/j.dyepig.2021.109198
    [Google Scholar]
  20. SpencerJ. Privileged scaffolds in medicinal chemistry: Design, synthesis, evaluation.The Royal Society of Chemistry201611110710.1039/9781782622246
    [Google Scholar]
  21. LiJ.J. Name reactions: A collection of detailed mechanisms and synthetic applications.Science.5th edCham, SwitzerlandSpringer International Publishing201468110.1007/978‑3‑319‑03979‑4
    [Google Scholar]
  22. PovarovL.S. GrigosV.I. MikhailovB.M. Reaction of benzylideneaniline with some unsaturated compounds.Bull. Acad. Sci. USSR, Div. Chem. Sci.196312111878188010.1007/BF00843814
    [Google Scholar]
  23. PatelA. PatelS. MehtaM. PatelY. PatelR. ShahD. PatelD. ShahU. PatelM. PatelS. SolankiN. BambharoliyaT. PatelS. NaganiA. PatelH. VaghasiyaJ. ShahH. PrajapatiB. RathodM. BhimaniB. PatelR. BhavsarV. RakholiyaB. PatelM. PatelP. A review on synthetic investigation for quinoline- recent green approaches.Green Chem. Lett. Rev.202215233737210.1080/17518253.2022.2064194
    [Google Scholar]
  24. MatadaB.S. PattanashettarR. YernaleN.G. A comprehensive review on the biological interest of quinoline and its derivatives.Bioorg. Med. Chem.20213211597311599810.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  25. WeyesaA. MulugetaE. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review.RSC Advances20201035207842079310.1039/D0RA03763J 35517753
    [Google Scholar]
  26. RamannG. CowenB. Recent advances in metal-free quinoline synthesis.Molecules2016218986100810.3390/molecules21080986 27483222
    [Google Scholar]
  27. PrajapatiS.M. PatelK.D. VekariyaR.H. PanchalS.N. PatelH.D. Recent advances in the synthesis of quinolines: A review.RSC Advances2014447244632447610.1039/C4RA01814A
    [Google Scholar]
  28. XuanD.D. Recent progress in the synthesis of quinolines.Curr. Org. Synth.201916567170810.2174/1570179416666190719112423 31984888
    [Google Scholar]
  29. SharmaR. KourP. KumarA. A review on transition-metal mediated synthesis of quinolines.J. Chem. Sci.20181306739810.1007/s12039‑018‑1466‑8
    [Google Scholar]
  30. BharateJ.B. VishwakarmaR.A. BharateS.B. Metal-free domino one-pot protocols for quinoline synthesis.RSC Advances2015552420204205310.1039/C5RA07798B
    [Google Scholar]
  31. KarnakarK. Narayana MurthyS. RameshK. SatishG. NanuboluJ.B. NageswarY.V.D. Polyethylene glycol (PEG-400): an efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]quinoline derivatives.Tetrahedron Lett.201253232897290310.1016/j.tetlet.2012.03.135
    [Google Scholar]
  32. KumarS. BawaS. GuptaH. Biological activities of quinoline derivatives.Mini Rev. Med. Chem.20099141648165410.2174/138955709791012247 20088783
    [Google Scholar]
  33. CaddickS. Microwave assisted organic reactions.Tetrahedron19955138104031043210.1016/0040‑4020(95)00662‑R
    [Google Scholar]
  34. BondeM.N. SohaniA.C. DaudA.S. SapkalN.P. Microwave: An emerging trend in pharmaceutical processes and formulations.Int. J. Pharm. Technol.2011334993520
    [Google Scholar]
  35. XiaL. IdhayadhullaA. LeeY.R. KimS.H. WeeY.J. Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities.ACS Comb. Sci.201416733334110.1021/co500002s 24749663
    [Google Scholar]
  36. SaariR. TörmäJ.C. NevalainenT. Microwave-assisted synthesis of quinoline, isoquinoline, quinoxaline and quinazoline derivatives as CB2 receptor agonists.Bioorg. Med. Chem.201119293995010.1016/j.bmc.2010.11.059 21215643
    [Google Scholar]
  37. LibertoN.A. SimõesJ.B. de Paiva SilvaS. da SilvaC.J. ModoloL.V. de FátimaÂ. SilvaL.M. DeritaM. ZacchinoS. ZuñigaO.M.P. RomanelliG.P. FernandesS.A. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties.Bioorg. Med. Chem.20172531153116210.1016/j.bmc.2016.12.023 28041802
