Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Background

Glycogen, a naturally occurring macromolecule, in its granular form and without any post-modification was found to be an efficient and eco-friendly bifunctional heterogeneous organocatalyst.

Objective

This catalyst can be useful for the domino synthesis of various spiropyren annulated derivatives through three-component condensation of isathin, malononitrile, and diverse 1,3-dicarbonyl compounds, activated CH-acids, through Knoevenagel-Michael-annulation sequence under mild conditions.

Methods

Corresponding spiro derivatives were obtained in high to excellent yields after 5-15 min stirring in 2 mL EtOH and 60℃ in the presence of 0.01 g of glycogen, equimolar amounts of isatin/acenaphthoquinone/ninhydrin, malononitrile, and 1,3-dicarbonyl compounds.

Results

FTIR and 1H NMR spectroscopic showed there isn't any catalyst in the media and desired products were obtained in excellent purity.

Conclusion

Avoiding any transition metal, one-pot, and multicomponent procedure catalyzed by a biopolymer, broad substrate scope, and operational simplicity are essential features of this methodology for the preparation of medicinally important compounds.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461280455240305061938
2024-03-21
2024-11-26
Loading full text...

Full text loading...

References

  1. ChatterjeeR. BhuktaS. DandelaR. Ionic LIQUID‐ASSISTED synthesis of 2‐AMINO‐3‐CYANO‐4 H ‐chromenes: A sustainable overview.J. Heterocycl. Chem.202259463365410.1002/jhet.4417
    [Google Scholar]
  2. ZiaraniG.M. MohtashamN.H. LashgariN. BadieiA. AmanlouM. BazlR. Convenient one-pot synthesis of spirooxindole-4 H -pyrans in the presence of SBA-Pr-NH2 and evaluation of their urease inhibitory activities.20132487498
    [Google Scholar]
  3. MenegazzoF. SignorettoM. MarcheseD. PinnaF. ManzoliM. Structure–activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: Effects of zirconia sulphation on gold dispersion, position and shape.J. Catal.20153261810.1016/j.jcat.2015.03.006
    [Google Scholar]
  4. SalujaP. AggarwalK. KhuranaJ.M. One-pot synthesis of biologically important spiro-2-amino-4h-pyrans, spiroacenaphthylenes, and spirooxindoles using DBU as a green and recyclable.Synth. Commun.2013432432393246
    [Google Scholar]
  5. ZhuS.L. JiS.J. ZhangY. A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium.Tetrahedron200763389365937210.1016/j.tet.2007.06.113
    [Google Scholar]
  6. BoradM.A. JethavaD.J. BhoiM.N. PatelC.N. PandyaH.A. PatelH.D. Novel isoniazid-spirooxindole derivatives: Design, synthesis, biological evaluation, in silico ADMET prediction and computational studies.J. Mol. Struct.2020122212888110.1016/j.molstruc.2020.128881
    [Google Scholar]
  7. PatravaleA.A. GoreA.H. KolekarG.B. DeshmukhM.B. ChoudhariP.B. BhatiaM.S. PrabhuS. JamdhadeM.D. PatoleM.S. AnbhuleP.V. Synthesis, biological evaluation and molecular docking studies of some novel indenospiro derivatives as anticancer agents.J. Taiwan Inst. Chem. Eng.20166810511810.1016/j.jtice.2016.09.034
    [Google Scholar]
  8. SaragiT.P.I. SpehrT. SiebertA. LiekerF.T. SalbeckJ. Spiro compounds for organic optoelectronics.Chem. Rev.200710741011106510.1021/cr0501341 17381160
    [Google Scholar]
  9. GaoX. WeiM. ShanW. LiuQ. GaoJ. LiuY. ZhuS. YaoH. An oral 2-hydroxypropyl-β-cyclodextrin-loaded spirooxindole-pyrrolizidine derivative restores p53 activity via targeting MDM2 and JNK1/2 in hepatocellular carcinoma.Pharmacol. Res.201914810440010.1016/j.phrs.2019.104400 31425749
    [Google Scholar]
  10. HiltonS.T. HoT.C.T. PljevaljcicG. JonesK. A new route to spirooxindoles.Org. Lett.20002172639264110.1021/ol0061642 10990416
    [Google Scholar]