    [Google Scholar]
  38. InsuastyD. AboniaR. InsuastyB. QuirogaJ. LaaliK.K. NoguerasM. CoboJ. Microwave-assisted synthesis of diversely substituted quinoline-based dihydropyridopyrimidine and dihydropyrazolopyridine hybrids.ACS Comb. Sci.201719855556310.1021/acscombsci.7b00091 28723092
    [Google Scholar]
  39. NesaragiA.R. KambleR.R. BayannavarP.K. ShaikhS.K.J. HoolageriS.R. KodasiB. JoshiS.D. KumbarV.M. Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition.Bioorg. Med. Chem. Lett.20214112798412799310.1016/j.bmcl.2021.127984 33766768
    [Google Scholar]
  40. MunirR. Zia-ur-Rehman, M.; Murtaza, S.; Zaib, S.; Javid, N.; Awan, S.J.; Iftikhar, K.; Athar, M.M.; Khan, I. Microwave-assisted synthesis of (Piperidin-1-yl) quinolin-3-yl) methylene) hydrazine carbothioamides as potent inhibitors of cholinesterases: A biochemical and in silico approach.Molecules20212665668610.3390/molecules26030656 33513837
    [Google Scholar]
  41. KulkarniA. TörökB. Microwave-assisted multicomponent domino cyclization–aromatization: An efficient approach for the synthesis of substituted quinolines.Green Chem.201012587587810.1039/c001076f
    [Google Scholar]
  42. RajputD. TseringD. KaruppasamyM. KapoorK.K. NagarajanS. MaheswariC.U. BhuvaneshN. SridharanV. Diversity-oriented synthesis of benzo[ f][1,4]oxazepine-, 2H-chromene-, and 1,2-dihydroquinoline-fused polycyclic nitrogen heterocycles under microwave-assisted conditions.J. Org. Chem.202388138643865710.1021/acs.joc.3c00552 37318181
    [Google Scholar]
  43. ChandraD. DhimanA.K. KumarR. SharmaU. Microwave‐assisted metal‐free rapid synthesis of C4‐arylated quinolines via povarov type multicomponent reaction.Eur. J. Org. Chem.20192019162753275810.1002/ejoc.201900325
    [Google Scholar]
  44. ShiF. ZhangS. WuS.S. GaoY. TuS.J. A diversity-oriented synthesis of pyrazolo[4,3-f]quinoline derivatives with potential bioactivities via microwave-assisted multi-component reactions.Mol. Divers.201115249750510.1007/s11030‑010‑9272‑3 20814822
    [Google Scholar]
  45. BaileyH.V. MahonM.F. VickerN. PotterB.V.L. Rapid and efficient microwave‐assisted friedländer quinoline synthesis.Chem. Open20209111113112210.1002/open.202000247 33194530
    [Google Scholar]
  46. PenjarlaT.R. KundarapuM. BaquerS.M. BhattacharyaA. Synthesis of 4‐substituted pyrrolo[2, 3‐c]quinolines via microwave‐assisted C‐N bond formation.ChemistrySelect20183195386538910.1002/slct.201800614
    [Google Scholar]
  47. KulkarniA.R. ThakurG.A. Microwave-assisted expeditious and efficient synthesis of cyclopentene ring-fused tetrahydroquinoline derivatives using three-component Povarov reaction.Tetrahedron Lett.201354486592659510.1016/j.tetlet.2013.09.107 24421568
    [Google Scholar]
  48. YuvarajP. ManivannanK. ReddyB.S.R. Microwave-assisted efficient and highly chemoselective synthesis of oxazolo[5,4-B]quinoline-fused spirooxindoles via catalyst- and solvent-free three-component tandem Knoevenagel/Michael addition reaction.Tetrahedron Lett.2015561788110.1016/j.tetlet.2014.11.001
    [Google Scholar]
  49. Robert KhumaloM. MaddilaS.N. MaddilaS. JonnalagaddaS.B. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4-b]-quinolines under green conditions.RSC Advances2019953307683077210.1039/C9RA04604F 35529349
    [Google Scholar]
  50. KumarA. RaoV. Microwave-assisted and Yb(OTf)3-promoted one-pot multicomponent synthesis of substituted quinolines in ionic liquid.Synlett20112011152157216210.1055/s‑0030‑1261200
    [Google Scholar]
  51. QuirogaJ. TrillerasJ. InsuastyB. AboníaR. NoguerasM. MarchalA. CoboJ. A straightforward synthesis of pyrimido[4,5-b]quinoline derivatives assisted by microwave irradiation.Tetrahedron Lett.20105171107110910.1016/j.tetlet.2009.12.114
    [Google Scholar]
  52. AjaniO.O. IyayeK.T. AuduO.Y. OlorunsholaS.J. KuyeA.O. OlanrewajuI.O. Microwave assisted synthesis and antimicrobial potential of quinoline‐based 4‐hydrazide‐hydrazone derivatives.J. Heterocycl. Chem.201855130231210.1002/jhet.3050
    [Google Scholar]
  53. RomekA. OpatzT. Microwave‐assisted synthesis of polysubstituted 4‐quinolones from deprotonated α‐aminonitriles.Eur. J. Org. Chem.20102010305841584910.1002/ejoc.201000858
    [Google Scholar]
  54. ShekarraoK. KaishapP.P. SaddanapuV. AddlagattaA. GogoiS. BoruahR.C. Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines.RSC Advances2014446240012400610.1039/C4RA02865A
    [Google Scholar]
  55. PradeepM. VishnuvardhanM. Bala KrishnaV. Madhusudhan RajuR. An efficient microwave assisted synthesis and antimicrobial activty of 1,2,3-triazolyl-pyrrolidinyl-quinolinolines.Russ. J. Gen. Chem.201989231331810.1134/S1070363219020233
    [Google Scholar]
  56. AnvarS. Mohammadpoor-BaltorkI. TangestaninejadS. MoghadamM. MirkhaniV. KhosropourA.R. KiaR. Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation.RSC Advances20122238713872010.1039/c2ra20639k
    [Google Scholar]
  57. H, R.B.; Ravinder, M.; Narsimha, S. Microwave-assisted one pot synthesis of fused [1,2,3]triazolo-pyrano[3,2-h]quinolines and their biological evaluation.Asian J. Pharm. Pharmacol.2019561202121010.31024/ajpp.2019.5.6.17
    [Google Scholar]
  58. NaikH.R.P. NaikH.S.B. NaikT.R.R. LamaniD.S. AravindaT. An efficient, microwave-assisted, one-pot synthesis of dioxolano quinoline/benzo[h]quinolines as potent antibacterial agents.Phosphorus Sulfur Silicon Relat. Elem.2010185235536010.1080/10426500902797095
    [Google Scholar]
  59. AliW. DahiyaA. PandeyR. AlamT. PatelB.K. Microwave-assisted cascade strategy for the synthesis of indolo[2,3-b]quinolines from 2-(phenylethynyl)anilines and aryl isothiocynates.J. Org. Chem.20178242089209610.1021/acs.joc.6b02912 28155273
    [Google Scholar]
  60. LiA. YangZ. YangT. LuoC.W. ChaoZ.S. ZhouC.S. High efficiency microwave-assisted synthesis of quinoline from acrolein diethyl acetal and aniline utilizing Ni/Beta catalyst.Catal. Commun.2018115212510.1016/j.catcom.2018.06.024
    [Google Scholar]
  61. RaoR.N. ChandaK. An expeditious microwave assisted one-pot sequential route to pyrido fused imidazo[4,5-c] quinolines in green media.New J. Chem.20214563280328910.1039/D0NJ05835A
    [Google Scholar]
  62. AsadiB. Landarani-IsfahaniA. Mohammadpoor-BaltorkI. TangestaninejadS. MoghadamM. MirkhaniV. RudbariH.A. Microwave-assisted, regioselective one-pot synthesis of quinolines and bis-quinolines catalyzed by Bi(III) immobilized on triazine dendrimer stabilized magnetic nanoparticles.Tetrahedron Lett.2017581717410.1016/j.tetlet.2016.11.102
    [Google Scholar]
  63. AttiaY.A. Abdel-HafezS.H. Nano-Co3O4-catalyzed microwave-assisted one-pot synthesis of some seleno [2, 3-b] pyridine/quinoline derivatives.Res. Chem. Intermed.20214793719373210.1007/s11164‑021‑04478‑8
    [Google Scholar]
  64. GhouseS.M. KumarY.S. JinJ.S. KimJ.P. BaeJ.S. ChungE.H. KimD.Y. JangE.K. Nawaz KhanF-R. JeongE.D. Green chemical approach: Microwave assisted, titanium dioxide nanoparticles catalyzed, convenient and efficient C–C bond formation in the synthesis of highly functionalized quinolines and quinolinones.RSC Advances2014484444084441710.1039/C4RA06772J
    [Google Scholar]