  11. DivarM. ZomorodianK. SabetR. MoeiniM. KhabnadidehS. An efficient method for synthesis of some novel spirooxindole-4h-pyran derivatives.Polycycl. Aromat. Compd.20214171549156210.1080/10406638.2019.1686405
    [Google Scholar]
  12. MohamadpourF. MaghsoodlouM.T. HeydariR. LashkariM. Copper(II) acetate monohydrate: An efficient and eco-friendly catalyst for the one-pot multi-component synthesis of biologically active spiropyrans and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions.Res. Chem. Intermed.201642127841785310.1007/s11164‑016‑2565‑0
    [Google Scholar]
  13. LiaoY. HuangX. LiaoX. ShiB. Preparation of fibrous sulfated zirconia (SO42−/ZrO2) solid acid catalyst using collagen fiber as the template and its application in esterification.J. Mol. Catal. Chem.20113471-2465110.1016/j.molcata.2011.07.009
    [Google Scholar]
  14. ParkJ.H. LeeY.R. KimS.H. A novel synthesis of diverse 2-amino-5-hydroxy-4H-chromene derivatives with a spirooxindole nucleus by Ca(OH)2-mediated three-component reactions of substituted resorcinols with isatins and malononitrile.Tetrahedron201369469682968910.1016/j.tet.2013.09.021
    [Google Scholar]
  15. LiangY.R. ChenX.Y. WuQ. LinX.F. Diastereoselective synthesis of spirooxindole derivatives via biocatalytic domino reaction.Tetrahedron201571461662110.1016/j.tet.2014.12.027
    [Google Scholar]
  16. HeY. GuoH. TianJ. A simple three-component synthesis of spiro-pyran derivatives.J. Chem. Res.201135952853010.3184/174751911X13149692358913
    [Google Scholar]
  17. KhuranaJ.M. YadavS. Highly monodispersed PEG-stabilized Ni nanoparticles: Proficient catalyst for the synthesis of biologically important spiropyrans.Aust. J. Chem.201265331431910.1071/CH11444
    [Google Scholar]
  18. Jalili-BalehL. MohammadiN. KhoobiM. Ma’maniL. ForoumadiA. ShafieeA. Synthesis of monospiro-2-amino-4H-pyran derivatives catalyzed by propane-1-sulfonic acid-modified magnetic hydroxyapatite nanoparticles.Helv. Chim. Acta20139681601160910.1002/hlca.201200516
    [Google Scholar]
  19. YagnamS. AkondiA.M. TrivediR. RathodB. PrakashamR.S. SridharB. Spirooxindole-fused pyrazolo pyridine derivatives: NiO–SiO2 catalyzed one-pot synthesis and antimicrobial activities.Synth. Commun.201848325526610.1080/00397911.2017.1393687
    [Google Scholar]
  20. GuiH.Z. MengZ. XiaoZ.S. YangZ.R. WeiY. ShiM. Stereo‐ and regioselective construction of spirooxindoles having continuous spiral rings via asymmetric [3+2] cyclization of 3‐isothiocyanato oxindoles with thioaurone derivatives.Eur. J. Org. Chem.20202020426614662210.1002/ejoc.202001146
    [Google Scholar]
  21. Maheshwar RaoB. ReddyG.N. ReddyT.V. DeviB.L.A.P. PrasadR.B.N. YadavJ.S. ReddyB.V.S. Carbon–SO3H: A novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,3′-oxindoles].Tetrahedron Lett.201354202466247110.1016/j.tetlet.2013.02.089
    [Google Scholar]
  22. MakaremS. Three‐component electrosynthesis of spirooxindole‐pyran derivatives through a simple and efficient method.J. Heterocycl. Chem.20205741599160410.1002/jhet.3885
    [Google Scholar]
  23. MohamadpourF. MaghsoodlouM.T. LashkariM. HeydariR. HazeriN. Synthesis of quinolines, spiro[4 H -pyran-oxindoles] and xanthenes under solvent-free conditions.Org. Prep. Proced. Int.201951545647610.1080/00304948.2019.1653126
    [Google Scholar]
  24. ZakeriM. NasefM.M. Abouzari-LotfE. MoharamiA. HeraviM.M. Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-dimethylaminopyridine.J. Ind. Eng. Chem.20152927328110.1016/j.jiec.2015.03.035
    [Google Scholar]
  25. WuC. LiuJ. KuiD. LemaoY. YingjieX. LuoX. MeiyangX. ShenR. Efficient multicomponent synthesis of spirooxindole derivatives catalyzed by copper triflate.Polycycl. Aromat. Compd.202242127728910.1080/10406638.2020.1726976
    [Google Scholar]