  65. Ghorbani-VagheiR. Akbari-DadamahalehS. Microwave-assisted solvent-free synthesis of quinolines using n-bromosulfonamides.Phosphorus Sulfur Silicon Relat. Elem.2010185231932410.1080/10426500902787732
    [Google Scholar]
  66. El-NaggarA.M. RamadanS.K. Efficient synthesis of some pyrimidine and thiazolidine derivatives bearing quinoline scaffold under microwave irradiation.Synth. Commun.202050142188219810.1080/00397911.2020.1769673
    [Google Scholar]
  67. UpparV. Mudnakudu-NagarajuK.K. BasarikattiA.I. ChougalaM. ChandrashekharappaS. MohanM.K. BanuprakashG. VenugopalaK.N. NingegowdaR. PadmashaliB. Microwave induced synthesis, and pharmacological properties of novel 1-benzoyl-4-bromopyrrolo[1,2-a]quinoline-3-carboxylate analogues.Chem Data Collect2019251003161033410.1016/j.cdc.2019.100316
    [Google Scholar]
  68. MoloiS. MaddilaS. JonnalagaddaS.B. Microwave-irradiated one-pot synthesis of quinoline derivatives catalyzed by triethylamine.Res. Chem. Intermed.201743116233624310.1007/s11164‑017‑2986‑4
    [Google Scholar]
  69. ZhangL. WuB. ZhouY. XiaJ. ZhouS. WangS. Rare‐earth metal chlorides catalyzed one‐pot syntheses of quinolines under solvent‐free microwave irradiation conditions.Chin. J. Chem.201331446547110.1002/cjoc.201300047
    [Google Scholar]
  70. SinghS.K. SinghK.N. DBU-catalyzed expeditious and facile multicomponent synthesis of N-arylquinolines under microwave irradiation.Monatsh. Chem.2012143580580810.1007/s00706‑011‑0651‑y
    [Google Scholar]
  71. LiX.Y. LiuY. ChenX.L. LuX.Y. LiangX.X. ZhuS.S. WeiC.W. QuL-B. YuB. 6π-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones.Green Chem.202022144445444910.1039/C9GC04445K
    [Google Scholar]
  72. SaggadiH. LuartD. ThiebaultN. PolaertI. EstelL. LenC. Quinoline and phenanthroline preparation starting from glycerol via improved microwave-assisted modified Skraup reaction.RSC Advances2014441214562146410.1039/C4RA00758A
    [Google Scholar]
  73. YuY. TuM.S. JiangB. WangS.L. TuS.J. Multicomponent synthesis of polysubstituted dihydroquinoline derivatives.Tetrahedron Lett.201253385071507510.1016/j.tetlet.2012.07.008
    [Google Scholar]
  74. ChiduralaP. JettiV. PagadalaR. MeshramJ.S. JonnalagaddaS.B. A multicomponent, catalyst‐free, one‐pot synthesis of functionalized 1,4‐dihydroquinolines and their antimicrobial studies.J. Heterocycl. Chem.20155251302130710.1002/jhet.2230
    [Google Scholar]
  75. SeliemI.A. PandaS.S. GirgisA.S. MoatasimY. KandeilA. MostafaA. AliM.A. NossierE.S. RasslanF. SrourA.M. SakhujaR. IbrahimT.S. Abdel-samiiZ.K.M. Al-MahmoudyA.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2.Bioorg. Chem.202111410511710512410.1016/j.bioorg.2021.105117 34214752
    [Google Scholar]
  76. FedoseevP. Van der EyckenE. Temperature switchable Brønsted acid-promoted selective syntheses of spiro-indolenines and quinolines.Chem. Commun.201753557732773510.1039/C7CC02580G 28492644
    [Google Scholar]
  77. RaoM.S. SarkarS. HussainS. Microwave-assisted synthesis of 3-aminoarylquinolines from 2-nitrobenzaldehyde and indole via SnCl2-mediated reduction and facile indole ring opening.Tetrahedron Lett.201960181221122510.1016/j.tetlet.2019.03.047
    [Google Scholar]
  78. SacchelliB.A.L. RochaB.C. AndradeL.H. Cascade reactions assisted by microwave irradiation: Ultrafast construction of 2-quinolinone-fused γ-lactones from N-(o-ethynylaryl)acrylamides and formamide.Org. Lett.202123135071507510.1021/acs.orglett.1c01606 34152153
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461335061241101114827
Loading
/content/journals/cgc/10.2174/0122133461335061241101114827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test