  26. JazinizadehT. MaghsoodlouM.T. HeydariR. AbadiY.E.A. Na2EDTA: an efficient, green and reusable catalyst for the synthesis of biologically important spirooxindoles, spiroacenaphthylenes and spiro-2-amino-4H-pyrans under solvent-free conditions.J. Indian Chem. Soc.201714102117212510.1007/s13738‑017‑1148‑3
    [Google Scholar]
  27. ZhuY. ZhouJ. JinS. DongH. GuoJ. BaiX. WangQ. BuZ. Metal-free diastereoselective construction of bridged ketal spirooxindoles via a Michael addition-inspired sequence.Chem. Commun.20175381112011120410.1039/C7CC05813F 28956556
    [Google Scholar]
  28. MoghaddamM.F. AghamiriB. Facile one-pot, multi-component reaction to synthesize spirooxindole-annulated thiopyran derivatives under environmentally benevolent conditions.Heliyon202289e1066610.1016/j.heliyon.2022.e10666 36185147
    [Google Scholar]
  29. El KadibA. Chitosan as a sustainable organocatalyst: A concise overview.ChemSusChem20158221724410.1002/cssc.201402718 25470553
    [Google Scholar]
  30. CentiG. PerathonerS. Catalysis and sustainable (green) chemistry.Catal. Today200377428729710.1016/S0920‑5861(02)00374‑7
    [Google Scholar]
  31. ClarkJ.H. Catalysis for green chemistry.Pure Appl. Chem.200173110311110.1351/pac200173010103
    [Google Scholar]
  32. EzzatzadehE. AmiriS.S. HossainiZ. BaraniK.K. Synthesis and evaluation of the antioxidant activity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts.Front Chem.202210100170710.3389/fchem.2022.1001707 36262344
    [Google Scholar]
  33. ZarnegarZ. SafariJ. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications.Int. J. Biol. Macromol.201575213110.1016/j.ijbiomac.2015.01.013 25597431
    [Google Scholar]
  34. JermyB.R. AjayiB.P. AbussaudB.A. AsaokaS. Al-KhattafS. Oxidative dehydrogenation of n-butane to butadiene over Bi–Ni–O/γ-alumina catalyst.J. Mol. Catal. Chem.201540012113110.1016/j.molcata.2015.01.016
    [Google Scholar]
  35. GhafuriH. RashidizadehA. GhorbaniB. TalebiM. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−): An efficient solid acid catalyst for the green synthesis of α-aminonitriles and imines.New J. Chem.20153964821482910.1039/C5NJ00314H
    [Google Scholar]
  36. NegoiA. WuttkeS. KemnitzE. MacoveiD. ParvulescuV.I. TeodorescuC.M. ComanS.M. One-pot synthesis of menthol catalyzed by a highly diastereoselective Au/MgF2 catalyst.Angew. Chem. Int. Ed.201049448134813810.1002/anie.201002090 20857464
    [Google Scholar]
  37. LiuX. ConteM. SankarM. HeQ. MurphyD.M. MorganD. JenkinsR.L. KnightD. WhistonK. KielyC.J. HutchingsG.J. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts.Appl. Catal. A Gen.201550437338010.1016/j.apcata.2015.02.034
    [Google Scholar]
  38. SafaeiH.R. ShekouhyM. ShirinfeshanA. RahmanpurS. CaCl2 as a bifunctional reusable catalyst: diversity-oriented synthesis of 4H-pyran library under ultrasonic irradiation.Mol. Divers.201216466968310.1007/s11030‑012‑9392‑z 22968516
    [Google Scholar]
  39. MahéO. BrièreJ.F. DezI. Chitosan: An upgraded polysaccharide waste for organocatalysis.Eur. J. Org. Chem.20152015122559257810.1002/ejoc.201403396
    [Google Scholar]
  40. ZengM. QiC. ZhangX. Chitosan microspheres supported palladium heterogeneous catalysts modified with pearl shell powders.Int. J. Biol. Macromol.20135524024510.1016/j.ijbiomac.2013.01.016 23376558
    [Google Scholar]
  41. WuS. MaH. JiaX. ZhongY. LeiZ. Biopolymer-metal complex wool–Pd as a highly active heterogeneous catalyst for Heck reaction in aqueous media.Tetrahedron201167125025610.1016/j.tet.2010.10.062
    [Google Scholar]
  42. DekaminM.G. PeymanS.Z. KarimiZ. JavanshirS. JamalN.M.R. BarikaniM. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives.Int. J. Biol. Macromol.20168717217910.1016/j.ijbiomac.2016.01.080 26845480
    [Google Scholar]
  43. PettignanoA. BernardiL. FochiM. GeraciL. RobitzerM. TanchouxN. QuignardF. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction.New J. Chem.20153964222422610.1039/C5NJ00349K
    [Google Scholar]
  44. BoeyP.L. GanesanS. ManiamG.P. KhairuddeanM. LeeS.E. A new heterogeneous acid catalyst system for esterification of free fatty acids into methyl esters.Appl. Catal. A Gen.2012433-434121710.1016/j.apcata.2012.04.036
    [Google Scholar]
  45. SarkarS. Mechanochemical synthesis and antimicrobial studies of 4-hydroxy-3-thiomethylcoumarins using imidazolium zwitterionic molten salt as an organocatalyst.ACS Sustainable Chem. Eng.20219165557556910.1021/acssuschemeng.0c08975
    [Google Scholar]
  46. ChatterjeeR. MahatoS. SantraS. ZyryanovG.V. Imidazolium zwitterionic molten salt: An efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis(indolyl)methanes.ChemistrySelect20183215843584710.1002/slct.201800227
    [Google Scholar]
  47. JamwalN. SodhiR.K. GuptaP. PaulS. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis.Int. J. Biol. Macromol.201149593093510.1016/j.ijbiomac.2011.08.013 21871916
    [Google Scholar]
  48. JovanovicG.N. AtwaterJ.E. PlazlZ.P. PlazlI. Dechlorination of polychlorinated phenols on bimetallic Pd/Fe catalyst in a magnetically stabilized fluidized bed.Chem. Eng. J.2015274506010.1016/j.cej.2015.03.087
    [Google Scholar]
  49. SrivastavaA. YadavA. SamantaS. Biopolymeric alginic acid: An efficient recyclable green catalyst for the Friedel–Crafts reaction of indoles with isoquinoline-1,3,4-triones in water.Tetrahedron Lett.201556446003600710.1016/j.tetlet.2015.09.041
    [Google Scholar]
  50. DekaminM.G. AzimoshanM. RamezaniL. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions.Green Chem.201315381182010.1039/c3gc36901c
    [Google Scholar]
  51. SheldonR.A. Fundamentals of green chemistry: Efficiency in reaction design.Chem. Soc. Rev.20124141437145110.1039/C1CS15219J 22033698
    [Google Scholar]
  52. NakayamaA. YamamotoK. TabataS. Identification of the catalytic residues of bifunctional glycogen debranching enzyme.J. Biol. Chem.200127631288242882810.1074/jbc.M102192200 11375985
    [Google Scholar]
  53. LiY. ChenH. ShiC. ShiD. JiS. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium.J. Comb. Chem.201012223123710.1021/cc9001185 20085353
    [Google Scholar]
  54. DabiriM. BahramnejadM. BaghbanzadehM. Ammonium salt catalyzed multicomponent transformation: Simple route to functionalized spirochromenes and spiroacridines.Tetrahedron200965459443944710.1016/j.tet.2009.08.070
    [Google Scholar]
  55. WuC. ShenR. ChenJ. HuC. An efficient method for multicomponent synthesis of spiro[4H-pyran- oxindole] derivatives catalyzed by magnesium perchlorate.Bull. Korean Chem. Soc.20133482431243510.5012/bkcs.2013.34.8.2431
    [Google Scholar]
  56. ZhenX. WanX. ZhangW. LiQ. NegrerieZ.D. DuY. Synthesis of spirooxindoles from N -arylamide derivatives via oxidative C(sp2)–C(sp3) bond formation mediated by PhI(OMe)2 generated in situ.Org. Lett.201921489089410.1021/acs.orglett.8b03741 30698442
    [Google Scholar]
  57. ShanthiG. SubbulakshmiG. PerumalP.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions.Tetrahedron20076392057206310.1016/j.tet.2006.12.042
    [Google Scholar]
  58. KerlyB.Y.M. The solubility of glycogen.Biochem. J.19302416776
    [Google Scholar]
  59. Goli-JolodarO. ShiriniF. SeddighiM. An efficient and practical synthesis of specially 2-amino-4H-pyrans catalyzed by C4(DABCO-SO3H)2·4Cl.Dyes Pigments201613329230310.1016/j.dyepig.2016.06.001
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461280455240305061938
Loading
/content/journals/cgc/10.2174/0122133461280455240305061938
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test